
Compositional Verification of Procedural Programs
using Horn Clauses over Integers and Arrays
Anvesh Komuravelli

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Nikolaj Bjørner
Microsoft Research
Redmond, WA, USA

Arie Gurfinkel
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

Kenneth L. McMillan
Microsoft Research
Redmond, WA, USA

Abstract—We present a compositional SMT-based algorithm
for safety of procedural C programs that takes the heap into
consideration as well. Existing SMT-based approaches are either
largely restricted to handling linear arithmetic operations and
properties, or are non-compositional. We use Constrained Horn
Clauses (CHCs) to represent the verification conditions where the
memory operations are modeled using the extensional theory of
arrays (ARR). First, we describe an exponential time quantifier
elimination (QE) algorithm for ARR which can introduce new
quantifiers of the index and value sorts. Second, we adapt the
QE algorithm to efficiently obtain under-approximations using
models, resulting in a polynomial time Model Based Projection
(MBP) algorithm. Third, we integrate the MBP algorithm into the
framework of compositional reasoning of procedural programs
using may and must summaries recently proposed by us. Our
solutions to the CHCs are currently restricted to quantifier-
free formulas. Finally, we describe our practical experience over
SV-COMP’15 benchmarks using an implementation in the tool
SPACER.

I. INTRODUCTION

Under-approximating a projection (i.e., existential quan-
tification), for example in computing an image, is a key
aspect of many techniques of symbolic model checking. A
typical (though not ubiquitous) approach to this is what we
call Model-based Projection (MBP) [17]: we generalize a
particular point in the space of the image (obtained using
a model) to a subset of the image that contains it. In some
cases, the purpose is to compute the exact image by a series
of under-approximations [12]. In other cases, such as IC3 [6],
the purpose of MBP is to produce a relevant proof sub-goal.
When the number of possible generalizations is finite, we say
that we have a finite MBP which allows us to compute the
exact image by iterative sampling, or to guarantee that the
branching in our proof search is finite.

The feasibility of a finite MBP depends on the underlying
logical theory. Finite MBPs exist for propositional logic [12],
[16] and Linear Integer Arithmetic (LIA) with a divisibility
predicate [17], and have been applied in both hardware and
software model checking. LIA is often adequate for software
verification, provided that heap and array accesses can be
eliminated. This can be done by abstraction, or by inlining
all procedures and performing compiler optimizations to lower

This material is based upon work funded and supported by by NASA Contract No. NNX14AI09G and the Department
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. This material has been approved for public
release and unlimited distribution. DM-0002442.

memory into registers (e.g., [2], [15]). However, the inlining
approach has many drawbacks. It can expand the program size
exponentially, it cannot handle recursion, and it is not always
feasible to eliminate heap and array accesses.

We address this issue here by considering the problem of
MBP for the extensional theory of arrays (ARR). We find that
a finite MBP exists that can be computed in polynomial time
when only array-valued variables are projected. Projecting
variables of index and value sorts is not always possible, since
the quantifier-free fragments of the theory combinations are
not guaranteed to be closed under projection. We therefore take
a pragmatic approach to MBP that may not always converge
to the exact projection. This allows us to handle, for example,
the combination of ARR and LIA.

We test the effectiveness of this approach using the model
checking framework of SPACER [17]. This SMT-based frame-
work makes use of MBP to produce proof sub-goals for
Hoare-style procedure-modular proofs of recursive programs.
The ability to reason with ARR makes it possible to handle
heap-allocating programs without inlining procedures, as the
heap can be faithfully modeled using ARR [14]. This leads
to significant improvements in scalability, when compared
to the use of LIA alone with inlining, as measured using
benchmark programs from the 2015 Software Verification
Competition (SVCOMP 2015) [4]. Not inlining the programs
also has the advantage that we generate procedure-modular
proofs (containing procedure summaries) that might be re-
usable in various ways (e.g., [11]).

In summary, we (a) describe an exponential rewriting pro-
cedure for projecting array variables (Sec. III-A), (b) adapt
this procedure to obtain a polynomial-time (per model) finite
MBP for projecting array variables (Sec. III-B), (c) integrate
this with existing MBP procedures for Linear Arithmetic
(Sec. III-C) in the SPACER framework obtaining a new com-
positional proof search algorithm (Sec. IV), and (d) evaluate
the algorithm experimentally using SVCOMP benchmarks
(Sec. V).

II. PRELIMINARIES

We consider a first-order language with equality whose
signature S contains basic sorts (e.g., bool of Booleans, int
of integers, etc.) and array sorts. An array sort arr(I, V) is
parameterized by a sort of indices I and a sort of values V .

We assume that I is always a basic sort. For every array sort
arr(I, V), the language has the usual function symbols rd :
arr(I, V)×I → V and wr : arr(I, V)×I×V → arr(I, V)
for reading from and writing to the array. Intuitively, rd(a, i)
denotes the value stored in the array a at the index i and
wr(a, i, v) denotes the array obtained from a by replacing the
value at the index i by v. We use the following axioms for
the extensional theory of arrays (ARR):

Read-after-write
∀a : arr(I, V) ∀i, j : I ∀v : V

(i = j =⇒ rd(wr(a, i, v), j) = v)∧
(i 6= j =⇒ rd(wr(a, i, v), j) = rd(a, j))

Extensionality
∀a, b : arr(I, V) · (∀i : I · rd(a, i) = rd(b, i)) =⇒ a = b
Intuitively, the first schema says that after modifying an

array a at index i, a read results in the new value at index
i and rd(a, j) at every other index j. The second schema
says that if two arrays agree on the values at every index
location, the arrays are equal. We use an over-bar to denote
a vector. We write x : S to denote that every term in vector
x has sort S, x(k) to denote the kth component of x, and
y ∈ x to denote that y is equal to some component of x, i.e.,∨|x|

k=1 y = x(k). Let i : I and v : V be vectors of index and
value terms of the same length m. We write wr(a, i, v) to
denote wr(wr(. . .wr(a, i(0), v(0)) . . .), i(m), v(m)). Unless
specified otherwise, S contains no other symbols.

