
Difference Constraints: An adequate Abstraction for
Complexity Analysis of Imperative Programs

Moritz Sinn, Florian Zuleger, Helmut Veith
TU Wien, Austria

Abstract—Difference constraints have been used for termination
analysis in the literature, where they denote relational inequalities
of the form x′ ≤ y + c, and describe that the value of x in the
current state is at most the value of y in the previous state
plus some constant c ∈ Z. In this paper, we argue that the
complexity of imperative programs typically arises from counter
increments and resets, which can be modeled naturally by
difference constraints. We present the first practical algorithm for
the analysis of difference constraint programs and describe how
C programs can be abstracted to difference constraint programs.
Our approach contributes to the field of automated complexity
and (resource) bound analysis by enabling automated amortized
complexity analysis for a new class of programs and providing
a conceptually simple program model that relates invariant- and
bound analysis. We demonstrate the effectiveness of our approach
through a thorough experimental comparison on real world C
code: our tool Loopus computes the complexity for considerably
more functions in less time than related tools from the literature.

I. INTRODUCTION

Automated program analysis for inferring program complexity
and (resource) bounds is a very active area of research.
Amongst others, approaches have been developed for ana-
lyzing functional programs [14], C# [13], C [5], [21], [16],
Java [4] and Integer Transition Systems [4], [7], [10].
Difference constraints (DCs) have been introduced by Ben-
Amram for termination analysis in [6], where they denote
relational inequalities of the form x′ ≤ y + c, and describe
that the value of x in the current state is at most the value
of y in the previous state plus some constant c ∈ Z. We call
a program whose transitions are given by a set of difference
constraints a difference constraint program (DCP).
In this paper, we advocate the use of DCs for program
complexity and (resource) bounds analysis. Our key insight
is that DCs provide a natural abstraction of the standard
manipulations of counters in imperative programs: counter
increments/decrements x := x+ c resp. resets x := y, can be
modeled by the DCs x′ ≤ x+ c resp. x′ ≤ y (see Section IV
on program abstraction). In contrast, previous approaches to
bound analysis can model either only resets [13], [5], [21], [4],
[7], [10] or increments [16]. For this reason, we are able to
design a more powerful analysis: In Section II-A we discuss
that our approach achieves amortized analysis for a new class
of programs. In Section II-B we describe how our approach
performs invariant analysis by means of bound analysis.

Supported by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and Tech-
nology Fund (WWTF) through grants PROSEED and ICT12-059.

In this paper, we establish the practical usefulness of DCs
for bound (and complexity) analysis of imperative programs:
1) We propose the first algorithm for bound analysis of
DCPs . Our algorithm is based on the dichotomy between
increments and resets. 2) We develop appropriate techniques
for abstracting C programs to DCPs: we describe how to
extract norms (integer-valued expressions on the program
state) from C programs and how to use them as variables in
DCPs . We are not aware of any previous implementation of
DCPs for termination or bound analysis. 3) We demonstrate
the effectiveness of our approach through a thorough experi-
mental evaluation. We present the first comparison of bound
analysis tools on source code from real software projects (see
Section V). Our implementation performs significantly better
in time and success rate.

II. MOTIVATION AND RELATED WORK

A. Amortized Complexity Analysis

Example 1 stated in Figure 1 is representative for a class of
loops that we found in parsing and string matching routines
during our experiments. In these loops the inner loop iterates
over disjoint partitions of an array or string, where the partition
sizes are determined by the program logic of the outer loop.
For an illustration of this iteration scheme, we refer the reader
to Example 3 stated in the extended version [18], which
contains a snippet of the source code after which we have
modeled Example 1. Example 1 has the linear complexity 2n,
because the inner loop as well as the outer loop can be iterated
at most n times (as argued in the next paragraph). However,
previous approaches to bound analysis [13], [5], [21], [16],
[4], [7], [10] are only able to deduce that the inner loop can
be iterated at most a quadratic number of times (with loop
bound n2) by the following reasoning: (1) the outer loop can
be iterated at most n times, (2) the inner loop can be iterated at
most n times within one iteration of the outer loop (because
the inner loop has a local loop bound p and p ≤ n is an
invariant), (3) the loop bound n2 is obtained from (1) and (2)
by multiplication. We note that inferring the linear complexity
2n for Example 1, even though the inner loop can already be
iterated n times within one iteration of the outer loop, is an
instance of amortized complexity analysis [19].
In the following, we give an overview how our approach infers
the linear complexity for Example 1:
1. Program Abstraction. We abstract the program to a DCP
over Z as shown in Figure 1. We discuss our algorithm for
abstracting imperative programs to DCPs based on symbolic

void foo(uint n) {
int x = n;
int r = 0;

l1 while(x > 0) {
x = x - 1;
r = r + 1;

l2 if(*) {
int p = r;

l3 while(p > 0)
p--;

r = 0;
}

l4 } }

lb

l1 le

l2

l3l4

τ0 ≡
x′ ≤ n;
r′ ≤ 0;

τ1 ≡
x > 0,
x′ ≤ x− 1
r′ ≤ r + 1

τ2a ≡
x′ ≤ x
r′ ≤ r
p′ ≤ rτ2b ≡

x′ ≤ x
r′ ≤ r

τ4 ≡
x′ ≤ x
r′ ≤ 0

τ5 ≡
r′ ≤ r
x′ ≤ x

p > 0,
x′ ≤ x
r′ ≤ r
p′ ≤ p− 1

τ3 ≡

foo(uint n, uint m1,
uint m2) {

int y = n;
int x;

l1 if(*)
x = m1;

else
x = m2;

l2 while(y > 0) {
y--;
x = x + 2; }

int z = x;
l3 while(z > 0)

z--; }

lb

l1

l2

l3 le

τ0 ≡ y′ ≤ n

τ0a ≡
y′ ≤ y
x′ ≤ m1

τ0b ≡
y′ ≤ y
x′ ≤ m2

τ1 ≡
y > 0,
y′ ≤ y − 1
x′ ≤ x+ 2

τ2 ≡ z′ ≤ x;

τ3 ≡
z > 0,

z′ ≤ z − 1

Complexity: TB(τ5) + TB(τ3) = n+ n = 2n Complexity: TB(τ1) + TB(τ3) = max(m1,m2) + 3n

