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Abstract—In the simplest setting, one represents a boolean
function using expressions over variables, where each variable
corresponds to a function input. So-called parametric represen-
tations, used to represent a function in some restricted subspace
of its domain, break this correspondence by allowing inputs to
be associated with functions. This can lead to more succinct
representations, for example when using binary decision dia-
grams (BDDs). Here we introduce Universal Boolean Functional
Vectors (UBFVs), which also break the correspondence, but done
so such that all input vectors are accounted for. Intelligent
choice of a UBFV can have a dramatic impact on BDD size;
for instance we show how the hidden weighted bit function can
be efficiently represented using UBFVs, whereas without UBFVs
BDDs are known to be exponential for any variable order. We
show several industrial examples where the UBFV approach has
a huge impact on proof performance, the “Killer app” being
floating point addition, wherein the wide case-split used in the
state-of-the-art approach is entirely done away with, resulting
in 70-fold reduction in proof runtime. We give other theoretical
and experimental results, and also provide two approaches to
verifying the crucial “universality” aspect of a proposed UBFYV.
Finally, we suggest several interesting avenues of future research
stemming from this program.

I. INTRODUCTION

Binary Decision Diagram (BDD) techniques for formal
verification (FV) have fallen out of fashion as a research topic
in the past decade. Nevertheless, the data structure is still
widely used in industry to solve real-world hardware verifi-
cation problems, for example at companies such as Intel [23],
IBM [24], [29], and Centaur [28]]. Furthermore, contemporary
commercial FV tools also include BDDs in their spectrum
of technologies. Perhaps one of the most successful domains
for these techniques is FV of arithmetic data-path hardware
designs. The efficacy of BDDs stems from the fact that they
constitute a canonical representation of boolean functions, and
for many functions of practical importance, the BDDs are of
tractable size. It is well-known that the variable order can
drastically influence the size of a BDD. Unfortunately, there
are many functions, both artificial and practical, that have
been shown to have exponentially large BDDs regardless of
the ordering. To combat these roadblocks, techniques such as
case-splitting and proof decomposition have been explored.

In this paper, we propose an orthogonal approach to avoid-
ing blow up. Typically, one constructs a BDD for a function
f in a setting wherein BDD variables and the inputs of f
are in one-to-one correspondence. This correspondence can
be broken when using parametric substitutions [3]] to perform
case-splitting; there, (not necessarily variable) functions are
associated with f’s inputs, with the goal of restricting the space

in which f is represented. Our approach, called Universal
Boolean Functional Vectors (UBFV) is similar to parametric
substitutions in that functions are associated with f’s inputs,
however, unlike parametric substitutions, a UBFV representa-
tion of f does not restrict the space of representation (ergo,
“universal”). In other words, all assignments to f’s inputs are
implicitly represented in the UBFV representation.

To illustrate this concept, consider the function
flvi,v9,v3) = w; V wvoU3. Suppose we perform the
substitution (vy,vo,v3) ~ (a V b,d,bé), where a, b, c,
and d are fresh variables. Applying this substitution to f
yields a new function f’ = a V bV dc. Even though f’
bears no syntactic resemblance to f, the former completely
characterizes the latter in the sense that one can evaluate f
for any input using only f’ and the substitution. The complete
characterization is possible only because (a V b,d,be) is
universal in the sense that all 23 of the possible boolean
assignments to (v1,ve,vs) can be realized via assignments to
(a,b,c,d); such a substitution is what we call a UBFV.

But what advantage can be achieved by performing these
UBFV substitutions? We show that there exists functions,
both theoretical examples and those arising in practical FV,
with BDD representations being exponentially more compact
when one selects an appropriate UBFV substitution. For the
practical FV problems, this approach has a profound impact on
proof runtime requirements. This is because where the current
solution to avoid the exponential blow up involves performing
many case-splits, by employing UBFVs we can reduce the
number of cases drastically, often eliminating the need for
case-splitting altogether. We also give a practical example
where using UBFVs removes the need for proof decomposition
— this can reduce proof development effort.

Our contributions are as follows. We lay down the ground-
work for the theory of universal boolean functional vectors.
and prove a key result (Theorem [2)) showing that those func-
tions that have small partitioned BDDs [22] also have UBFV
representations with small BDDs. As a corollary, we prove
that the hidden weighted bit function [5] has a cubic BDD
for an appropriate UBFV. Deciding if a given substitution
constitutes a UBFV is NP-hard. However we provide a BDD-
based algorithm that is sufficient for the UBFV for the hidden
weighted bit function and for our industrial examples, and
also a user-assisted approach with low complexity. Finally,
we report very encouraging performance speed-ups for real
industrial proofs, namely floating point (FP) addition (FADD)
and FP fused-multiply add (FMA) instructions.



