
Compositional Reasoning Gotchas in Practice
Chirag Agarwal∗, Paul Hylander†, Yogesh Mahajan‡, Jonathan Michelson‡ and Vigyan Singhal§

∗Oski Technology, Gurgaon, India
†Ikanos Communications, Fremont, California, USA

‡NVIDIA, Santa Clara, California, USA
§Oski Technology, Mountain View, California, USA

Abstract—Model checking has become a formal sign-off re-
quirement in the verification plans of many hardware designs.
For design sizes encountered in practice, compositional assume-
guarantee reasoning is often necessary to achieve satisfactory
results. However, many pitfalls exist that can create unsound
or unexpected results for users of commercial model checking
tools. Users need to watch out for circularity in properties, for
dead-ends getting trimmed by tools, as well as understand the
differences in proof composition for liveness and safety proper-
ties. We present many real design examples to illustrate these
points, as well as describe our experiences with compositional
reasoning in practice.

I. INTRODUCTION

Compositional proofs, while highly desirable, are some-
times tricky to apply correctly in practice. Compositional
reasoning is probably the most widely used form of assume-
guarantee reasoning. Assume-guarantee reasoning does not
necessarily cut out the guaranteeing logic, e.g. when estab-
lishing inductive invariants or helper lemmas that simplify the
proofs for some properties. Compositional reasoning focuses
on cutting out the guaranteeing logic when assuming the prop-
erty which has been guaranteed, thereby reducing complexity
by analyzing smaller chunks of logic. Cutting out logic is often
implemented by running model checkers on sub-modules or
by black boxing some sub-modules.

Compositional reasoning is naturally suited to hardware
designs, which are parallel compositions of thousands or
millions of processes. Adoption of compositional reasoning
is also driven by the existence of interfaces, which are natural
boundaries for contracts between the designers. The contracts
may or may not always be explicit, but there’s a good chance
that a well-designed hardware interface obeys some relatively
simple contracts, as would be consistent with following good
design principles like encapsulation. The designed interfaces
and protocols are intended to guarantee high-level properties
that are targets of verification for us. Using compositional
reasoning and relying on interfaces, we can verify higher-level
system properties, such as absence of system-level deadlocks.

Given the size of industrial designs, the system-level verifi-
cation problem is impractical to solve in a formal verification
setup using the entire chip system as the design-under-test
(DUT). Rather, one aims to find related proof obligations on
the logic of smaller sub-units (typically coded by one RTL
designer), which when taken together are sufficient to imply
that the original system properties hold. This is the most
practical way that model checkers are able to verify system

properties to the level of confidence desired. As a side benefit,
using assume-guarantee for properties on interfaces between
neighboring units, both of which have model checking setups,
can yield insight about design invariants and ultimately help
formalize the inter-designer contracts that may not have been
explicitly or precisely specified earlier.

However, as we discuss in this paper, it is important to
figure out the process to get compositional reasoning right.
There are plenty of pitfalls in this activity, and we would like
to publicize some of the gotchas.

Our discussion in this paper is based only on our practical
experience in a setting that is limited to applying commercial
model checking tools on synthesizable RTL designs while
verifying properties written in the popular SystemVerilog
Assertion (SVA) language [1].

In Section II, we describe some previous work on composi-
tional reasoning, and some challenges in using that in our set-
ting. In Section III, we describe how we apply compositional
reasoning. We need to watch out for false positives when tools
trim dead-ends silently (Section IV). In Section V, we caution
about changes in the SVA liveness syntax and go on to detail
an example of a missed deadlock bug when compositional
reasoning is applied for liveness properties without appropriate
care. We conclude in Section VI by pointing out some steps
end-users can take to avoid such pitfalls.

II. PRIOR RESULTS AND DISCUSSION

When applying compositional assume-guarantee reasoning,
it is important to be able to tell what may be safely inferred
about properties at the system level based on the results
seen at the unit level. To begin with, one may ask if it is
sound to conclude that some high-level property holds at the
system level if all unit level obligations are proven. This is a
reasonable question since one can encounter circularity in the
assume-guarantee argument, and circularity in the argument
could lead to unsoundness. For example, given two neigh-
boring modules A and B, property PA might be verified on
A assuming PB holds, and then PB might be verified on B
assuming PA holds, which is a form of circular argument.
To help address the issue of potential unsoundness in the
compositional reasoning arguments, there are many theoretical
results which characterize sound applications of compositional
reasoning. The work by McMillan [2] is widely known. A
good overview of compositional reasoning with a focus on
completeness and soundness is presented by Namjoshi and



p2 p4

p1

p3

O

B

B

B

B

(p2 ⇒ p1)

p2

((p1 ∧ p4)⇒ p3)

(p2 ⇒ p4)

(p2 ∧ p4)

(p1 ∧ p3)

true

(p1 ∧ p2 ∧ p3 ∧ p4)

Fig. 1. Example illustrating some concepts involved in applying McMillan’s
compositional rule for 4 properties p1, p2, p3, p4. The graph O is used to
order the properties. On the right are shown four target proof obligations that
are consistent with applying this rule.