Example 1 abstracted DCP of Example 1 Example 2 abstracted DCP of Example 2

Fig. 1. Running Examples, * denotes non-determinism (arising from conditions not modeled in the analysis)

execution in Section IV.
2. Finding Local Bounds. We identify p as a variable that
limits the number of executions of transition τ3: We have the
guard p > 0 on τ3 and p decreases on each execution of τ3.
We call p a local bound for τ3. Accordingly we identify x as
a local bound for transitions τ1, τ2a, τ2b, τ4, τ5.
3. Bound Analysis. Our algorithm (stated in Section III)
computes transition bounds, i.e., (symbolic) upper bounds on
the number of times program transitions can be executed, and
variable bounds, i.e., (symbolic) upper bounds on variable val-
ues. For both types of bounds, the main idea of our algorithm
is to reason how much and how often the value of the local
bound resp. the variable value may increase during program
run. Our algorithm is based on a mutual recursion between
variable bound analysis (“how much”, function VB(v)) and
transition bound analysis (“how often”, function TB(τ)).
Next, we give an intuition how our algorithm computes
transition bounds: Our algorithm computes TB(τ) = n for
τ ∈ {τ1, τ2a, τ2b, τ4, τ5} because the local bound x is initially
set to n and never increased or reset. Our algorithm computes
TB(τ3) (τ3 corresponds to the loop at l3) as follows: τ3 has
local bound p; p is reset to r on τ2a; our algorithm detects that
before each execution of τ2a, r is reset to 0 on either τ0 or τ4,
which we call the context under which τ2a is executed; our
algorithm establishes that between being reset and flowing into
p the value of r can be incremented up to TB(τ1) times by 1;
our algorithm obtains TB(τ1) = n by a recursive call; finally,
our algorithm calculates TB(τ3) = 0 + TB(τ1)× 1 = n. We
give an example for the mutual recursion between TB and
VB in Section II-B.
We contrast our approach for computing the loop bound of
l3 of Example 1 with classical invariant analysis: Assume
’c’ counting the number of inner loop iterations (i.e., c
is initialized to 0 and incremented in the inner loop). For
inferring c <= n through invariant analysis the invariant
c+x+ r <= n is needed for the outer loop, and the invariant
c+x+p <= n for the inner loop. Both relate 3 variables and
cannot be expressed as (parametrized) octagons (e.g., [11]).
Further, the expressions c + x + r and c + x + p do not
appear in the program, which is challenging for template based
approaches to invariant analysis.

B. Invariants and Bound Analysis

We explain on Example 2 in Figure 1 how our approach
performs invariant analysis by means of bound analysis. We
first motivate the importance of invariant analysis for bound
analysis. It is easy to infer x as a bound for the possible
number of iterations of the loop at l3. However, in order to
obtain a bound in the function parameters the difficulty lies
in finding an invariant x ≤ expr(n,m1,m2). Here, the most
precise invariant x ≤ max(m1,m2) + 2n cannot be computed
by standard abstract domains such as octagon or polyhedra:
these domains are convex and cannot express non-convex
relations such as maximum. The most precise approximation of
x in the polyhedra domain is x ≤ m1+m2+2n. Unfortunately,
it is well-known that the polyhedra abstract domain does not
scale to larger programs and needs to rely on heuristics for
termination. Next, we explain how our approach computes
invariants using bound analysis and discuss how our reasoning
is substantially different from invariant analysis by abstract
interpretation.
Our algorithm computes a transition bound for the loop at
l3 by TB(τ3) = TB(τ2) × VB(x) = 1 × VB(x) =
VB(x) = TB(τ1) × 2 + max(m1,m2) = (n × TB(τ0)) ×
2 + max(m1,m2) = (n × 1) × 2 + max(m1,m2) = 2n +
max(m1,m2). We point out the mutual recursion between
TB and VB: TB(τ3) has called VB(x), which in turn
called TB(τ1). We highlight that the variable bound VB(x)
(corresponding to the invariant x ≤ max(m1,m2) + 2n) has
been established during the computation of TB(τ3).
Standard abstract domains such as octagon or polyhedra
propagate information forward until a fixed point is reached,
greedily computing all possible invariants expressible in the
abstract domain at every location of the program. In contrast,
VB(x) infers the invariant x ≤ max(m1,m2) + 2n by
modular reasoning: local information about the program (i.e.,
increments/resets of variables, local bounds of transitions) is
combined to a global program property. Moreover, our variable
and transition bound analysis is demand-driven: our algorithm
performs only those recursive calls that are indeed needed
to derive the desired bound. We believe that our analysis
complements existing techniques for invariant analysis and

will find applications outside of bound analysis.

C. Related Work

In [6] it is shown that termination of DCPs is undecidable
in general but decidable for the natural syntactic subclass of
deterministic DCPs (see Definition 2), which is the class of
DCPs we use in this paper. It is an open question for future
work whether there is a complete algorithm for bound analysis
of deterministic DCPs .
In [16] a bound analysis based on constraints of the form
x′ ≤ x + c is proposed, where c is either an integer or a
symbolic constant. The resulting abstract program model is
strictly less powerful than DCPs . In [21] a bound analysis
based on so-called size-change constraints x′Cy is proposed,
where C ∈ {<,≤}. Size-change constraints form a strict syn-
tactic subclass of DCs . However, termination is decidable even
for non-deterministic size-change programs and a complete
algorithm for deciding the complexity of size-change programs
has been developed [9]. Because the constraints in [21], [16]
are less expressive than DCs , the resulting bound analyses
cannot infer the linear complexity of Example 1 and need to
rely on external techniques for invariant analysis.
In Section V we compare our implementation against the
most recent approaches to automated complexity analysis [10],
[7], [16]. [10] extends the COSTA approach by control flow
refinement for cost equations and a better support for multi-
dimensional ranking functions. The COSTA project (e.g. [4])
computes resource bounds by inferring an upper bound on
the solutions of certain recurrence equations (so-called cost
equations) relying on external techniques for invariant analysis
(which are not explicitly discussed). The bound analysis in [7]
uses approaches for computing polynomial ranking functions
from the literature to derive bounds for SCCs in isolation
and then expresses these bounds in terms of the function
parameters using invariant analysis (see next paragraph).
The powerful idea of expressing locally computed loop bounds
in terms of the function parameters by alternating between
loop bound analysis and variable upper bound analysis has
been explored in [7], [16] (as discussed in the extended ver-
sion [17]) and [12]. We highlight some important differences
to these earlier works. [7] computes upper bound invariants
only for the absolute values of variables; this does, for
example, not allow to distinguish between variable increments
and decrements during the analysis. [17] and [12] do not give
a general algorithm but deal with specific cases.
[20] discusses automatic parallelization of loop iterations; the
approach builds on summarizing inner loops by multiplying
the increment of a variable on a single iteration of a loop
with the loop bound. The loop bounds in [20] are restricted
to simple syntactic patterns.
The recent paper [8] discusses an interesting alternative for
amortized complexity analysis of imperative programs: A sys-
tem of linear inequalities is derived using Hoare-style proof-
rules. Solutions to the system represent valid linear resource
bounds. Interestingly, [8] is able to compute the linear bound
for l3 of Example 1 but fails to deduce the bound for the
original source code (provided in the extended version [18]).