II. RELATED WORK

The idea of using parametric representations of boolean
functions (what we term BFVs) goes back to the early
1970s [6], [9]. Such a representation, generated by the gener-
alized co-factor operation (GCF) (a.k.a. constrain) was intro-
duced in the setting of hardware model checking by Coudert
and Madre [11]]. Later, Jones et al. [3l], [18] proposed a
specialized variation of GCF called param, for use in symbolic
simulation, e.g. STE [26]. Similar to us, Jain and Gopalakr-
ishnan [17] employ problem-specific recipes (rather than use
a generic algorithm) to create parametric representations for
hardware verification. However, a common theme in these
works is the restriction of the space of a boolean function
to simplify its representation (often BDDs); we believe ours
is the first published approach that strives to simplify the
representation without a space restrictionE]

The industrial example where our approach is extremely
effective is the verification of FADD. Published FADD
proofs [10], [3]], and those solving the related problem of FMA
verification [16]], [21], [27] require wide case-splitting, which
we altogether eliminate (or at least drastically reduce, in the
case of FMA).

A good introduction to the use of BDDs in hardware FV is
the paper by Hu [14].

III. MATHEMATICAL FOUNDATIONS

A. Boolean Functions

Let B be the boolean constants {0,1} and let V be a
finite set of boolean variables. A V-assignment (or simply
assignment if V' is understood) is a function o : V. — B.
A (boolean) function (over V') is a function f taking V-
assignments to B, ie. f : (V — B) — B. An assignment
« is said to satisfy f if f(a) = 1; f is said to be satisfiable
(resp. tautological) if f is satisfied by some (resp. by all)
assignments. We denote a tautological function as 1 and
an unsatisfiable function by 0. We will employ overbar for
boolean negation, juxtaposition or A for conjunction, V for
disjunction, and <> for boolean equality. As is well known,
any function over V can be represented as a formula using
these operators and V. We will often leave « implicit, for
instance zy V z represents the function f over {z,y, z} such
that f(a) = a(z)a(y) V a(z). Also, if V. C V', and f is
defined to be a function over V, we can freely employ f as
a function over V' in the obvious way.Finally, we say the
function f over V' is a variable if there exists v € V such that
f(a) = a(v) for all assignments .

Much of what follows involves placing a total order < on
sets of variables; if the set of variables is subscripted with
integers, we say the natural order is the ordering that simply
applies < to the subscripts.

! Anecdotes within the walls of Intel recall similar ad-hoc trickery done in
the past [15], though the idea was not explored thoroughly as we do in this
paper, nor was the application to FADD/FMA known.

B. (Universal) Boolean Functional Vectors

A common operation on boolean functions is that of sub-
stitution, in which functions are substituted for the variables
of another function. In this paper, the objects that describe
substitutions are called boolean functional vectors (BFV) [13].
Given (not necessarily disjoint) sets of variables V and V', a
BFV over (V,V’) is a function ¢ : V. — ((V/ — B) — B)
that takes the variables V' to boolean functions over the other
set of variables V’. We transpose the arguments of ¢ to obtain
the function ¢* : (V' — B) — (V — B) defined by
P*(a’)(v) = ¥(v)(a/). Now applying a BFV ¢ over (V,V”)
as a substitution against any function f over V' is achieved via
the composition

foy*: (V- B)—B

Aside from being employable as a substitution for functions
over V, a BFV 1 is also characterized by a particular V-
function c. We say that c is the characteristic of the BFV v if
for all V-assignments o we have that « satisfies c if and only
if there exists a V’-assignment ¢’ such that v = *(’). Said
another way, as we range across all possible V’-assignments
o, ¥*(a’) ranges across exactly the set of V'-assignments
that satisfy c. When necessary to distinguish between the two
variable sets V' and V', we will respectively refer to them as
the primary and the secondary variables.

Now we may define the central concept of this paper: a
universal BFV (UBFV) is simply a BFV that has as the
characteristic the tautological function 1. Equivalently, v is
universal iff * is surjective. The key observation about
UBFVs is that when one is used as a substitution against a
function f, the result incurs no loss of information regarding
f. This is formalized by the following lemma.

Lemma 1. Let ¢ be a UBFV over (V,V') and let f be a
function over V. Then for any o : V — B, there exists o :
V' — B such that a« = *(a’) and thus (f o *)(a’) = f(a)

Proof. Follows from the fact that 1) is a UBFV; note however
that o’ is not necessarily unique. O

Lemma (1| says that f o ¢* is a legitimate representation
of f; given only f o™ and v, we can evaluate f for any
V-assignment. Since BFV substitution commutes with any
boolean connective, we can apply boolean connectives in the
“domain” of a UBFV 1), for instance for two functions f; and
f2 and a boolean connective ®, we have

(fio™)© (faotp") = (f1©® fa) o)™

It follows from Lemma |1} importantly, that we can check for
function equality in this domain as well — f; and fy are
identical functions iff f; o Y™ and f5 o ¢)* are also identical.