For arrays a and b of sort arr(I, V), and a (possibly
empty) vector of index terms i, we write a =i b to denote
∀j : I ·

(
j 6∈ i =⇒ rd(a, j) = rd(b, j)

)
and call such formulas

partial equalities [20]. Using extensionality, one can easily
show the following

a =∅ b ≡ a = b (1)

wr(a, j, v) =i b ≡

(
j ∈ i ∧ a =i b

)
∨(

j 6∈ i ∧ a =i,j b ∧ rd(b, j) = v
) (2)

a =i b ≡ ∃v : V · a = wr(b, i, v) (3)

We write ϕ(x) for a formula ϕ with free variables x, and we
treat φ as a predicate over x. We also write ϕ[t] to to indicate
that a term or formula t occurs in ϕ at some syntactic position.

Given formulas ϕA(x, z) and ϕB(y, z) with x ∩ y = ∅ and
ϕA =⇒ ϕB , a Craig Interpolant [7], denoted ITP(ϕA, ϕB),
is a formula ϕI(z) such that ϕA =⇒ ϕI and ϕI =⇒ ϕB .

III. QE AND MBP FOR THE THEORY ARR

By projection of a variable we mean elimination of an
existential quantifier. Consider a formula ϕ of the form
∃x · ϕqf (x, y) where ϕqf is quantifier-free. The problem
of quantifier elimination (QE) in ϕ is to find a logically
equivalent quantifier-free formula ψ(y). In this case, we say
that ψ is the result of projecting x in ϕqf .

A model-based projection (MBP) for ϕ is an operator Proj
that takes a model M of ϕqf and returns a quantifier-free
formula ψM (y) such that M |= ψM and ψM entails ϕ. The

operator Proj is a finite MBP if its image is finite up to logical
equivalence (that is, over all models we obtain only finitely
many semantically distinct formulas).1 In this case, we obtain
the exact projection as the disjunction of the image of Proj .
We will refer to Proj (M) as a generalization of M .

In some cases, there is a trivial approach to MBP that we
will call the substitution approach. We simply substitute for
each variable x in ϕ a constant that is equal to x in the given
model M (for example, a numeric literal). This approach was
taken for propositional logic by Ganai et al. [12]. For theories
that admit models of unbounded size (e.g., LIA), however,
this does not yield a finite MBP, as the number of distinct
generalizations we obtain can be infinite.

Instead, we can take the approach used for Linear Real
Arithmetic and LIA in our earlier work [17]. Suppose that for
the given theory we have a QE procedure that produces a for-
mula with an exponential (or higher) number of disjunctions.
We can adapt this procedure to an MBP by always choosing
just one disjunct that is true in the given model M . The result
may be a procedure that is polynomial for any given model,
though the number of distinct generalizations is exponential.
We will show how to apply this idea for the projection of array-
valued variables in the theory of arrays ARR. When combining
this theory with LIA, we will find that some variables of index
and value sorts must be eliminated by the substitution method,
which gives us a useful MBP but not necessarily a finite MBP.

A. Quantifier elimination for ARR

Consider an existentially quantified formula ∃a :
arr(I, V) · ϕ where ϕ is quantifier-free. We restrict our
discussion to infinite interpretations of I . While we cannot
always obtain an equivalent quantifier-free formula, our ob-
jective here is to obtain an equivalent existentially quantified
formula where every quantifier (if any) is of the sort V .

ARRAYQE(∃a · ϕ)
1 ϕ1 ← (ELIMWR∗)(∃a · ϕ)
2 ϕ2 ← (CASESPLITEQ∗; FACTORRD∗)(ϕ1)
3

(∨n
k=1 δk

)
← LIFTEQDISEQRD(ϕ2)

4 for k ∈ [1, n] do
5 ψk ← (ELIMEQ; ELIMDISEQ; ACKERMANN)(δk)

6 return
∨n

k=1 ψk

Algorithm 1: QE for ∃a · ϕ, where a is an array variable.