Moreover, [8] is restricted to linear bounds, while our approach
derives polynomial bounds (e.g., Example B in Figure 2)
which may also involve the maximum operator. An experi-
mental comparison was not possible as [8] was developed in
parallel.

III. PROGRAM MODEL AND ALGORITHM

In this section we present our algorithm for computing worst-
case upper bounds on the number of executions of a given
transition (transition bound) and on the value of a given
variable (variable bound). We base our algorithm on the
abstract program model of DCPs stated in Definition 2. In
Section III-B we generalize DCPs and our algorithm to the
non-well-founded domain Z.

Definition 1 (Difference Constraints). Let V be a finite set of
variables and C be a finite set of symbolic constants. A =
V ∪ C ∪N is the set of atoms. A difference constraint over A
is an inequality of form x′ ≤ y + c with x ∈ V , y ∈ A and
c ∈ Z. DC(A) is the set of all difference constraints over A.

Definition 2 (Difference Constraint Program). A difference
constraint program (DCP) over A is a directed labeled graph
∆P = (L, T, lb, le), where L is a finite set of locations, lb ∈ L
is the entry location, le ∈ L is the exit location and T ⊆
L×2DC(A)×L is a finite set of transitions. We write l1

u−→ l2 to
denote a transition (l1, u, l2) ∈ T labeled by a set of difference
constraints u ∈ 2DC(A). Given a transition τ = l1

u−→ l2 ∈ T
of ∆P we call l1 the source location of τ and l2 the target
location of τ . A path of ∆P is a sequence l0

u0−→ l1
u1−→ · · ·

with li
ui−→ li+1 ∈ T for all i. The set of valuations of A is

the set ValA = A → N of mappings from A to the natural
numbers with σ(a) = a if a ∈ N. A run of ∆P is a sequence
(lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · such that lb

u0−→ l1
u1−→ · · · is

a path of ∆P and for all i it holds that (1) σi ∈ ValA, (2)
σi+1(x) ≤ σi(y)+c for all x′ ≤ y + c ∈ ui, (3) σi(s) = σ0(s)
for all s ∈ C. Given v ∈ V and l ∈ L we say that v is
defined at l and write v ∈ D(l) if l 6= lb and for all incoming
transitions l1

u−→ l ∈ T of l it holds that there are a ∈ A and
c ∈ Z s.t. v′ ≤ a + c ∈ u.
∆P is deterministic (fan-in-free in the terminology of [6]), if
for every transition l1

u−→ l2 ∈ T and every v ∈ V there is at
most one a ∈ A and c ∈ Z s.t. v′ ≤ a + c ∈ u.

Our approach assumes the given DCP to be deterministic.
We further assume that DCPs are well-defined: Let v ∈ V
and l ∈ L, if v is live at l then v ∈ D(l). Our abstraction
algorithm from Section IV generates only deterministic and
well-defined DCPs.
In Definitions 3 to 10 we assume a DCP ∆P(L, T, lb, le) over
A to be given.

Definition 3 (Transition Bound). Let τ ∈ T , τ is bounded
iff τ appears a finite number of times on any run of ∆P . An
expression expr over C ∪Z is a transition bound for τ iff τ is
bounded and for any finite run ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→

(l2, σ2)
u2−→ . . . (le, σn) of ∆P it holds that τ appears not

more than σ0(expr) often on ρ. We say that a transition bound
expr of τ is precise iff there is a run ρ of ∆P s.t. τ appears
σ0(expr) times on ρ.

(A)
lb

l1

le

τ0 ≡
i′ ≤ n
j′ ≤ 0

τ1 ≡
i′ ≤ i− 1
j′ ≤ j + 1

τ2 ≡
i′ ≤ i
j′ ≤ j − 1

(B)
lb

l1

le

τ0 ≡

i′ ≤ n
j′ ≤ 0
l′ ≤ n
k′ ≤ 0

τ1 ≡
i′ ≤ i− 1
j′ ≤ j
l′ ≤ l
k′ ≤ k + 1

τ3 ≡

i′ ≤ i
j′ ≤ j − 1
l′ ≤ l
k′ ≤ ki′ ≤ i

j′ ≤ k
l′ ≤ l− 1
k′ ≤ k

τ2 ≡

(C)
lb

l1 le

l2

τ0 ≡
i′ ≤ n
r′ ≤ n

τ1 ≡
i′ ≤ i
r′ ≤ r
k′ ≤ r

i′ ≤ i
r′ ≤ r
k′ ≤ k − 1τ2 ≡

τ3 ≡
i′ ≤ i− 1
r′ ≤ 0

Complexity: TB(τ1) + TB(τ2) = 2n Complexity: TB(τ1) + TB(τ2) + TB(τ3) = 2n+ n2 Complexity: TB(τ2) + TB(τ3) = 2n

ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ l, τ3 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ3 7→ i, τ2 7→ k}
TB(τ1) = n,TB(τ2) = n TB(τ1) = n, TB(τ2) = n, TB(τ3) = n2 Def. 8: TB(τ1) = n, TB(τ2) = n2, TB(τ3) = n

Def. 10: TB(τ1) = n, TB(τ2) = n, TB(τ3) = n

Fig. 2. Example DCP ’s (A), (B), (C)

We want to infer the complexity of the examples in Figure 2
(Examples A, B, C), i.e., we want to infer how often location
l1 can be visited during an execution of the program. We
will do so by computing a bound on the number of times
transitions τ0, τ1, τ2 and τ3 may be executed. In general, the
complexity of a given program can be inferred by summing
up the transition bounds for the back edges in the program.