C. Binary Decision Diagrams

A branching program (BP) [4] is an acyclic, labelled,
directed graph with labelling function ¢ : N — (V U {1,0}),
where NV is a set of nodes and V is a set of boolean variables.



A BP has exactly one source node, called the root. The
labelling function is such that £(c) € {1,0} if and only if o is
a sink; the sinks are called terminal nodes. Each non-terminal
node o has exactly two direct successors, called lo(o) and
hi(o). Given a V-assignment o and non-terminal node o, the
active child of o is lo(o) if a(¢(0)) = 0 and hi(c) otherwise.
A BP represents the boolean function f over V' defined so that
f(a) is the label of the terminal node found by starting at the
root, and following the path of active children according to a.
The number of non-terminal nodes in a BP is called its size.

We now introduce two sub-classes of BPs that involve
placing a total order < on V. A =<-ordered binary decision
diagram (X-OBDD, or OBDD if =< is understood) is a BP
such that for all non-terminal nodes o and o’ where ¢’ is a
successor of o, we have that (o) # ¢(¢’) and £(0) = £(0”).
In other words, all paths from the root to a sink respect <.
The sub-OBDD rooted at a node o is the OBDD formed by
deleting all nodes other than o and its descendants. We say two
BPs are isomorphic if they are isomorphic in the traditional
graph theoretic sense, and the isomorphism preserves ¢, lo,
and hi. A reduced OBDD, which we simply call a BDD, is
an OBDD such that no two sub-OBDDs are isomorphic, and
no node o has lo(o) = hi(o).

Theorem 1 (Bryant [7]). For any function f and =, there
exists a =3-BDD that represents f and it is unique up to
isomorphism.

Thanks to Theorem [I} we can refer to a <-BDD that
represents f as the =-BDD for f; we denote the size of this
BDD by Sz(f, <). For many functions that arise in practice,
the BDD provides a compact representation. Also it is well-
known that the choice of < can often make the difference
between having an exponentially- or compactly-sized BDD.
Furthermore, there are some practical functions that have been
proven to have exponentially sized BDDs for any choice of
<. The middle bit of the output of an integer multiplier is
a standard such example [8], as too is the so-called hidden
weighted bit function [3]], which we define in Sect.

It is well-known that BDDs are the most compact OBDDs:

Lemma 2. For any function f and <, SZ(f,=) is not greater
than the size of any <-OBDD for f.

D. Generalized Cofactor

Given a total order =< over a set of indexed variables
{x1,...,x,}, the permutation induced by = is the permutation
m on {l,...,n} defined by n(i) = j iff z; is the ith
element in the order =, thus (1) =X -+ = Tn(y). Given
functions f and h over {z1,...,z,}, and a variable order
=, the generalized cofactor [11] of f and h is the function
defined by GCF(f, h, <)(a1) = f(a2), where a is the unique
assignment such that h(as) = 1, and the following distance d
between a; and «y is minimized. Here 7 is the permutation
induced by =, and @ is exclusive-OR.

d(ag,az) = 22"%(0&1(%(1‘))@042(5%(1'))) (1)

i=1

The intuition behind (I is that differences between «; and
oo are weighted greater for variables that are smaller in <.
Although d depends on 7 and thus <, we leave this implicit.

There are many papers that employ the generalized cofactor
operation, but we could not find an explicit statement of the
following lemma (that we use):

Lemma 3. SZ(GCF(f,h,<),=<) < Sz(f,=)Sz(h,=)

Proof. By inspection of the pseudo-code for gcf(f,h) of
Franco and Weaver [12], we see that a new node is generated
at most once per recursive call to gef (f/, h'). A recursive call
is done at most once on each pair of nodes (f’,h’) where f’
is a node of f and k' is a node of h; the result follows. [

As noted by Jones [18]], the Param operation [3] can be
synthesized using GCF. We will be effectively using Param
on several occasions, but will express it using GCF and hence
not mention Param explicitly.

IV. PARTITIONED BDD AND UBFV S1ZE COMPLEXITY

A partitioned BDD for a function f is a set of functions
that each characterize f in a subspace of assignments, and
each subspace can use a different variable order. This free-
dom can result in smaller BDDs than a “monolithic” BDD
representation. In this section we show that if f has a compact
representation as a partitioned BDD, then there exists a UBFV
1 for f such that ¢)(v) has a compact BDD for each v, and so
too does f o1*. Hence, we needn’t exploit disparate variable
orderings as afforded by partitioned BDDs; UBFVs allow for
compact representations using a single order. Consequently,
whereas techniques for using partitioned BDDs in proofs
effectively involve doing the proof once for each partition, we
need only run the proof once using an UBFV representation.