Trefler [3]. An alternative scheme for compositional reasoning
is presented in follow up work by Amla et al. [4].

A. Terminology and Notation

We use SVA to write properties. SVA extends Linear
Temporal Logic (LTL) [5] with operations which increase
expressiveness1 and succinctness. An assertion written as
assert P indicates that property P is expected to be true
starting anywhere along the trace. If property P corresponds
to temporal logic formula p, assert P corresponds to the
temporal logic formula G(p). Similarly, an assumption written
as assume P requires that G(p) does not fail.

When discussing the soundness results, it is useful to know
the distinction between safety and liveness properties [6]. A
safety property is one whose failures can be witnessed by
finite traces. Once a safety property is witnessed to fail, no
further extension of the trace can make the property hold. A
liveness property is one whose failures cannot be witnessed by
finite traces. For a liveness property, every finite trace can be
extended such that the property does not fail, i.e. every failure
trace is of infinite length. Every property can be rewritten as
a conjunction of a safety property and a liveness property. In
this paper, we will assume that every property is written as
either a safety or liveness property.

The suggestive notation q B p (read as “q constrains p”) is
used below for consecution claims. qBp means that it is never
the case that p is false in cycle n and q is true in all prior
cycles. It is equivalent to ¬(qU¬p).

B. McMillan’s circular compositional reasoning rule

McMillan’s compositional reasoning result provides a suf-
ficient condition for concluding that G(

∧
pi) holds for the

design given that some local proof obligations are met. Each
proof obligation takes the form of a consecution claim, i.e.
something is claimed about cycle n of a trace if a related
claim applies during cycles 0 . . . (n− 1) of the trace. We will
consider only the case with a finite number of properties pi.

A key part of McMillan’s result involves partially ordering
the properties, or equivalently, viewing the properties as nodes
of some acyclic directed graph O.

The main result is that one can conclude that S |= G(
∧

pi)
if we establish for all i that Ai |= {∆i B ((

∧
p∈Ti

p)⇒ pi)},
where

1Unlike LTL, SVA has the expressive power of ω-regular languages.

i. S is the original design with its environment constraints
ii. Ai is a valid abstraction of S (typically obtained by

retaining the guaranteeing logic for pi and cutting out
unrelated logic, e.g. via black-boxing some modules)

iii. Ti ⊂ {p1, p2, . . . , pk} such that pj ∈ Ti implies that there
is a (nontrivial) path from pj to pi in the acyclic graph O

iv. ∆i is (
∧

p∈Di
p) with Di ⊆ {p1, p2, . . . , pk}

(An illustrative example showing an application of the rule
is in Fig. 1 for the case of 4 properties.)

In this result, the key part is the definition of Ti using
the ordering implied by O. This allows one to construct an
argument that

∧
pi is not false at cycle n assuming

∧
∆i is

not false at all prior cycles. This then allows one to conclude
that ∆i is not false at cycle n and enables the inductive step
for the next cycle.

The result applies irrespective of whether the pi’s are safety
or liveness properties. Since liveness properties do not fail on
finite traces, and all failures of safety properties are witnessed
by finite traces, the inductive argument may be somewhat
surprising! The potential for confusion arises because saying
“pi is not false at cycle n” is not the same as saying “pi does
not fail at cycle n”, especially when pi is not a combinational
property. Each property pi is itself a path formula which can be
evaluated as true or false for the path beginning in cycle
n. A (safety) property pi fails at cycle n if cycles m through
n of the trace form a bad prefix for pi for some m ≤ n.

For the case where all the pi are safety properties, the
induction argument can in fact be of the form that

∧
pi does

not fail at cycle n assuming
∧

∆i does not fail at any prior
cycle. Then ∆i does not fail at cycle n and enables the next
inductive step. In this case, the induction is over the length of
finite traces and we seek the shortest trace which witnesses a
failure of the safety properties involved.

C. Challenges applying McMillan’s result

Implementing McMillan’s compositional assume-guarantee
result as given above is not simple in practice:

i. For a large number of properties, providing and maintain-
ing a valid and effective ordering of the properties can get
unwieldy and burdensome for the end user.

ii. Writing the compositional proof obligations using SVA
can get complicated. For example, writing ¬(qU¬p) in
SVA naively as “assert property (not (q s_until
(not p)));” actually expresses G¬(qU¬p) which
evaluates the path formula ¬(qU¬p) at each cycle of the
trace. We wish to evaluate ¬(qU¬p) only at the first cycle.