Definition 4 (Counter Notation). Let τ ∈ T and v ∈ V . Let
ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · (le, σn) be a finite run of

∆P . By](τ, ρ) we denote the number of times that τ occurs
on ρ. By ↓(v, ρ) we denote the number of times that the value
of v decreases on ρ, i.e. ↓(v, ρ) = |{i | σi(v) > σi+1(v)}|.

Definition 5 (Local Transition Bound). Let τ ∈ T and v ∈ V .
v is a local bound for τ iff on all finite runs ρ = (lb, σ0)

u0−→
(l1, σ1)

u1−→ · · · (le, σn) of ∆P it holds that](τ, ρ) ≤ ↓(v, ρ).
We call a complete mapping ζ : T → V ∪ {1} a local bound
mapping for ∆P if ζ(τ) is a local bound of τ or ζ(τ) = 1
and τ can only appear at most once on any path of ∆P .

Example A: i is a local bound for τ1, j is a local bound for
τ2. Example C: i is a local bound for τ1 and for τ3.

A variable v is a local transition bound if on any run of ∆P
we can traverse τ not more often than the number of times the
value of v decreases. I.e., a local bound v limits the potential
number of executions of τ as long as the value of v does
not increase. In our analysis, local transition bounds play the
role of potential functions in classical amortized complexity
analysis [19]. Our bound algorithm is based on a mapping
which assigns each transition a local bound. We discuss how
we find local bounds in Section III-C.

Definition 6 (Variable Bound). An expression expr over C∪Z
is a variable bound for v ∈ V iff for any finite run ρ =
(lb, σ0)

u0−→ (l1, σ1)
u1−→ (l2, σ2)

u2−→ . . . (le, σn) of ∆P and
all 1 ≤ i ≤ n with v ∈ D(li) it holds that σi(v) ≤ σ0(expr).

Let v ∈ V . Our algorithm is based on a syntactic distinction
between transitions which increment v or reset v.

Definition 7 (Resets and Increments). Let v ∈ V . We define
the resets R(v) and increments I(v) of v as follows:

R(v) = {(l1
u−→ l2, a, c) ∈ T ×A× Z |

v′ ≤ a + c ∈ u, a 6= v}
I(v) = {(l1

u−→ l2, c) ∈ T × Z | v′ ≤ v + c ∈ u, c > 0}
Given a path π of ∆P we say that v is reset on π if there
is a transition τ on π such that (τ, a, c) ∈ R(v) for some
a ∈ A and c ∈ Z.

Example B: I(k) = {(τ1, 1)} and R(k) = {(τ0, n, 0)}.
I.e., we have (τ, a, c) ∈ R(v) if variable v is reset to a value
≤ a+c when executing the transition τ . Accordingly we have
(τ, c) ∈ I(v) if variable v is incremented by a value ≤ c when
executing the transition τ .
Our algorithm in Definition 8 is build on a mutual recursion
between the two functions VB(v) and TB(τ), where VB(v)
infers a variable bound for v and TB(τ) infers a transition
bound for the transition τ .

Definition 8 (Bound Algorithm). Let ζ : T → V ∪ {1} be a
local bound mapping for ∆P . We define VB : A 7→ Expr(A)
and TB : T 7→ Expr(A) as:
VB(a) = a, if a ∈ A \ V , else
VB(v) = Incr(v) + max

(,a,c)∈R(v)
(VB(a) + c)

TB(τ) = 1, if ζ(τ) = 1, else
TB(τ) = Incr(ζ(τ))

+
∑

(t,a,c)∈R(ζ(τ))

TB(t)×max(VB(a) + c, 0)

where
Incr(v) =

∑
(τ,c)∈I(v)

TB(τ)× c (Incr(v) = 0 for I(v) = ∅)

Discussion: We first explain the subroutine Incr(v): With
(τ, c) ∈ I(v) we have that a single execution of τ increments
the value of v by not more than c. Incr(v) multiplies the
transition bound of τ with the increment c for summarizing
the total amount by which v may be incremented over all
executions of τ . Incr(v) thus computes a bound on the total
amount by which the value of v may be incremented during
a program run.
The function VB(v) computes a variable bound for v: After
executing a reset transition (τ, a, c) ∈ R(v), the value of v is
bounded by VB(a) + c. As long as v is not reset, its value
cannot increase by more than Incr(v).
The function TB(τ) computes a transition bound for τ based
on the following reasoning: (1) The total amount by which

the local bound ζ(τ) of transition τ can be incremented is
bounded by Incr(ζ(τ)). (2) We consider a reset (t, a, c) ∈
R(ζ(τ)); in the worst case, a single execution of t resets the
local bound ζ(t) to VB(a) + c, adding max(VB(a) + c, 0)
to the potential number of executions of t; in total all TB(t)
possible executions of t add up to TB(t)×max(VB(a)+c, 0)
to the potential number of executions of t.
Example A, ζ as defined in Figure 2: j is reset to 0 on τ0 and
incremented by 1 on τ1. i is reset to n on τ0. Our algorithm
computes TB(τ2) = TB(τ1)× 1 + TB(τ0)× 0 = TB(τ1) =
TB(τ0)× n = n. Thus the overall complexity of Example A
is inferred by TB(τ1) + TB(τ2) = 2n.
Example B, ζ as defined in Figure 2: i and l are reset to n on
τ0. Our algorithm computes TB(τ1) = TB(τ0)× n = n and
TB(τ2) = TB(τ0) × n = n. j is reset to 0 on τ0 and reset
to k on τ2. Our algorithm computes TB(τ3) = TB(τ0)× 0 +
TB(τ2)×VB(k). Since k is reset to 0 on τ0 and incremented
by 1 on τ1, our algorithm computes VB(k) = TB(τ1)× 1 =
n × 1 = n. Thus TB(τ3) = TB(τ2) × VB(k) = n × n =
n2. Thus the overall complexity of Example B is inferred by
TB(τ1) + TB(τ2) + TB(τ3) = n+ n+ n2 = 2n+ n2.
Example 2 (Figure 1): ζ = {τ0, τ0a , τ0b , τ2 7→ 1, τ1 7→
y, τ3 7→ z}, R(z) = {(τ2, x, 0)}, I(x) = {(τ1, 2)}, R(x) =
{(τ0a,m1, 0), (τ0b,m2, 0)}, R(y) = {(τ0, n, 0)}. We have
stated the computation of TB(τ3) in Section II-B.
Termination: Our algorithm does not terminate if recursive
calls cycle, i.e., if a call to TB(τ) resp. VB(v) (indirectly)
leads to a recursive call to TB(τ) resp. VB(v). This can be
easily detected, we return the value ⊥ (undefined).