As just stated, our result is almost obvious: one could create
a per-partition copy of each primary variable, and construct
the UBFV representation using an order that preserves each
partition’s ordering on its copy. This would totally elimi-
nate the possibility of inter-partition sharing of sub-BDDs,
and provide no interesting advantage over doing per-partition
proofs. On the contrary, we use the same set of variables
for each partition in the UBFV representation, which allows
us to prove our result while only introducing a logarithmic
increase in the number of secondary variables. Though this
enables our per-partition sub-BDDs to share BDD nodes, our
upper-bound result assumes no sharing. However, we show in
Sect. [V] empirically and by example that sharing can have a
profound effect; this is also evident in our experimental results
of Sect.

A. Partitioned BDDs

We now formalize partitioned BDDs, more or less fol-
lowing Narayan er al. [22], with one material difference

2The difference being that [22] requires fi = w;f while we use the
weaker condition w; f; = w; f. We effectively give f; the freedom to behave
arbitrarily in the “don’t care” space ;. This allows Theorem [J]to potentially
yield tighter bounds than if we used the definitions from [22] verbatim.



A partitioned BDD for V-function f is a set of triples
{(wj, f;,=5) : 1 < j <k} where

1) each w; and f; are boolean functions over V' such that

wjfj = w]‘f and wy 75 0

2) each =; is a V-order

3) wiV---Vwg =1
Typically, partitioned BDDs are of interest when f does not
have a sufficiently small BDD representation, but each w; and
f; do have compact <;-BDDs.

B. UBFV Construction

Suppose we have a partitioned BDD for f as in Sect.
over the variables V' = {v1,...,v,}. Our construction of a
corresponding UBFV representation involves secondary vari-
ables C' = {Ciog(k),---,Co} that, when assigned to, uniquely
select a partition. Two key insights come into play:

1) We employ secondary variables Y = {y1,...,yn} such
that, once we have selected partition j, the variable y;
represents the ith element of the V-order =<;. In other
words, the variable v, represented by y; differs according
to the selected partition. This trickery allows us to use
the same order on Y across all partitions and preserve
the BDD sizes in the partitioned BDD.

2) Our UBFYV is constructed so that once we select partition
J, the V-assignment that is induced satisfies w;. To
achieve this we utilize the generalized co-factor operation,

explained in Sect.

Formalizing this, we define the repartitioned BFV ~. Let
c[j] denote the condition that Clog(k) - - - Co> @ a binary number,
is equal to j. Let 7; be the permutation induced by =, and
in a slight abuse, for any V-function h we let m;(h) be the
Y -function formed by substituting Yre; (i) forv;, 1 <17 <mn,in
h. Letting = be the natural order over Y, v is the BFV over
(V,C UY) defined by

k
Y(wi) = \/ cli]GCF(j(vi), mj(w;), <) 2)
j=1

The above expression integrates both of our key insights. The
use of m; to turn V-functions v; and w; into Y -functions is
the manifestation of the first insight, while the use of GCF is
that of the second. Lemma |4| below, which is proven in the
appendix of the web version [1] asserts that the repartitioned
BFV #~ is in fact universal, and also gives an expression for
fonr.
Lemma 4. v is a universal BFYV, and furthermore

k

for' =\ elfIGCF(m;(f;), mj(w;), =) )

j=1

Lemma [] is instrumental in proving our upper bound result
Theorem [2] below. The BDD for f o~* described in the proof
is shown in Figure

Theorem 2. Suppose f is a function over V with a partitioned
BDD {(w1, f1,=1)s--., (Wi, fi;, <k)}. Then there exists a

Fig. 1. The OBDD for f o ~v* described in the proof of Theorem [2] The
variable order is shown on the left; the triangular part at the top of the OBDD
is the incomplete OBDD that determines which c[] holds. Each f is the BDD
for GCF(m;(f;),mj(wj), =), which is the GCF of f; with respect to wyj,
but with variables renamed according to 7;. Thus each f/ has the exact same
structure as the <;-BDD of GCF(f;,w;, <;). The overlap between f; and

1% emphasizes that sub-BDD sharing is possible between all the f J’-’s.