Our algorithm is inspired by the decision procedure for the
quantifier-free fragment of ARR by Stump et al. [20]. At a
high level, the QE algorithm proceeds in 3 steps: (i) eliminate
write terms using the read-after-write axiom schema and par-
tial equalities over arrays, (ii) eliminate (partial) equalities and
disequalities over arrays, and (iii) eliminate read terms over
arrays. Alg. 1 shows the pseudo-code for our QE algorithm
ARRAYQE using the rewrite rules in Fig. 1, 2, and 3. Each rule
rewrites the formula above the line to the logically equivalent
formula below the line. We use regular expression notation

1 MBP as defined in [17] corresponds to finite MBP here.

ELIMWRRD
ϕ[rd(wr(t, i, v), j)]

(i = j ∧ ϕ[v]) ∨ (i 6= j ∧ ϕ[rd(t, j)])

ELIMWREQ
ϕ[wr(t1, j, v) =i t2](
j ∈ i ∧ ϕ[t1 =i t2]

)
∨(

j 6∈ i ∧ ϕ[t1 =i,j t2 ∧ v = rd(t2, j)]
)

PARTIALEQ
ϕ[t1 = t2]

ϕ[t1 =∅ t2]
ti’s have array sort TRIVEQ

ϕ[t =i t]

ϕ[>]
SYMM

ϕ[t1 =i t2]

ϕ[t2 =i t1]
t2 is a write term
but t1 is not

ELIMWR = (ELIMWRRD | ELIMWREQ | PARTIALEQ | TRIVEQ | SYMM)

Fig. 1: Rewriting rules to eliminate write terms. ELIMWR denotes one of the rules chosen non-deterministically.

CASESPLITEQ
∃a · ϕ[a =i t]

∃a · ((a =i t ∧ ϕ[>]) ∨ (¬(a =i t) ∧ ϕ[⊥]))
FACTORRD

∃a · ϕ[rd(a, t)]
∃a, s · (ϕ[s] ∧ s = rd(a, t))

s is fresh, t does not
contain array terms

Fig. 2: Rewriting rules to factor out equalities and read terms on the quantified array variable.

ELIMEQ
∃a · (a =i t ∧ ϕ)
∃v · ϕ[wr(t, i, v)/a]

where a does not appear in t and v denotes fresh variables

ELIMDISEQ

∃a ·

(
ϕ ∧

m∧
k=1

¬(a =ik
tk)

)
∃a · ϕ

where m ∈ N, a does not appear in any tk, and
a appears in ϕ only in read terms over a

ACKERMANN

∃a ·

(
ϕ ∧

m∧
k=1

sk = rd(a, tk)

)
ϕ ∧

∧
1≤k<`≤m

(tk = t` =⇒ sk = s`)

where m ∈ N and a does not appear in ϕ, sk’s, or tk’s
Fig. 3: Rewriting rules for QE of arrays.

to express sequences of rewrites. In particular, Kleene star
applied to a rule denotes the rule’s application to a fixed point.

Line 1 of ARRAYQE eliminates write terms using the
rewrite rules in Fig. 1. Here ELIMWR denotes a rule in Fig. 1
chosen non-deterministically. ELIMWRRD rewrites terms us-
ing the read-after-write axiom and ELIMWREQ rewrites partial
equalities using Eq. (2). PARTIALEQ converts equalities into
partial equalities using Eq. (1). TRIVEQ eliminates trivial
partial equalities with identical arguments and SYMM ensures
that write terms on the r.h.s. of equalities are also eliminated.

Line 2 of ARRAYQE rewrites the formula by case-splitting
on partial equalities on the array quantifier a (via CASES-

PLITEQ) followed by factoring out read terms over a by
introducing new quantifiers of sort V (via FACTORRD). Note
that, as presented, these two rules are not terminating as
the partial equalities and read terms are preserved in the
conclusion of the rules. However, one can easily ensure that a
given partial equality or read term is considered exactly once
by first computing the set of all partial equalities and read
terms in the formula and processing them in a sequential order.
The details are straightforward and are left to the reader.

LIFTEQDISEQRD on line 3 of ARRAYQE performs
Boolean rewriting and returns an equivalent disjunction such
that in every disjunct, the partial equalities, array disequalities,
and equalities over read terms appear at the end as conjuncts,
in that order. For each disjunct, line 5 applies the rules in
Fig. 3 to eliminate the array quantifier a. ELIMEQ obtains
a substitution term for a using the equivalence in Eq. (3).
ELIMDISEQ is applicable when the disjunct contains no partial
equalities and given that the domain of interpretation of I is
infinite, one can always satisfy the disequalities and hence,
they can simply be dropped. ACKERMANN performs the
Ackermann reduction [1] to eliminate the read terms.

Note that while the rewrite rules are applicable to all array
terms and equalities in the original formula, in practice, we
only need to apply them to eliminate the relevant terms
containing the array quantifier a. See Fig. 4 for an illustration
of ARRAYQE on an example.

Correctness and Complexity. We can show the following
properties of ARRAYQE.

Theorem 1: ARRAYQE(∃a : arr(I, V) · ϕ) returns ∃v :
V · ρ, where ρ is quantifier-free and ∃v · ρ ≡ ∃a · ϕ.

Theorem 2: ARRAYQE(∃a · ϕ) terminates in time expo-
nential in the size of ϕ.