Theorem 1 (Soundness). Let ∆P(L, T, lb, le) be a well-
defined and deterministic DCP over atoms A, ζ : T 7→
V ∪ {1} be a local bound mapping for ∆P , v ∈ V and τ ∈ T .
Either TB(τ) = ⊥ or TB(τ) is a transition bound for τ .
Either VB(v) = ⊥ or VB(v) is a variable bound for v.

A. Context-Sensitive Bound Analysis

So far our algorithm reasons about resets occurring on single
transitions. In this section we increase the precision of our
analysis by exploiting the context under which resets are
executed through a refined notion of resets and increments.

Definition 9 (Reset Graph). The Reset Graph for ∆P is
the graph G(A, E) with E ⊆ A × T × Z × V s.t. E =
{(x, τ, c, y) | (τ, y, c) ∈ R(x)}. We call a finite path κ =

an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−−→ . . . a0 in G with n > 0 a reset

path of ∆P . We define in(κ) = an, c(κ) =
n∑
i=1

ci, trn(κ) =

{τn, τn−1 . . . , τ1}, and atm(κ) = {an, an−1 . . . , a0}. κ is
sound if for all 1 ≤ i < n it holds that ai is reset on all
paths from the target location of τ1 to the source location of
τi in ∆P . κ is optimal if κ is sound and there is no sound
reset path κ̂ s.t. κ is a suffix of κ̂, i.e., κ̂ = an+k

τn+k,cn+k−−−−−−−→
an+k−1

τn+k−1,cn+k−1−−−−−−−−−−→ . . . an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−−→ . . . a0

with k ≥ 1. Let v ∈ V , by R(v) we denote the set of optimal
reset paths ending in v.

We explain the notions sound and optimal in the course of
the following discussion. Figure 3 shows the reset graphs

0n

ji

τ0τ0

n l

i
0 k

j

τ0

τ0

τ0

τ2
τ0

0 n

r i

k

τ1

τ0 τ0
τ3

00

rn

px

τ0

τ2a

τ4

τ0

G(A) G(B) G(C) G(Ex1)

Fig. 3. Reset Graphs, increments by 0 are not depicted

of Examples A, B, C and Example 1 from Figure 1. For a
given reset (τ, a, c) ∈ R(v), the reset graph determines which
atom flows into variable v under which context. For example,
consider G(C): When executing the reset (τ1, r, 0) ∈ R(k)
under the context τ3, k is set to 0, if the same reset is executed
under the context τ0, k is set to n. Note that the reset graph
does not represent increments of variables. We discuss how
we handle increments below.
We assume that the reset graph is a DAG. We can always
force the reset graph to be a DAG by abstracting the DCP :
we remove all program variables which have cycles in the
reset graph and all variables whose values depend on these
variables. Note that if the reset graph is a DAG, the set R(v)
is finite for all v ∈ V .
Let v ∈ V . Given a reset path κ of length k that ends
in v, we say that (trn(κ), in(κ), c(κ)) is a reset of v with
context of length k − 1. I.e., R(v) from Definition 7 is the
set of context-free resets of v (context of length 0), because
(trn(κ), in(κ), c(κ)) ∈ R(v) iff κ ends in v and has length
1. Our algorithm from Definition 8 reasons context free since
it uses only context-free resets.
Consider Example C. The precise bound for τ2 is n because we
can iterate τ2 only in the first iteration of the loop at l1 since r
is reset to 0 on τ3. But when reasoning context-free, our algo-
rithm infers a quadratic bound for τ2: We assume ζ to be given
as stated in Figure 2. In G(C) κ = r

τ1,0−−→ k is the only reset
path of length 1 ending in k. Thus R(k) = {(τ1, r, 0)}. Our
algorithm from Definition 8 computes: TB(τ1) = TB(τ0) ×
n = n, VB(r) = TB(τ0) × n + TB(τ3) × 0 = n,
TB(τ2) = TB(τ1)×VB(r) = n× n = n2.
We show how our algorithm infers the linear bound for τ2
when using resets with context: If we consider κ with contexts,
we get κ1 = 0

τ3,0−−→ r
τ1,0−−→ k and κ2 = n

τ0,0−−→ r
τ1,0−−→ k.

Note that κ1 and κ2 are sound by Definition 9 because r is
reset on all paths from the target location l2 of τ1 to the source
location l1 of τ1 in Example C (namely on τ3). Thus R(k) =
{({τ3, τ1}, 0, 0), ({τ0, τ1}, n, 0)}. We can compute a bound on
the number of times that a sequence τ1, τ2, . . . τn of transitions
may occur on a run by computing min

1≤i≤n
TB(τi). Thus, basing

our analysis on R(k) rather thanR(k) we compute: TB(τ2) =
min(TB(τ3),TB(τ1)) × 0 + min(TB(τ0),TB(τ1)) × n =
min(n, 1)× n = n.
We have demonstrated that our analysis gains precision when
adding context to our notion of resets. It is, however, not sound
to base the analysis on maximal reset paths (i.e., resets with
maximal context) only: Consider Example B with ζ as stated
in Figure 2. There are 2 maximal reset paths ending in j (see

G(B)): κ1 = 0
τ0,0−−→ j and κ2 = 0

τ0,0−−→ k
τ2,0−−→ j. Thus

R(j)′ = {({τ0, τ2}, 0, 0), ({τ0}, 0, 0)} is the set of resets of
j with maximal context. Using R(j)′ rather than R(j) our
algorithm computes: TB(τ3) = min(TB(τ0),TB(τ2))× 0 +
TB(τ0)× 0 +TB(τ1)× 1 = TB(τ1)× 1 = n, but n is not a
transition bound for τ3. The reasoning is unsound because κ2

is unsound by Definition 9: k is not reset on all paths from
the target location l1 of τ2 to the source location l1 of τ2 in
Example B: e.g., the path τ2 = l1

u2−→ l1 of Example B does
not reset k.
We base our context sensitive algorithm on the set R(v) of
optimal reset paths. The optimal reset paths are those that are
maximal within the sound reset paths (Definition 9).