UBFV 1) for f with secondary variables V' and total order
=< on V' such that

(a) ForallveV, Sz(y(v),x) =0 (Zle Sz(wj, jj))
(b) Sz(foy*,=%)=0 (Z?:l Sz(wj, =;)Sz(f;, jj))

(c) [V'] = [logy k] + |V

Proof. (Sketch) We choose the repartitioned BFV -y to serve as
the witness. Thanks to Lemma E], we have that  is universal;
Also condition (c) holds of y by definition. To prove conditions
(a) and (b), let us employ the notion of an incomplete OBDD
as an OBDD wherein some sink nodes are not terminal nodes,
but rather unlabelled placeholders; by appropriately plugging
in other OBDDs at placeholders, an incomplete OBDD can be
turned into an OBDD.

For each v;, an <-OBDD for ~(v;) (2) can be constructed
as follows. Start with an incomplete OBDD over variables
C with k placeholder nodes, such that the path to the jth
placeholder is active when c[j] holds of an assignment.
Note that this incomplete OBDD has size O(k). For each
1 < j <k, at the jth placeholder we insert the <-BDD of
GCF(mj(v;),mj(w;), =). From Lemma [3| and the fact that the
size of a variable function is 1, the size of this BDD is bounded
by Sz(m;(w;), =) = Sz(w;, <;); condition (a) follows.

We build an <-OBDD for f o~* by starting with the same
incomplete OBDD as above. At the jth placeholder, we insert
the <-BDD of GCF(m;(f;), m;j(w;), <). Again appealing to
Lemma [3] we find that size of this OBDD to be bounded by

Sz(mj(f;), 2)Sz(mj(w;), =) = Sz(f;, 25)Sz(wj, <)
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Fig. 2. Computed BDD sizes for the hidden weighted bit function using
UBFVs (log-log scale). Data points are for £ = 2¢ — 1 with 2 < e < 9.
“UBFV max” is the largest BDD in the UBFV ), while “HWBF” is the size
of HWB}o0t*. The curves k3 and k2 are plotted for comparison, from which
it seems evident that the BDDs grow only quadratically, an improvement over
our proven cubic bounds.

C. Application to Hidden Weighted Bit Function

As a corollary to Theorem [2] we can prove the existence
of a good UBFV representation for the hidden weighted bit
function. For any & > 1, HWDBj, is the function over the
k variables {x1,...,xy} defined by HWB) = x,,, where
w = WEIGHT({x1, ...,2;}) and WEIGHT counts the number
of variables assigned to 1 in its argument. For the case that
w =0, we set HWB = 0.

Corollary 1. For k > 1 there exists a UBFV v for HWB}, and
secondary variable ordering < such that for each 1 < i <k,
Sz(¢(x;), <) = O(k?), and SZ(HWBy, o *, <) = O(k3).

Proof. Let {(wo, fo,=<),..., (wg, fx, =)} be the partitioned
BDD for HWBj, such that

o w; =1iff j = WEIGHT(zg, ..., 21)

. f0:0andfj:xj fOI'lS]S]C

e = is any ordering.
Since each w; is a totally symmetric function, SZ(w;, =) =
O(k?) [), and clearly Sz(f;,=<) = O(1). The result then
follows by Theorem [2] O

V. DISCUSSION

In practice, due to the reduction and sharing inherent in
BDDs, the bounds afforded by Theorem [2] can be quite
loose. For example, empirically we observe quadratically sized
UBFV representations for HWBy,, as plotted in Figure[V] Here
we give a couple other arm-chair constructions that illustrate
the versatility afforded by UBFVs.

A. Inverting an Adder

In this section we give an example of a UBFV that does not
resemble the repartitioned UBFV of Sect. and demon-
strates how counter-intuitive some UBFV representations can
be. Consider an unsigned modulo-2" adder; in our formalism,
this is a list of n functions ADD = ADD,,_1, ..., ADDg over
XUY, where X = {zp_1,...,20} and Y = {yn—1,...,%0}-

An assignment « encodes a binary number on X and Y, when
we evaluate the functions of ADD at a we obtain a binary
encoding of (X +Y) mod 2". It is well-known that by using
a variable ordering that interleaves X and Y, the BDDs of
ADD are of linear size. However, one can formulate a UBFV
representation of ADD with constant size simply by exploiting
the fact that modulo addition is invertible.

Letting Z = {z,—1,...,20} be fresh variables, we create
a BFV ¢ over (X UY,Z UY) such that ¢(y;) = y; for
each y; € Y, and ¢ (x;) is the function representing the ith
bit of the binary number Z —Y mod 2". Universality of 1
follows from the fact that given any naturals z,y < 2", there
exists a natural z < 2" such that x = z —y mod 2". More
interestingly, consider ADDo* (by which we mean 1) applied
to each element of ADD piecemeal). Now, slightly abusing
notation, ADD = X +Y mod 2", hence

ADDo )" = (X op*) + (Y o) mod 2"
=(Z-Y+Y) mod?2"
=Z

Hence the ith bit of ADD o 4)* is simply the variable z;.

