FSL: A Logic for Reasoning about Memory Fences

Max

Marko Doko, Viktor Vafeiadis %' l Planck

for
Software Systems

1. Strong vs. weak memory 2. Examples of weak behavior in C11

= \Memory models describe all possible behaviors Q Q

int a . int a = 0;

resulting from concurrent accesses to shared int x . Stomic int x = 0
memory locations. 42; | |if (x == 1) a = 42 if (xp, == 1){

1 race print (a) ; Xplp = 1j || rece print(a);

b }

®

w |n practice, hardware behaves weakly atomic.int a = 0'\
’){ rf

w \ost verification work assumes a strong
memory model (i.e. interleaving semantics).

atomic_int x = 0;
(x86-TSO, POWER, ARM, ...). ey

rle ——

15 i print (amg);
= The C11 memory model unifies various existing } |
hardware models. ©noraces© ®can print 0 ®

3. Fences in C11 4. Fenced separation logic (FSL)

Fences can be used to achieve synchronization: w Extension of relaxed separation logic (RSL).

int a = 0;

Atomic int x = 0; -»Dlrecj[reasoning about release writes and
a = 42; [[if (g == 1){ acquire reads.

fencerel, //Sync>fenceacq;
Xy = 17 print(a);

® no ra(};es ® [@ always prints 42 | | ™ Simple inference rules for fences and

atomic accesses.

Other synchronization primitives, such as release
writes and acquire reads, can be implemented w Proofs of memory safety and race freedom.
using fences.

5. Inference rules 6. Example proof

Atomic allocation: (v="0V &ar 42)

Q: Val — Assn {true}

: _) % . int a = 0;
{Q(v)} atomic X =V {Wg(z)*Rg (z)} (&a s 0}

atomic_int x = 0;

Release fence: Atomic write: {&a — 0% Wo (z) * Ro (2)}
{P} {AQ(v) *Wg (x)} {&a = 0xWg (z)} {Ro(2)}
f — a = 42; 1f (% == 1)1
CHCS e rlz =V (&a s 42 % Wo (2)) (V(&a — 42))
{AP} {Wo ()} fence,; fenceqe;
{A(&a — 42) * Wg ()} {&a — 42}

: _ : _ Xple = 1; print (a);
At0m|C read ACqUIre fence {true} {tTue}

iRg ()} {V P} }

T = XTZZC fenceacq {true}

1V Q) 1P}