Definition 10 (Bound Algorithm with Context). Let ζ :
T → V ∪ {1} be a local bound mapping for ∆P . Let
VB : A 7→ Expr(A) be as defined in Definition 8. We
override the definition of TB : T 7→ Expr(A) in Definition 8
by stating:

TB(τ) = 1 if ζ(τ) = 1 else
TB(τ) =

∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm(κ)

Incr(a)

where
TB({τ1, τ2, . . . , τn}) = min

1≤i≤n
TB(τi)

Discussion and Example: The main difference to the definition
of TB(τ) in Definition 8 is that the term Incr(ζ(τ)) is
replaced by the term

∑
a∈atm(κ)

Incr(a). Consider the abstracted

DCP of Example 1 in Figure 1. We have discussed in
Section II-A that r may be incremented on τ1 between
the reset of r to 0 on τ0 resp. τ4 and the reset of p to
r on τ2a. The term

∑
a∈atm(κ)

Incr(a) takes care of such

increments which may increase the value that finally flows
into ζ(τ) (in the example p) when the last transition on κ
(in the example τ2a) is executed: We use the local bound
mapping ζ = {τ0 7→ 1, τ1 7→ x, τ2a 7→ x, τ2b 7→ x, τ4 7→
x, τ5 7→ x, τ3 7→ p} for Example 1. The reset graph of
Example 1 is shown in Figure 3. We have R(p) = {0 τ0−→
r

τ2a−−→ p, 0
τ4−→ r

τ2a−−→ p}. Thus our algorithm computes
TB(τ3) =

∑
κ∈R(p)

TB(trn(κ))×max(VB(in(κ))+c(κ), 0)+∑
a∈atm(κ)

Incr(a) = TB({τ0, τ2a}) × max(VB(0), 0) +

Incr(r) + TB({τ4, τ2a}) × max(VB(0), 0) + Incr(r) =
2× Incr(r) = 2× TB(τ1)× 1 = 2× n (with TB(τ1) = n).
Complexity: In theory there can be exponentially many resets
in R(v). In our experiments this never occurred, enumeration
of (optimal) reset paths did not affect performance.
Further Optimization: We have shown in Section II that
transitions τ3 of Example 1 has a linear bound, precisely
n. The Bound 2n that is computed by our bound algorithm
from Definition 10 is linear but not precise. We compute
2n because r appears on both reset paths of p and therefore
Incr(r) = n is added twice. However, there is only one
transition (τ2a) on which p is reset to r and between any
two executions of τ2a r will be reset to 0. For this reason

each increment of r can only contribute once to the increase
of the local bound p of τ3, and not twice. We thus suggest
to further optimize our algorithm from Definition 10 by
distinguishing if there is more than one way how a ∈ atm(κ)
may flow into the target variable of κ or not. We divide
atm(κ) into two disjoint sets atm2(κ) = {a ∈ atm(κ) |
more than 1 path from a to target variable of κ in G(∆P)},
atm1(κ) = atm(κ) \ atm2(κ). We define

TB(τ) = (
∑

a∈
⋃

κ∈R(ζ(τ))

atm1(κ)

Incr(a)) +

∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

Incr(a)

for ζ(τ) 6= 1. Note that for Example 1 atm1(κ) = {r} and
atm2(κ) = ∅ for both κ ∈ R(p). Therefore TB(τ3) = I(r) =
n with the optimization.

Theorem 2 (Soundness of Bound Algorithm with Context).
Let ∆P(L, T, lb, le) be a well-defined and deterministic DCP
over atoms A, ζ : T 7→ V ∪ {1} be a local bound mapping for
∆P , v ∈ V and τ ∈ T . Let TB(τ) and VB(a) be defined as
in Definition 10. Either TB(τ) = ⊥ or TB(τ) is a transition
bound for τ . Either VB(v) = ⊥ or VB(v) is a variable bound
for v.

B. DCPs over non-well-founded domains

In real world code, many data types are not well-founded. The
abstraction of a concrete program is much simpler and more
information is kept if the abstract program model is not limited
to a well-founded domain. Below we extend our program
model from Definition 2 to the non-well-founded domain Z by
adding guards to the transitions in the program. Interestingly
our bound algorithm from Definition 8 resp. Definition 10
remains sound for the extended program model, if we adjust
our notion of a local transition bound (Definition 11).
We extend the range of the valuations ValA of A from N
to Z and allow constants to be integers, i.e., we define A =
V∪C∪Z. We extend Definition 2 as follows: The transitions T
of a guarded DCP ∆P(L, T, lb, le) are a subset of L× 2V ×
2DC(A)×L. A sequence (lb, σ0)

g0,u0−−−→ (l1, σ1)
g1,u1−−−→ · · · is a

run of ∆P if it meets the conditions required in Definition 2
and additionally σi(x) > 0 holds for all x ∈ gi. For examples
see Figure 1.

Definition 11 (Local Transition Bound for DCPs with
guards). Let ∆P(L, T, lb, le) be a DCP with guards over A.
Let τ ∈ T and v ∈ V . v is a local bound for τ if for all finite
runs ρ = (lb, σ0)

τ0−→ (l1, σ1)
τ1−→ · · · (le, σn) of ∆P it holds

that](τ, ρ) ≤ ↓(max(v, 0), ρ).

The algorithms in Sections III-C and IV are based on the
extended program model over Z, it is straightforward to adjust
them for DCPs without guards.

C. Determining Local Bounds

We call a path of a DCP ∆P(L, T, lb, le) simple and cyclic
if it has the same start- and end-location and does not visit a

location twice except for the start- and end-location. Given a
transition τ ∈ T we assign it v ∈ V as local bound if for all
simple and cyclic paths π = l1

g1,u1−−−→ l2
g2,u2−−−→ ...ln (ln = l1)

of ∆P that traverse τ it holds that (1) ∃0 < i < n s.t. v ∈ gi
and (2) ∃0 < i < n s.t. v′ ≤ v + c ∈ ui for some c < 0. Our
implementation avoids an explicit enumeration of the simple
and cyclic paths of ∆P by a simple data flow analysis.