This is rather surprising; we claim that a non-trivial arith-
metic function is represented simply by a vector of unique
variables. But we must keep in mind that ADD o ¥* only
represents ADD when we know what 1 is. And in a sense, we
have simply transposed complexity from the outputs of ADD
to (half of) its inputsE]

B. Disguising a Function as a Variable

Sect. showed how in a particular case we can construct
a UBFV that reduces a list of functions to a list of unique
variables. In general this is not always possible, but when we
consider the output of a single function, we have the following
result.

Theorem 3. Let f be a function that is not identically 1 or
0. Then there exists a UBFV 1 for [ such that f o y* is a
variable.

Proof. (Sketch) Let V' = {vy,...,v,} be the variables of f,
let < be the natural V-order, and let y be a fresh variable. For
all 1 <7 <n we define

Y(vi) = (y NGCF(vi, f,2)) V (§ A GCF(v;, [, X))

It can be secen that ¢ is a UBFV, and that f o ¢* = y; the
condition that f is not 1 or 0 is necessary since the generalized
co-factor cannot be taken of 0. O

Of course Theorem [3] does not directly save us any BDD
complexity since the largest BDD in % is the same size as
the BDD for f; the UBFV ¢ simply moves the complexity
of the “output” to the “inputs”. However, if f is actually an
intermediate function involved in symbolically simulating a

3The result is not quite so elegant if we use a non-modulo adder, i.e. one
with an (n+ 1)th bit of output. In this case we can construct a similar UBFV
such that the UBFV representation of bit ¢ of the output will again be z;,
except when 7 = n, in which case it is a nontrivial function.



specification and/or implementation, and having a nontrivial
BDD on f leads to downstream blow-up, it an UBFV along
the lines of Theorem [3| could be a remedy.

VI. CHECKING BFV UNIVERSALITY

So far we have ignored a crucial question: given a BFV
1, how does one verify that it is a universal BFV? This is
an important problem to solve; we propose to allow users to
concoct intricate, problem-specific UBFVs, and soundness of
any proof involving UBFVs hinges on them being universal,
hence we require a way to certify BFV universality. This
issue is not merely theoretical — when experimenting with
UBFVs for the case studies of this paper, on more than one
occasion the author ended up with a BFV that subtly failed to
be universal. In this section we give several solutions to this
problem, varying in automation.

A. Algorithmic Approach

Let us denote the elements of V' and V' respectively by
{v1,...,v,} and {uq,...,u;}, and for this section we will
consider V' and V' to be disjoint. The V-function that is the
characteristic of 1) can be expressed as:

n
S \ (01 4 9 (v;)) )

i=1

H’U/l,...

This is simply a logical expression of the set represented
by a BFV from Goel and Bryant’s paper [13[]. It follows
that ¢ is a UBFV iff is the function 1. This can be
checked using BDD techniques, although we have found that
often computing the BDD for the n-way conjunction or the
subsequent existential quantification caused BDD blow-up.

B. Semi-automatic Inverse Approach

A non-automatic, but computationally less demanding ap-
proach to checking universality can use BDDs or SAT-solving
as a propositional engine. The user provides a proof of univer-
sality; the engine then checks the proof via computations that
are much simpler than a direct computation of (@). The proof
takes the form of an inverse ¥y~ : V' — ((V — B) — B)
of . We say “an inverse” since 1)~! is usually not unique.
The idea is that for each v’ € V’ and V-assignment «, the
V'-assignment o’ defined by o/ (v') = ¥ ~1(v')(«) is such that
a = 1*(a’) . In this way, 1)~ maps « to a “witness” o’ such
that a = ¢*(a’), the existence of such a witness for each «
is tantamount to universality of .

Expounding on this, we employ 1~! to simplify by
using it to pick values for the existentially quantified variables
of V', which allows us to strip off the quantifier:

n
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Since we aspire to prove that (3) is tautological, which is the
case iff each conjunct is tautological, this reduces to checking
tautology of each v; <+ 1)(v;) 0 ¢p~'" individually.

Recollecting the example in the introduction of this paper,
suppose we have V' = {vy,va,v3}, V' = {a,b,c,d}, and

instruction case-splits runtime memory
classic | UBFV | classic | UBFV | classic | UBFV
SP FADD 113 1 22.1 0.2 2.5 24
DP FADD 231 1 51.5 0.5 2.6 6.7
SP FMA 173 5 40.1 2.6 12.8 11.7
DP FMA 2374 28 497.6 474 10.3 37.5
PCMPISTRI 82 1 0.7 1.3 2.0 17.1
SP FDIV Pre 335 16 17.2 0.9 4.1 4.1
TABLE T

RESULTS COMPARING OUR UBFV APPROACH TO THE CLASSICAL
APPROACH. TIMES ARE IN HOURS AND MEMORY USAGE IS THE MAXIMUM
NUMBER OF GB USED BY ANY CASE-SPLIT.