∃a · (b = wr(a, i1, v1) ∨ (rd(wr(a, i2, v2), i3) > 5 ∧ rd(a, i4) > 0))

≡ ∃a ·
(i2 = i3 ∧ (b = wr(a, i1, v1) ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ (b = wr(a, i1, v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

{ELIMWRRD}

≡ ∃a ·
(i2 = i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

{PARTIALEQ; ELIMWREQ}

≡ ∃a ·

(
a =i1 b ∧

(i2 = i3 ∧ (rd(b, i1) = v1 ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ (rd(b, i1) = v1 ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

)
∨(

¬(a =i1 b) ∧
(i2 = i3 ∧ (v2 > 5 ∧ rd(a, i4) > 0))∨
(i2 6= i3 ∧ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))

) {CASESPLITEQ}

≡ ∃a, s3, s4 ·

(a =i1 b ∧
(i2 = i3 ∧ (rd(b, i1) = v1 ∨ (v2 > 5 ∧ s4 > 0)))∨
(i2 6= i3 ∧ (rd(b, i1) = v1 ∨ (s3 > 5 ∧ s4 > 0)))︸ ︷︷ ︸

ϕ1

 ∨
¬(a =i1 b) ∧

(i2 = i3 ∧ (v2 > 5 ∧ s4 > 0))∨
(i2 6= i3 ∧ (s3 > 5 ∧ s4 > 0))︸ ︷︷ ︸

ϕ2

)

∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)

{FACTORRD}

≡ ∃a, s3, s4 ·
(ϕ1 ∧ a =i1 b ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) ∨
(ϕ2 ∧¬(a =i1 b) ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4))

{LIFTEQDISEQRD}

≡ ∃v, s3, s4 · (ϕ1 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) [wr(b, i1, v)/a] ∨ {ELIMEQ}
∃a, s3, s4 · (ϕ2 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {ELIMDISEQ}

≡ ∃v, s3, s4 · (ϕ1 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) [wr(b, i1, v)/a] ∨
∃s3, s4 · (ϕ2 ∧ (i3 = i4 =⇒ s3 = s4)) {ACKERMANN}

Fig. 4: Illustrating ARRAYQE on an example.

B. Model Based Projection

In this section, we will assume that for a satisfiable formula
we can obtain a finite representation of a model of the formula
and that we can effectively evaluate the truth of any formula in
this model. This is possible for ARR and its combinations with
LIA and propositional logic. The ability to evaluate allows
us to strengthen a formula in a way that preserves a given
model. Suppose we have a formula ϕ[ψ1 ∨ ψ2] with model
M , where the sub-formula ψ1 ∨ ψ2 occurs positively (under
an even number of negations) in ϕ. If we also have M |= ψ1,
then M |= ϕ[ψ1] and clearly, ϕ[ψ1] entails ϕ. This gives us a
way to eliminate a disjunction while preserving a given model
and maintaining an under-approximation. If neither ψ1 nor ψ2

is true in M , we can similarly replace ϕ with ϕ[⊥]. These
transformations are expressed as MBP rewrite rules in Fig. 5.

For each QE rule R, we can produce a corresponding under-
approximate rule RM that preserves model M . This rule can
be written R ; (MBPLEFT | MBPRIGHT | MBPVAC)∗. In
practice, we can choose to only apply the MBP rules to
disjunctions introduced by the QE rules and not to those
originally occurring in ϕ. Correspondingly, we can convert
our QE algorithm ARRAYQE to ARRAYQEM by replac-
ing each rule R with RM . We can then obtain an MBP
ARRAYMBP(ϕ)(M) = ARRAYQEM (ϕ) and we can show

the following:
Theorem 3: For any quantifier-free formula ϕ in ARR,

ARRAYMBP(∃a : arr(I, V). ϕ) is a finite MBP.
The fact that it is an MBP can be easily shown by induction

on the number of rewrites applied. The fact that it is finite
derives from the fact that there are only finitely many ways to
resolve the disjunctions in the QE result.

Moreover, assuming that the evaluation of a formula in
a model can be done in polynomial time, we can evaluate
ARRAYMBP(ϕ)(M) in time that is polynomial in the size of
M and the size of ϕ. This is because we can polynomially
bound the number of times each rule RM applies, and each
rule can only expand the formula size by a constant amount.
Fig. 6 shows an example of applying ARRAYMBP.

C. MBP for ARR+LIA

We now consider the combination of the ARR and LIA
theories. Assume that the only basic sorts are bool and
int. Furthermore, we only consider linear functions over int
along with a divisibility predicate (with constant divisors).
We developed a finite MBP for LIA in a previous work [17]
(call it LIAMBP). When the index sort I is int, one can
obtain a more efficient MBP with a slight modification of
ACKERMANNM (for eliminating array read terms) that utilizes
the predicate symbol <. Given a model M of the formula,

∃a · (b = wr(a, i1, v1) ∨ (rd(wr(a, i2, v2), i3) > 5 ∧ rd(a, i4) > 0))

⇐ ∃a · (i2 6= i3 ∧ (b = wr(a, i1, v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))) {WRRDM ,M |= i2 6= i3}
⇐ ∃a · (i2 6= i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))) {PARTIALEQ; WREQM}
⇐ ∃a ·¬(a =i1 b) ∧ i2 6= i3 ∧ (rd(a, i3) > 5 ∧ rd(a, i4) > 0) {CASEEQM ,M 6|= a =i1 b}

⇐ ∃a, s3, s4 ·

¬(a =i1 b) ∧ i2 6= i3 ∧ (s3 > 5 ∧ s4 > 0)︸ ︷︷ ︸
ϕ2

∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)

{FACTORRD}

⇐ ∃a, s3, s4 · (ϕ2 ∧¬(a =i1 b) ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {LIFTEQDISEQRD}
⇐ ∃a, s3, s4 · (ϕ2 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {ELIMDISEQ}
⇐ ∃s3, s4 · (ϕ2 ∧ (i3 = i4 ∧ s3 = s4)) {ACKM ,M |= i3 = i4}

Fig. 6: Illustrating ARRAYMBP on the example of Fig. 4 with a given model M .