IV. PROGRAM ABSTRACTION

In this section we present our concrete program model and
discuss how we abstract a given program to a DCP .

Definition 12 (Program). Let Σ be a set of states. The set of
transition relations Γ = 2Σ×Σ is the set of relations over Σ. A
program is a directed labeled graph P = (L,E, lb, le), where
L is a finite set of locations, lb ∈ L is the entry location,
le ∈ L is the exit location and E ⊆ L×Γ×L is a finite set of
transitions. We write l1

ρ−→ l2 to denote a transition (l1, ρ, l2).
A norm e ∈ Σ → Z is a function that maps the states to the
integers.

Programs are labeled transition systems over some set of
states, where each transition is labeled by a transition relation
that describes how the state changes along the transition. Note,
that a DCP (Definition 2) is a program by Definition 12.

Definition 13 (Transition Invariants). Let e1, e2, e3 ∈ Σ→ Z
be norms, and let c ∈ Z be some integer. We say e′1 ≤ e2 + e3

is invariant for l1
ρ−→ l2, if e1(s2) ≤ e2(s1) + e3(s1) holds for

all (s1, s2) ∈ ρ. We say e1 > 0 is invariant for l1
ρ−→ l2, if

e1(s1) > 0 holds for all (s1, s2) ∈ ρ.

Definition 14 (Abstraction of a Program). Let P =
(L,E, lb, le) be a program and let N be a finite set of norms.
A DCP ∆P = (L,E′, lb, le) with atoms N is an abstraction
of the program P iff for each transition l1

ρ−→ l2 ∈ E there
is a transition l1

u,g−−→ l2 ∈ E′ s.t. every e′1 ≤ e2 + c ∈ u is
invariant for l1

ρ−→ l2 and for every e1 ∈ g it holds that e1 > 0
is invariant for l1

ρ−→ l2.

We propose to abstract a program P = (L,E, lb, le) to a DCP
∆P = (L,E′, lb, le) as follows: Let N be some initial set of
norms.
1) For each transition l1

ρ−→ l2 ∈ E we generate a set of
difference constraints α(ρ): Initially we set α(ρ) = ∅ for all
transitions l1

ρ−→ l2. We then repeat the following construction
until the set of norms N becomes stable: For each e1 ∈ N and
l1

ρ−→ l2 ∈ E we check whether there is a difference constraint
of form e′1 ≤ e2+c for e1 in α(ρ). If not, we try to find a norm
e2 (possibly not yet in N) and a constant c ∈ Z s.t. e′1 ≤ e2+c

is invariant for ρ. If we find appropriate e2 and c, we add
e′1 ≤ e2+c to α(ρ) and e2 to N . I.e., our transition abstraction
algorithm performs a fixed point computation which might not
terminate if new terms keep being added (see discussion in
next section).
2) For each transition l1

ρ−→ l2 we generate a set of guards
G(ρ): Initially we set G(ρ) = ∅ for all transitions l1

ρ−→ l2.
For each e ∈ N and each transition l1

ρ−→ l2 we check if e > 0
is invariant for l1

ρ−→ l2. If so, we add e to G(ρ).

3) We set E′ = {l1
G(ρ),α(ρ)−−−−−−→ l2 | l1

ρ−→ l2 ∈ E}.

In the following we discuss how we implement the above
sketched abstraction algorithm.

A. Implementation

0. Guessing the initial set of Norms.: We aim at creating
a suitable abstract program for bound analysis. In our non-
recursive setting, complexity evolves from iterating loops.
Therefore we search for expressions which limit the number
of loop iterations. For this purpose we consider conditions of
form a > b resp. a ≥ b found in loop headers or on loop-
paths if they involve loop counter variables, i.e., variables
which are incremented and/or decremented inside the loop.
Such conditions are likely to limit the consecutive execution
of single or multiple loop-paths. From each such condition we
form the integer expression b− a and add it to our initial set
of norms. Note that on those transitions on which a > b holds,
b− a > 0 must hold.
1. Abstracting Transitions.: For a given norm e ∈ N
and a transition l1

ρ−→ l2 we derive a transition predicate
e′ ≤ e2 + c ∈ α(ρ) as follows: We symbolically execute ρ
for deriving e′ from e. In order to keep the number of norms
low, we first try
i) to find a norm e2 ∈ N s.t. e′ ≤ e2 + e3 is invariant for
ρ where e3 is some integer valued expression. If e3 = c

for some integer c ∈ Z we derive the transition predicate
e′ ≤ e2 +c. Else we use our bound algorithm (Section III) for
over-approximating e3 by a constant expression k ≥ e3 and
infer the transition predicate e′ ≤ e2 + k where we consider
k to be a symbolic constant.
ii) If i) fails, we form a norm e4 s.t. e′ ≤ e4 +c by separating
constant parts in the expression e′ using associativity and
commutativity of the addition operator. E.g., given e′ = v+ 5
we set e4 = v and c = 5. We add e4 to N and derive the
predicate e′ ≤ e4 + c.
Since case ii) triggers a recursive abstraction for the newly
added norm we have to ensure the termination of our abstrac-
tion procedure: Note that we can always stop the abstraction
process at any point, getting a sound abstraction of the original
program. We therefore enforce termination of the abstraction
algorithm by limiting the chain of recursive abstraction steps
triggered by entering case ii) above: In case this limit is
exceeded we remove all norms from the abstract program
which form part of the limit exceeding chain of recursive
abstraction steps. This also ensures well-definedness of the
resulting abstract program.
Further note that the DCPs generated by our algorithm are
always deterministic: For each transition, we get at most one
predicate e′ ≤ e2 + c for each e ∈ N .
2. Inferring Guards: Given a transition l1

ρ−→ l2 and a norm
e, we use an SMT solver to check whether e > 0 is invariant
for l1

ρ−→ l2. If so, we add e to G(ρ).
Non-linear Iterations.: We handle counter updates such as
x′ = 2x or x′ = x/2 as discussed in [16].

