
Challenge the future

Delft
University of
Technology

Design of CAD Module for JIT Extensible Processor
Customized for Placement and Routing

S.H. Daryanavard T. Marconi M. Eshghi

Computer Engineering of TU Delft

Placement algorithm and Functional Units Experimental Results on Small Benchmark

Circuit Benchmark

Architecture of Warp Processor

The most
Important
Challenge

Vahid proposed the first JIT extensible processor named
as Warp Processor. In Warp processor, initially
applications run on microprocessor which is general
propose processor. The profiler detects the binary’s
kernels of applications, dynamically; then the On-chip CAD
Module synthesizes and maps those kernels online to run
on FPGA; results are sent back to microprocessor. As a
result program’s running might suddenly speed up by a
factor of 2, 10, or even more. In other words, the running
time “warps”.

Execution time of CAD Module
FPGA design automation consumes ultra-long time.
Includes the phases to produce a FPGA bitstream:
synthesis, technology mapping, place and route

Proposed
Idea

In this paper, application-specific
instruction set processor (ASIP)
has been proposed as a
promising solution to speed up
CAD algorithm to be used in JIT
extensible processor.

First Stage of Placement Algorithm (LWR) {
1. For (outer loop)
2. For (inner loop)
3. FPlace=Compute Forces for all Cells;
4. Place=Update Position of Cells regarding FPlace;
5. End for;
6. Place=Integer Rounding (Place);
7. Place=Overlap Remove (Place, FPlace);
8. End for; }
Second Stage of Placement Algorithm (LTSA) {
1. D=initial d T=Initial T --D is high and T is Low Value
2. Old Cost=Cost (Place);
3. While (T>0)
4. For inner loop
5. C1=select cell by uniform random function.;
6. C2=select cell by normal random funct. Regarding C1 & D;
7. New Place=Perturb (C1, C2);
8. New Cost=Cost (Place);
9. Delta Cost=New Cost- Old Cost;
10. If (Delta Cost<0)
11. Old Cost=New Cost;
12. Place =New Place;
13. Else if (rand (0, 1) <e-Delta Cost/T)
14. Old Cost=New Cost;
15. Place =New Place;
16. End if;
17. End for;
18. D=schedule (D); T=schedule (T);
19. End While; }

We used coarse grained structure.
Considering algorithm, the final
instructions set is shown in above figure.
Double-arrow connector shows resource
sharing between instructions which are
time isolated. These instructions are
extracted manually in terms of functions
utilization and profiling of running
algorithms in software mod by sim-profile
and Dlite! debugger which are commands
of Simplescalar simulator tool.

Proposed FPGA Placement: The presented
algorithm consists of two stages. In first stage is
force-directed based, Second stage is a revised
SA placement. At the end of second stage we have
2.33X speedup with the same quality of VPR. First
and second stages are called Long Wire Reduction
(LWR) and Low Temperature SA
(LTSA), respectively, which pseudo code of stages
was shown in below figure.

Functions

Code Size (Byte)

Software
Running

Modify
Software
Running

Fine Grain
Inst. ASIP

Coarse
Grain

Inst. ASIP
Rand_FUN 192 384 272 112

Perturb _FUN 488 - 376 104
THPWL_FUN 960 - 560 112
Exponent_FUN 376 400 224 120

Main
T=10:1:0

Inner loop=100
912 912 912 912

Code Size Results

Functions

Execution Cycle (Clock)

Software
Running

Modify
Software
Running

Fine Grain
Inst. ASIP

Coarse
Grain
Inst.
ASIP

Rand_FUN 48 43 29 13
Perturb _FUN 60 - 46 12
THPWL_FUN 3730 - 1997 247
Exponent_FU

N 162 39 27 14

Main
T=10:1:0

Inner loop=100

4567868
Ref

4447539
1.03X

2393903
1.9X

347609
13.1X

Execution Cycle Results

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

Software
Running

Modified
Software
Runing

Fine Grain
Inst. ASIP

Coarse Grain
Inst. ASIP

Main Execution Cycles

	Slide Number 1