MBPLEFT
ϕ[ψ1 ∨ ψ2] M |= ϕ,ψ1

ϕ[ψ1]

MBPRIGHT
ϕ[ψ1 ∨ ψ2] M |= ϕ,ψ2

ϕ[ψ2]

MBPVAC
ϕ[ψ1 ∨ ψ2] M |= ϕ M 6|= ψ1, ψ2

ϕ[⊥]

Fig. 5: MBP rules for formulas in negation-normal form.

one can first partition the set of index terms tk’s according
to their interpretations in M and choose a representative for
each equivalence class. Then, the conjunction in the result of
the rule is modified as follows: (a) for every equivalence class,
add the equality tk = t` for every non-representative t`, where
tk is the representative, (b) linearly order the representatives
and add the corresponding inequalities. The modified rule (and
hence, the resulting MBP) is linear in time and space.

However, the combination of arrays and integers introduces
terms over the combined signature which need to be handled
as well. For example, there is no equivalent quantifier-free
formula for ∃i : int · rd(a, i) > 0. This implies that there
does not exist a finite MBP for the combination of LIA and
ARR. In the example, the only way to under-approximate the
quantification is to use the substitution method, replacing i
with its interpretation in a model M |= rd(a, i) > 0 as a
numeric literal.

Based on the above observations, we obtain an MBP for
ARR+LIA as follows. First, we apply ARRAYMBP, using the
modified ACKERMANNM above, to eliminate array quantifiers.
Then, we use LIAMBP to eliminate integer quantifiers that do
not appear in any array term. Finally, we use the substitution
method to eliminate any remaining integer quantifiers. When
the last step of substitution method is not necessary, the
resulting MBP will be finite.

IV. THE COMPOSITIONAL VERIFICATION FRAMEWORK

MBP plays a crucial role in enabling the search for compo-
sitional proofs. In this section, we will consider the role played
by MBP in a model checking framework called SPACER [17].
In this framework, MBP is used to create succinct localized
proof sub-goals that make it possible to reason about only
one procedure at a time. The proof goals take the form of
under-approximate summaries, either of the calling context of
a procedure or of the procedure itself. Without some form
of projection, SPACER would not be compositional, as it
would build up formulas of exponential size, in effect inlining
procedures to create bounded model checking formulas.

A. Modeling programs with CHCs

SPACER checks safety of procedural programs by reducing
the problem to SMT of a special kind of formulas known as
Constrained Horn Clauses (CHCs) [5], [17], [14]. We augment
the signature S with a set of fresh predicate symbols P . A
Constrained Horn Clause (CHC) is a formula of the form

∀x ·
m∧

k=1

Pk(xk) ∧ ϕ(x)︸ ︷︷ ︸
body

=⇒ head

where for each k, Pk is a symbol in P , xk ⊆ x and |xk|
is equal to the arity of Pk. The constraint ϕ is a formula
over S, and head is either an application of a predicate in
P or another formula over S. We use body to refer to the
antecedent of the CHC, as shown above. A CHC is called
a query if head is a formula over S and otherwise, it is
called a rule. If m ≤ 1 in the body, the CHC is linear and
is non-linear otherwise. Following the convention of logic
programming literature, we also write the above CHC as
head ← P1(x1), . . . , Pm(xm), ϕ(x).

Intuitively, each predicate symbol Pk represents an unknown
partial correctness specification of a procedure (that is, an
over-approximate summary). A query defines a property to be
proved, while each rule gives modular verification condition
for one procedure. A satisfying assignment to the symbols Pk

is thus a certificate that the program satisfies its specification
and corresponds to the annotations in a Floyd/Hoare style
proof. In this work, we are interested in finding annotations
that can be expressed in the quantifier-free fragment of our
first-order language, to avoid the difficulty of reasoning with
quantifiers.

Any given set of CHCs encoding safety of procedural
programs can be transformed to an equisatisfiable set of just
three CHCs with a single predicate symbol (encoding the
program location using a variable). These CHCs have the
following form:

Inv(x)← init(x) ¬bad(x)← Inv(x)

Inv(x′)← Inv(x), Inv(xo), tr(x, xo, x′)
(4)

Intuitively, Inv is the program invariant, x denotes the pre-
state of a program transition, x′ denotes the post-state, and
xo denotes the summary of a procedure call (if one is made).
If there are no procedure calls, tr is independent of xo and
Inv(xo) can be dropped: in this case Inv denotes an inductive
invariant of an ordinary transition system. In the sequel, we
restrict to this normal form and consider only quantifier-free
interpretations of the predicate Inv .

It is useful to rewrite the above rules using a function F
that substitutes given predicates φA(x) and φB(x) for the
occurrences of Inv in the rule bodies. That is, let

F(ϕA, ϕB) ≡ (ϕA(x) ∧ ϕB(x
o) ∧ tr(x, xo, x′))

∨ init(x′)

The rules are thus equivalent to F(Inv , Inv) ⇒ Inv(x).
Abusing notation, we will also write F(ϕA) for F(ϕA, ϕA).

