
FSL: A Logic for Reasoning about Memory Fences
Marko Doko, Viktor Vafeiadis

1. Strong vs. weak memory

å Memory models describe all possible behaviors
resulting from concurrent accesses to shared
memory locations.

å Most verification work assumes a strong
memory model (i.e. interleaving semantics).

å In practice, hardware behaves weakly
(x86-TSO, POWER, ARM, . . . ).

å The C11 memory model unifies various existing
hardware models.

2. Examples of weak behavior in C11

int a = 0;
int x = 0;

a = 42; if(x == 1){
x = 1; print(a);

}

int a = 0;
atomic int x = 0;

a = 42; if(xrlx == 1){
xrlx = 1; print(a);

}

atomic int a = 0;
atomic int x = 0;

arlx = 42; if(xrlx == 1){
xrlx = 1; print(arlx);

}
, no races ,

1

race

2

race

3

rf

rf

/ can print 0 /

3. Fences in C11

Fences can be used to achieve synchronization:

int a = 0;
atomic int x = 0;

a = 42; if(xrlx == 1){
fencerel; fenceacq;
xrlx = 1; print(a);

}
, no races ,

rf
sync

, always prints 42 ,

Other synchronization primitives, such as release
writes and acquire reads, can be implemented
using fences.

4. Fenced separation logic (FSL)

å Extension of relaxed separation logic (RSL).

å Direct reasoning about release writes and
acquire reads.

å Simple inference rules for fences and
atomic accesses.

å Proofs of memory safety and race freedom.

5. Inference rules

Atomic allocation:
Q : Val→ Assn

{Q(v)} atomic x = v {WQ (x) ∗ RQ (x)}

Release fence: Atomic write:
{P}

fencerel
{4P}

{4Q(v) ∗WQ (x)}
xrlx = v
{WQ (x)}

Atomic read: Acquire fence:
{RQ (x)}
t = xrlx
{5Q(t)}

{5P}
fenceacq
{P}

6. Example proof

Q(v) def
= (v = 0 ∨ &a 7→ 42)

{true}
int a = 0;
{&a 7→ 0}

atomic int x = 0;
{&a 7→ 0 ∗WQ (x) ∗ RQ (x)}

{&a 7→ 0 ∗WQ (x)} {RQ (x)}
a = 42; if(xrlx == 1){
{&a 7→ 42 ∗WQ (x)} {5(&a 7→ 42)}
fencerel; fenceacq;
{4(&a 7→ 42) ∗WQ (x)} {&a 7→ 42}
xrlx = 1; print(a);
{true} {true}

}
{true}