¥ = {vy = a V b,vs — d,v3 > bc}. Then a suitable inverse
is ™t = {a > v1,b— 0,c+— v3,d — v2}; the reader can
check that (3) holds.

VII. CASE STUDIES

In this section we report on application of the UBFV ap-
proach to the problem of verifying hardware implementations
of several instructions in recent CPU designs done at Intel.
All examples use symbolic simulation with BDDs, specifically
using the rSTE symbolic simulator [23] and the underlying
forte [25] tool. We contrast our results against the “classic”
proofs, which use the same tool suite and were done by Intel
FV experts other than the authorE] The results are summarized
in Table note that all results involving a case-split include
the time taken to prove that the cases are exhaustive. Note that
the UBFVs for these case studies were developed manually
prior to the theory of Sect. and thus do not explicitly use
the repartitioned BFV construction of that section.

A. Floating Point Addition

Floating Point Addition (FADD) is a family of instructions
that perform addition of FP numbers. BDDs for the outputs
of integer addition are linear in the bit-width of the operands,
using the variable order that simply interleaves the operand
variables. For FADD, however, the BDDs are exponential.
This is because the input mantissas must be aligned, according
to the exponent difference expdiff, prior to performing the
(integral) addition [10]], [3]], which means there is no good
ordering that covers all values of ezpdiff at once. The current
state of the art thus involves case-splitting based on ezpdiff.
For double precision (DP), there are roughly 2'2 possible
expdiff’s, however it is common practice to reduce this signif-
icantly by bucketing near-by and extremal ezpdiff’s into the
same case. For example, the classic DP proof ran 4 consecutive
expdiff’s per case, yielding 231 cases total.

We constructed a UBFV for FADD where the mantissa of
the second operand m is effectively symbolically shifted by
the exponent difference, except in the opposite direction as
the FADD alignment. This UBFV pre-shifting has the result
(in both the hardware and the specification code) that after

It should be noted that the classic proofs might not be as optimized with
regard to case-splitting as possible — as the work was done under project
schedule constraints, when the verification engineer achieves a reasonable
proof configuration, he or she moves on to other work. Nevertheless, they
provide a meaningful benchmark against which to compare our approach.



alignment, the 7 bit of m collapses to a relatively simple BDD
involving just a variable m; and variables from the exponents.
We can think of m; as representing the bit of m that is
weighted the same as the ith bit of the first operand, after
alignment. Thus, when the symbolic addition is performed and
we use an interleaving variable order, the exponential blow-
up one faces in the classic proof (without case-splitting) is
avoided. Table shows the incredible impact this has; for
double precision, the 231-way case-split that takes 38 hours
is reduced to a single case that takes but half an hour.

B. Fused Multiply-Add

Fused Multiply-Add (FMA) is a three operand FP instruction
that computes x+yz in one fell-swoop, incurring only a single
rounding error. FVing an FMA design with symbolic simula-
tion requires both the decomposition involving in verifying a
multiplier [20], and the wide case-split for FADD discussed
above. Our FMA proofs generally follow the decomposition
described by Slobodova [27]], the final stage of which uses a
cut-point at the product p of the mantissas of y and 2, and
proves that p is added to = and rounded correctly, given the
exponents and signs of x, y, and z. This looks more or less like
an FADD, with the exception that p is roughly twice as wide
as the input mantissa width, which increases BDD complexity
and doubles the number of (non-extremal) expdiff’s. Thus the
case-splitting is more extensive than for FADD.

An aspect of our FMA hardware that proved to be a
challenge is the support for denormal FP inputs. As a result,
the product p can too be denormal in the sense that its
leading one can be in any position. We have yet to pin down
why this constituted a challenge for our UBVF approach,
especially since our FADD examples also supported denormals
but they weren’t problematic. As a result we needed to employ
some case-splitting on top of the UBVF; 5-way for SP and
28-way for DP. This case-splitting involved the conditions
expdiff < —1, expdiff € {—1,0}, 0 < expdiff, as well
as additional splitting based on the position of the leading
one when p is denormal. Nevertheless, we find our results
extremely encouraging — even with dozens of machines on
which to concurrently run these cases, the classic DP FMA
proof still took several days to run, and would often fail due
to a machine going down or infrastructure issues. Reducing
to under 2 days of compute time is a huge win; the 28 cases
with 12 concurrent worker threads only took 6.5 hours of real
time. Also, further splitting could reduce the memory footprint
significantly; although the maximum memory was 37.5 GB,
the average across all 28 cases was only 17.3 GBE]