B. The SPACER framework

SPACER is a general framework that can be instantiated for
a given logical theory T by supplying three elements: (a) a
model-generating SMT solver for T , (b) an MBP procedure
MBP for T and (c) in interpolation procedure ITP for T .
Compared to other SMT-based algorithms (e.g., [3], [13], [10],
[18]), the key distinguishing feature of SPACER is compo-
sitional reasoning. That is, instead of checking satisfiability
of large formulas generated by program unwinding, SPACER
iteratively creates and checks local reachability queries for
individual procedures. In this way it is similar to IC3 [6], [9],
a SAT-based algorithm for safety of finite-state transition sys-
tems, and GPDR [16], its extension to Linear Real Arithmetic.
Like these methods, SPACER maintains a sequence of over-
approximations of procedure behaviors, called may summaries,
corresponding to program unwindings. However, unlike other
approaches, SPACER also maintains under-approximations of
procedure behaviors, called must summaries, to avoid redun-
dant reachability queries. Another distinguishing feature of
SPACER is the use of MBP for efficiently handling existentially
quantified formulas to create a new query or a must summary.
We note, however, that MBP is a general technique and can
be exploited in IC3/PDR as well.2

2Arguably sub-goal creation in IC3 is a simple MBP for propositional logic.

Alg. 2 gives a simplified description of SPACER as a solver
for CHCs in the form of (4) (though SPACER handles general
CHCs). It is described using a set of rules that can be applied
non-deterministically. Each rule is presented as a guarded
command “[grd] cmd”, where cmd can be executed only
if grd holds.

Input: Formulas init(x), tr(x, xo, x′), bad(x)
Output: Inductive invariant (FO interpretation of Inv

satisfying (4)) or UNSAFE

if (init ∧ bad) satisfiable then return UNSAFE
// initialize data structures
Q := ∅ // set of pairs 〈ϕ, i〉, i ∈ N
N := 0 // max level, or recursion depth
O0 = init ,Oi = >, ∀i > 0 // may summary sequence
U = init // must summary
forever non-deterministically do

(Candidate) [(ON ∧ bad) satisfiable]
Q := Q ∪ 〈ϕ,N〉, for some ϕ =⇒ ON ∧ bad

(DecideMust) [〈ϕ, i+1〉 ∈ Q , M |= F(Oi,U)∧ϕ′]
Q := Q ∪ 〈MBP(∃xo, x′ · F(Oi,U) ∧ ϕ′,M), i〉

(DecideMay) [(ϕ, i+ 1) ∈ Q , M |= F(Oi) ∧ ϕ′]
Q := Q ∪ 〈MBP(∃x, x′ · F(Oi)∧ϕ′,M)[x/xo], i〉

(Leaf) [(ϕ, i) ∈ Q , F(Oi−1) =⇒ ¬ϕ′, i < N]
Q := Q ∪ 〈ϕ, i+ 1〉

(Successor) [〈ϕ, i+ 1〉 ∈ Q , M |= F(U) ∧ ϕ′]
U := U ∨MBP(∃x, xo · F(U) ∧ ϕ′,M)[x/x′]

(Conflict) [〈ϕ, i+ 1〉 ∈ Q , F(Oi) =⇒ ¬ϕ′]
Oj := Oj ∧ ITP(F(Oi),¬ϕ′)[x/x′], ∀j ≤ i+ 1

(Induction) [(ϕ ∨ ψ) ∈ Oi, F(ϕ ∧ Oi) =⇒ ϕ′]
Oj := Oj ∧ ϕ, ∀j ≤ i+ 1

(Unfold) [ON =⇒ ¬bad] N := N + 1
(Safe) [Oi+1 =⇒ Oi] return invariant Oi

(Unsafe) [(U ∧ bad) satisfiable] return UNSAFE

Algorithm 2: Rule-based description of SPACER.

As shown in Alg. 2, SPACER maintains a set of reachability
queries Q , a sequence of may summaries {Oi}i∈N, and a
must summary U . Intuitively, a query 〈ϕ, i〉 corresponds to
checking if ϕ is reachable for recursion depth i, Oi over-
approximates the reachable states for recursion depth i, and U
under-approximates the reachable states. N denotes the current
bound on recursion depth. The sequence of may summaries
and N correspond to the trace of approximations and the
maximum level in IC3/PDR, respectively. For convenience,
let O−1 be ⊥. MBP(ϕ,M), for a formula ϕ = ∃v · ϕqf and
model M |= ϕqf , denotes the result of some MBP function
associated with ϕ for the model M .

Alg. 2 initializes N to 0 and, O0 and U to init . Candidate
initiates a backward search for a counterexample beginning
with a set of states in bad . The potential counterexample is ex-
panded using either DecideMust or DecideMay. DecideMust
jumps over the call Inv(xo), in the last CHC of (4), utilizing
the must summary U . DecideMay, on the other hand, creates a
query for the call using the may summary of its calling context.

Successor updates U when a query is known to be reachable.
The other rules are similar to IC3 [6] and GPDR [16] and
we skip their explanation in the interest of space. SPACER is
sound and if MBP utilizes finite MBP functions, SPACER also
terminates for a fixed N [17].

C. Instantiation for ARR+LIA

In instantiating this framework for ARR+LIA, the key
ingredient is the MBP procedure of the previous section. An
interpolation procedure ITP can be trivially obtained by using
literal-dropping approach based on UNSAT cores, or a more
sophisticated approach can be taken (e.g., see [16], [18]).