V. EXPERIMENTS

Implementation: We have implemented the presented algo-
rithm into our tool Loopus [1]. Loopus reads in the LLVM [15]

Succ. 1 n n2 n3 n>3 2n Time TO
Loopus’15 806 205 489 97 13 2 0 15m 6
Loopus’14 431 200 188 43 0 0 0 40m 20
KoAT 430 253 138 35 2 0 2 5,6h 161
CoFloCo 386 200 148 38 0 0 0 4.7h 217

Fig. 4. Tool Results on analyzing the complexity of 1659 functions in the
cBench benchmark, none of the tools infers log bounds.

intermediate representation and performs an intra-procedural
analysis. It is capable of computing bounds for loops as well
as analyzing the complexity of non-recursive functions.
Experimental Setup: For our experimental comparison we
used the program and compiler optimization benchmark Col-
lective Benchmark [2] (cBench), which contains a total of
1027 different C files (after removing code duplicates) with
211.892 lines of code. In contrast to our earlier work we
did not perform a loop bound analysis but a complexity
analysis on function level. We set up the first comparison of
complexity analysis tools on real world code. For comparing
our new tool (Loopus’15) we chose the 3 most promising
tools from recent publications: the tool KoAT implementing
the approach of [7], the tool CoFloCo implementing [10]
and our own earlier implementation (Loopus’14) [16]. Note
that we compared against the most recent versions of KoAT
and CoFloCo (download 01/23/15).1 The experiments were
performed on a Linux system with an Intel dual-core 3.2
GHz processor and 16 GB memory. We used the following
experimental set up:
1) We compiled all 1027 C files in the benchmark into the
llvm intermediate representation using clang.
2) We extracted all 1751 functions which contain at least one
loop using the tool llvm-extract (comes with the llvm tool
suite). Extracting the functions to single files guarantees an
intra-procedural setting for all tools.
3) We used the tool llvm2kittel [3] to translate the 1751 llvm
modules into 1751 text files in the Integer Transition System
(ITS) format read in by KoAT.
4) We used the transformation described in [10] to translate
the ITS format of KoAT into the ITS format of CoFloCo.
This last step is necessary because there exists no direct way
of translating C or the llvm intermediate representation into
the CoFloCo input format.
5) We decided to exclude the 91 recursive functions in the set
because we were not able to run CoFloCo on these examples
(the transformation tool does not support recursion), KoAT
was not successful on any of them and Loopus does not
support recursion.
In total our example set thus comprises 1659 functions.
Evaluation: Table 4 shows the results of the 4 tools on our
benchmark using a time out of 60 seconds. The first col-
umn shows the number of functions which were successfully
bounded by the respective tool, the last column shows the
number of time outs, on the remaining examples (not shown
in the table) the respective tool did not time out but was also
not able compute a bound. The column Time shows the total
time used by the tool to process the benchmark. Loopus’15
computes the complexity for about twice as many functions
as KoAT, CoFloCo and Loopus’14 while needing an order of

1https://github.com/s-falke/kittel-koat, https://github.com/aeflores/CoFloCo

magnitude less time than KoAT and CoFloCo and significantly
less time than Loopus’14. We conclude that our approach is
both scalable and more successful than existing approaches.
Pointer and Shape Analysis: Even Loopus’15, computed
bounds for only about half of the functions in the benchmark.
Studying the benchmark code we concluded that for many
functions pointer alias and/or shape analysis is needed for
inferring functional complexity. In our experimental compar-
ison such information was not available to the tools. Using
optimistic (but unsound) assumptions on pointer aliasing and
heap layout, our tool Loopus’15 was able to compute the
complexity for in total 1185 out of the 1659 functions in the
benchmark (using 28 minutes total time).
Amortized Complexity: During our experiments, we found
15 examples with an amortized complexity that could only
be inferred by the approach presented in this paper. These
examples and further experimental results can be found on [1]
where our new tool is offered for download.

REFERENCES

[1] http://forsyte.at/software/loopus/.
[2] http://ctuning.org/wiki/index.php/CTools:CBench.
[3] https://github.com/s-falke/llvm2kittel.
[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

analysis of object-oriented bytecode programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

[5] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart
programs. In SAS, pages 117–133, 2010.

[6] A. M. Ben-Amram. Size-change termination with difference constraints.
ACM Trans. Program. Lang. Syst., 30(3), 2008.

[7] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating
runtime and size complexity analysis of integer programs. In TACAS,
page to appear, 2014.

[8] Q. Carbonneaux, J. Hoffmann, and Z. Shao. Compositional certified
resource bounds. PLDI, 2015.

[9] T. Colcombet, L. Daviaud, and F. Zuleger. Size-change abstraction and
max-plus automata. In MFCS, pages 208–219, 2014.

[10] A. Flores-Montoya and R. Hähnle. Resource analysis of complex
programs with cost equations. In APLAS, pages 275–295, 2014.

[11] T. M. Gawlitza, M. D. Schwarz, and H. Seidl. Parametric strategy
iteration. arXiv preprint arXiv:1406.5457, 2014.

[12] S. Gulwani and S. Juvekar. Bound analysis using backward symbolic
execution. Technical Report MSR-TR-2004-95, Microsoft Research,
2009.

[13] S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI,
pages 292–304, 2010.

[14] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[15] C. Lattner and V. S. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–88, 2004.

[16] M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis
for bound analysis and amortized complexity analysis. In CAV, pages
745–761. Springer, 2014.

[17] M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. CoRR,
abs/1401.5842, 2014.

[18] M. Sinn, F. Zuleger, and H. Veith. Difference constraints: An adequate
abstraction for complexity analysis of imperative programs. CoRR,
abs/1508.04958, 2015.

[19] R. E. Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, Apr. 1985.

[20] P. Wu, A. Cohen, and D. Padua. Induction variable analysis without
idiom recognition: Beyond monotonicity. In Languages and Compilers
for Parallel Computing, pages 427–441. Springer, 2003.

[21] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of
imperative programs with the size-change abstraction. In SAS, pages
280–297, 2011.

http://forsyte.at/software/loopus/
http://ctuning.org/wiki/index.php/CTools:CBench
https://github.com/s-falke/llvm2kittel

	Introduction
	Motivation and Related Work
	Amortized Complexity Analysis
	Invariants and Bound Analysis
	Related Work

	Program Model and Algorithm
	Context-Sensitive Bound Analysis
	DCPs over non-well-founded domains
	Determining Local Bounds

	Program Abstraction
	Implementation

	Experiments
	References