Apart from the using the expdiff pre-shifting discussed in
Sect. our FMA study employed a second trick afforded
by the UBFV framework. The mantissa product p, from the
specification’s point of view, is a (binary encoding of) a single
positive integer. However, this number is never calculated

SFor the classic FMA approach, we were unable to compile definitive data
on maximum memory usage; the given numbers are the memory footprint of
the case-split that involved the most BDD nodes, which isn’t necessarily the
one that used the most memory. Hence they are lower bounds.

explicitly in most hardware designs; but rather appears as a
sum/carry pair of values. A verification engineer constructs a
mapping that appropriately sums these two vectors; the result
of which serves as the p input to the specification. Using a
trick very similar to that of Sect.[V-A| our UBFV was set up so
after summing, p collapses to more or less a vector of unique
variables, hence simplifying the downstream computations in
the specification and the design as well.

C. SSE4 String Instruction

Our third case study is an example string processing instruc-
tion from Intel’s SSE4 instruction set [2]] called PCMPISTRI.
Logicallyﬂ this instruction takes two arrays sl and s2, each
having 8 entries, and each entry being a 16-bit word, and
returns ind € {0,...,8}. Let len! (resp. len2) be the smallest
i < 8 such that the s1[i] = 0 (resp. s2[¢] = 0), or 8 if no such
1 exists. Then the returned value ind is the smallest such that
ind < lenl and sllind] = s2[j] for some 0 < j < len2, or
ind = 8 if no such ind exists.

The classic proof we looked at involves a decomposition
point; there is an internal 8-bit vector IntResi that is cal-
culated such that IntRes1[i] = 1 iff s1[i] = s2[j] for some
0 < j < len2 and i < lenl. Once IntRes! is computed,
the return value ind is simply the index of the lowest set
bit of IntRes!, or ind = 8 if it is all Os. The first stage
of the decomposition uses an 81-way case-split, according to
the possible values of (lenl,len2). Referring to Table
we note that although the classic proof was a bit faster and
used significantly less memory, we still see this result as a
“win” for the UBFV approach; we have eliminated the need
to decompose the proof, which introduces lots of human effort
into the proof (decomposing the specification, mapping to the
cut-point in the RTL, etc). Finally, to show that the UBFV win
was not simply an artifact of it using more memory, we ran
the class proof for the case (len!,len2) = (8,8) but without
decomposition — the memory footprint grew to 100 GB after
20 hours of runtime and we killed the process.

D. Floating Point Division

FP Division (FDIV) proofs are highly decomposed [19].
One part of this decomposition involves proving that a pre-
processing step (Pre), prior to the main iterative algorithm, is
correct. The Pre proof originally required holding 4 bits of
the mantissa to constants, yielding 16 cases. In a subsequent
chip, support for denormal inputs was added. To perform the
analogous case-split for denormals, a second level of case-
splitting based on the position of the leading one in the
denormal mantissa was needed, resulting in roughly 22x 16 ad-
ditional cases. We employed a pre-shifted UBFV that allowed
us to handle both normal and denormal inputs using only the
original 16 cases. This pre-shifting was based on a vector of
secondary variables that point to the leading-one position.

We originally deemed UBFV to be overkill for this problem
since one can play pre-shifting trickery when crafting the

6 Actually what we describe here is how the instruction behaves when the
immediate bits are set appropriately.



case-split. However, doing this lead to non-trivial BDDs on
the non-constant mantissa bits, which incurred BDD blow up.
Using our UBFYV, these BDDs involve only a single mantissa
variable, which makes the BDDs behave very similarly to the
purely normal cases. Finally we mention that the same UBFV
approach also had a dramatic impact on double precision FDIV
Pre, however we were not able to compile data for Table
in time for this submission.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed Universal Functional Boolean Vectors as
a means of alleviating BDD complexity and demonstrated a
profound impact of this approach on difficult hardware data-
path FV problems. Though concocting a good UBFV requires
human insight, like a BDD variable order, the recipe is often
specification specific (rather than implementation specific) —
thus the effort is amortized over many generations of hardware
designs. Here we now ponder directions for future work.

One of our case studies showed that it is possible to
use UBFVs to make it unnecessary to decompose a proof,
for a rather esoteric string processing instruction. But what
about classically complex arithmetic functions, for instance
multiplication? We conjecture that there does not exist a
polynomial-sized UBFV that would elicit a polynomial-sized
representation for the list of functions that define the output
of integer multiplication, but can this be proven?

The focus here has been on BDD-representations. The
other propositional reasoning workhorse is the SAT solver
— can UBFV representations be employed to alleviate time
complexity in this domain? Are there algorithms and heuristics
for generating good UBFVs? Finally, are their applications in
other domains, for instance fix-point BDD model checking?
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