Because we do not have a finite MBP, SPACER is not
guaranteed to terminate even for a fixed bound on the recursion
depth N . That is, it can generate an infinite sequence of
queries and must summaries. Note that MBP is used in 3
rules: DecideMay, DecideMust, and Successor. The elim-
ination of quantifiers in Successor is only an optimization
and can be avoided. This is not the case with DecideMay
or DecideMust without changing the structure of the queries,
the considerations of which are outside the scope of this paper.
In the following, we identify restrictions on the CHCs where
termination is still guaranteed and for the other cases, we
propose some heuristic modifications to MBP and ITP to help
avoid divergence.

1) Equality resolution in MBP: There are several cases
where terms over combined signatures appear in conjunction
with equality terms over the index quantifier, e.g., ∃i : int·i =
t ∧ rd(a, i) > 0 for a term t independent of i. In these cases,
the quantifier can be eliminated using equality resolution, e.g.,
rd(a, t) > 0 in the above example. Such cases seem to be
natural in the case of a single procedure, i.e., when tr in
(4) is independent of xo. Consider a disjunct δ in a DNF
representation of tr . Now, δ represents a path in the procedure
and typically, index terms (in reads and writes) in δ can be
ordered such that every index term is a function of the previous
index terms or the current-state variables x. This makes it
possible to eliminate any index variables in x′ using equality
resolution as mentioned above.

2) Privileging array equalities: Here is a simple example
that exhibits non-termination:

Inv(a, b)← a = b

⊥ ← Inv(a, b), rd(a, j) < 0, rd(b, j) > 0

Here, intuitively, Inv(a, b) denotes the summary of a proce-
dure which takes an array a as input and produces b as output
and we are interested in checking if there is sign change in the
value at an index j as a result of the procedure call. For this
example, DecideMay creates queries of the form rd(a, k) <
0∧ rd(b, k) > 0 where k is a specific integer constant. If ITP
returns interpolants of the form rd(a, k) = rd(b, k), it is easy
to see that SPACER would not terminate even for N = 0, even
though there is a trivial solution: a = b.

To alleviate this problem, we modify MBP and ITP to
promote the use of array equalities in interpolants. Let ψ be
the result of MBP for a given model M . For every pair of

array terms a, b in ψ, we strengthen ψ with the array equality
a = b or disequality a 6= b, depending on whether M |= a = b
holds or not. In the above example, the queries will now be
of the form rd(a, k) < 0 ∧ rd(b, k) > 0 ∧ a 6= b. However,
rd(a, k) = rd(b, k) continues to be an interpolant whereas
the desired interpolant is a = b. To reduce the dependence on
specific integer constants in the learned interpolants, and hence
in the may summaries, we modify ITP as follows. Suppose we
are computing an interpolant for ψ =⇒ ¬ϕ′ (as occurs in
Conflict). We let ϕ = ϕ1∧ϕ2 where ϕ2 contains all the literals
where an integer quantifier is substituted using its interpreta-
tion in a model. Using a minimal unsatisfiable subset (MUS)
algorithm, we can generalize ϕ2 to ϕ̂2 such that ψ∧(ϕ1 ∧ ϕ̂2)

′

is unsatisfiable and then obtain ITP(ψ,¬ (ϕ1 ∧ ϕ̂2)
′
). In the

above example, for N = 0 we have ψ = (a = b),
ϕ1 = (a 6= b), and ϕ2 = rd(a, k) < 0 ∧ rd(b, k) > 0.
One can show that ϕ̂2 is simply > and the only possible
interpolant is a = b. In our implementation, we add such
(dis-)equalities on-demand in a lazy fashion. Note that adding
such (dis-)equalities to the queries is only a heuristic and may
not always help with termination.

V. EXPERIMENTAL RESULTS

As noted in the introduction, the array theory allows us to
model heap references accurately. This eliminates the need to
inline procedures so that heap-allocated objects are reduced to
local variables. We hypothesize that the resulting increase in
modularity will allow SPACER to more efficiently verify pro-
cedural programs using ARRAYMBP, in spite of the potential
for divergence due to non-finiteness of the MBP.

We test this hypothesis using a prototype implementation
of SPACER with ARRAYMBP.3 To verify C programs, we
use SEAHORN [14], which uses the LLVM infrastructure to
compile and optimize the input program, then encodes the
verification conditions as CHCs in the SMT-LIB2 format.
SEAHORN can optionally inline procedure calls before encod-
ing, allowing us to test our hypothesis regarding modularity.

For reference, we also compare SPACER to the implemen-
tation of GPDR [16] in Z3 [8]. A key difference between
SPACER and GPDR is that the latter does not use must
summaries. Z3 also uses MBP, but is limited to equality
resolution and the substitution method. As a result Z3 GPDR
is effective only for inlined programs.

We use benchmarks from the software verification compe-
tition SVCOMP’15 [4]. We considered the 215 benchmarks
from the Device Drivers category where Z3 GPDR (with inlin-
ing) needed more than a minute of runtime or did not terminate
within the resource limits of SVCOMP [15]. All experiments
have been carried out using a 2.2 GHz AMD Opteron(TM)
Processor 6174 and 516GB RAM, running Ubuntu Linux. Our
resource limits are 30 minutes and 15GB for each verification
task. In the scatter plots that follow, a diamond indicates a
time-out, a star indicates a mem-out, and a box indicates an
anomaly in the implementation.

3https://bitbucket.org/spacer/code

https://bitbucket.org/spacer/code

0 200 400 600 800 1000 1200 1400 1600 1800

Spacer with inlining (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r
w
it
h
ou

t
in
li
n
in
g
(s
ec
s)

Fig. 7: Advantage of inter-procedural encoding using SPACER.

0 200 400 600 800 1000 1200 1400 1600 1800

Z3-PDR with inlining (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r
w
it
h
in
li
n
in
g
(s
ec
s)

Fig. 8: SPACER vs. Z3 on hard SVCOMP benchmarks with inlining.

The scatter plot in Fig. 7 compares the combined run time
for the CHC encoding and verification, when inlining is turned
on and off. A clear advantage is seen in the non-inlining case.
This shows that SPACER is able to effectively exploit the addi-
tional modularity that is made possible by ARRAYMBP, and
that this advantage outweighs any occurrences of divergence
due to non-finite MBP.4 We note that SPACER with only LIA
is able to handle only a small fraction of the non-inlined
benchmarks. This result confirms our hypothesis.

For reference, we also compare to the performance of
Z3 GPDR. We observed that without ARRAYMBP, Z3 is
very ineffective in the non-inlined case. We should mention,
however, that of the 7 unsafe programs verified by Z3, 5 could
not be verified by SPACER. Fig. 8 compares SPACER and Z3
with inlining on. This shows an overwhelming advantage for
SPACER, which is due to its more effective MBP approach.

VI. RELATED WORK

There are several SMT-based approaches for sequential
program verification that iteratively check satisfiability of
formulas corresponding to safety of various unwindings of the
program [3], [13], [10], [18]. However, these monolithic SMT
formulas can grow exponentially. In contrast, the SPACER
framework [17] we use allows us to do a compositional proof
search for safety. Such local proof search is also found in
the IC3 algorithm for hardware model checking [6] and its
extensions to software model checking (e.g., [16]), although

4Unfortunately, we have no way to distinguish divergence from timeouts.

SPACER is the first to use under-approximate summaries of
procedures for avoiding redundant proof sub-goals. Model-
based generalizations have also been used to obtain projections
efficiently in decision procedures for quantified formulas [19].

VII. CONCLUSION AND FUTURE WORK

We have presented a procedure for existentially projecting
array variables from formulas over combined theories of
ARR, LIA, and propositional logic. We have adapted the
procedure to a finite MBP for array variables. While existential
projection is worst-case exponential, the corresponding MBP
is polynomial. However, projecting arrays might introduce
new existentially quantified variables (whose sort is the same
as the index- or value-sort of the eliminated array). For
projecting these variables, a finite MBP need not exist. We
described heuristics for obtaining a practical (but not nec-
essarily finite) MBP procedure, obtaining an instantiation of
the SPACER framework for verification of safety of sequential
heap-manipulating programs. We show that the new variant of
SPACER is effective for constructing compositional proofs of
Linux Device Drivers. In the future, we plan to extend these
ideas for handling more complex heap-manipulating programs
that require universal quantifiers in the program invariants.

REFERENCES

[1] W. Ackermann, Solvable Cases of The Decision Problem. North-
Holland, Amsterdam, 1954.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “From Under-
Approximations to Over-Approximations and Back,” in TACAS, 2012.

[3] ——, “Whale: An Interpolation-Based Algorithm for Inter-procedural
Verification,” in VMCAI, 2012.

[4] D. Beyer, “Software Verification and Verifiable Witnesses – (Report on
SV-COMP 2015),” in TACAS, 2015.

[5] N. Bjørner, K. McMillan, and A. Rybalchenko, “Program Verification
as Satisfiability Modulo Theories,” in SMT, 2012.

[6] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, 2011.

[7] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” Symbolic Logic, vol. 22(3), 1957.

[8] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS,
2008.

[9] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient Implementation
of Property Directed Reachability,” in FMCAD, 2011.

[10] M. H. et al., “Ultimate Automizer with SMTInterpol - (Competition
Contribution),” in TACAS, 2013.

[11] G. Fedyukovich, O. Sery, and N. Sharygina, “eVolCheck: Incremental
Upgrade Checker for C,” in TACAS, 2013.

[12] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based Unbounded
Symbolic Model Checking Using Circuit Cofactoring,” in ICCAD, 2004.

[13] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing Software Verifiers from Proof Rules,” in PLDI, 2012.

[14] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. Navas, “The SeaHorn
Verification Framework,” in CAV, 2015.

[15] A. Gurfinkel, T. Kahsai, and J. A. Navas, “SeaHorn: A Framework For
Verifying C Programs - (Competition Contribution),” in TACAS, 2015.

[16] K. Hoder and N. Bjørner, “Generalized Property Directed Reachability,”
in SAT, 2012.

[17] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model Check-
ing for Recursive Programs,” in CAV, 2014.

[18] K. L. McMillan and A. Rybalchenko, “Solving Constrained Horn
Clauses using Interpolation,” Tech. Rep. MSR-TR-2013-6, 2013.

[19] D. Monniaux, “Quantifier Elimination by Lazy Model Enumeration,” in
CAV, 2010.

[20] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt, “A Decision
Procedure for an Extensional Theory of Arrays,” in LICS, 2001.

	Introduction
	Preliminaries
	QE and MBP for the theory ARR
	Quantifier elimination for ARR
	Model Based Projection
	MBP for ARR+LIA

	The Compositional Verification Framework
	Modeling programs with CHCs
	The Spacer framework
	Instantiation for ARR+LIA
	Equality resolution in Mbp
	Privileging array equalities

	Experimental Results
	Related Work
	Conclusion and Future Work
	References