In addition to the above issues which are specific to apply-
ing McMillan’s result, there is also the broader question of
how a particular compositional reasoning result applies when
restricted to finite traces. This is important because we fre-
quently reason about finite traces in practice. Which semantics
for finite traces are compatible with the result of a given
compositional reasoning theorem? (For example, the safety-
only variant of the argument above which uses the notion of
“pi does not fail in cycle k” has a dependency on the semantics



f

g

f

g

A1 B1

A2 B2

p1: ##1 f

p2: ##1 g

p1: (f)

p2: (g)

p3: (¬f ⇒ ¬g)

Fig. 2. Zero-delay loops

used for finite traces. The user needs to confirm that the
semantics SVA uses for finite words do not break the inductive
argument. Further, certain related tool settings/behaviors like
trimming dead-ends can break the inductive argument and lead
to unsound results when reasoning about finite traces.)

D. Another Compositional Reasoning Approach

Since McMillan’s rule can be challenging to apply, a simpler
compositional reasoning rule as described below is often used.

Model checking setups are created to check properties on
abstractions A1,A2, . . .Am. Each property pi is associated
with the abstraction it is intended to be checked on. Let Mk

be the set of all properties intended to be proven on Ak.
In order to claim that S |= G(

∧
pi), establish for all k that

Ak |= G(
∧

p/∈Mk
p)⇒ G(

∧
p∈Mk

p), where
i. S is the original design with its environment constraints

ii. Ak is a valid abstraction of S containing the guaranteeing
logic for all p ∈Mk

Unlike in McMillan’s rule, there is no longer any require-
ment to explicitly order the properties. Further, SVA can
express the proof obligations very simply. In the setup for
Ai, use assume P for all p /∈Mi and assert P for all p ∈Mi.

Unfortunately, this argument is not sound in general, as
summarized in detail in [4]. It is unsound for liveness prop-
erties. It can be used only with safety properties, but that too
has a few corner cases where it can yield unsound results.

The tradeoff is that the user now needs to be aware of the
assumptions under which this compositional reasoning claim
is valid and to have a way of knowing when these extra
assumptions are getting violated, in addition to the problem
of not accidentally using tool settings that interfere with the
induction argument.

Since the compositional reasoning argument for safety prop-
erties involves an inductive argument on the length of the
shortest trace which violates one of the safety properties, the
potential for unsoundness lies in either the base case or the
inductive step being spuriously claimed to hold.

One way the inductive step can spuriously be claimed to
hold occurs when there are zero-delay loops in the logic

/
/

e1 e2 . . . ek

A B

MONITOR

A_foo: assert P1;
B_bar: assert P2;

. . .

Fig. 3. Structure used for compositional reasoning about safety properties

involved. Fig. 2 pictorially depicts two ways a zero-delay loop
can occur in the logic.

In the first case shown in the upper half of Fig. 2, there is
a combinational loop going through modules A1 and B1, and
we are skipping the check in the cycle after reset. All tools
complain about such combinational loops, and so we need not
worry about this pitfall.

In the second case shown in the lower half of Fig. 2,
property p1 will get proven on A2 after assuming p2 and
p3, irrespective of the driving logic of f (assuming the base
case holds at reset), and properties p2 and p3 will get proven
on B2 assuming p1. This situation is due to a zero-delay
loop in the logic involving f getting reflected as g by B2

combined with the structure of the properties. In this case,
unfortunately, tools do not complain about the combinational
zero-cycle dependency, and the user needs to be careful that
the properties do not cause such a loop.

Further examples illustrating unsoundness are presented in
Section IV (safety case) and Section V-B (liveness case).
Section III briefly describes the methodology used in these
unsoundness examples.

III. OUR METHODOLOGY

The structure we use for compositional assume-guarantee
reasoning is illustrated in Fig. 3 for interconnected modules
A and B. It uses an SVA bind to hook a monitor module to
the interface between the modules. The model checking setup
for A black-boxes B and vice versa. Properties are written
in the monitor module using a naming convention where the
name of the property indicates which module is expected to
contain the guaranteeing logic for the property. When running
the setup with A as the DUT, the properties in the monitor with
A expected to be guaranteeing logic are used as SVA asserts,
while the properties expected to be guaranteed by B are used
as SVA assumes. For example, the property named A foo is
used as an assertion for A and an assumption for B. If the
properties asserted on A and B do not fail in their respective
setups, it is claimed (possibly unsoundly) that the properties
hold for the composed system up to the minimum bounded
proof depth achieved. This structure implements the approach



described in Section II-D. It is unsound to use this structure
for composing liveness properties (refer to Section V-B).

Note that for reset, we (and tools) assume that the hardware
logic resets to a state consistent with 3-valued simulation. Our
SVA assumptions are disabled during the reset analysis phase.

IV. DEADENDS AND IMPACT OF TRIMMING DEADENDS

Writing constraints2 is often a challenging and time-
consuming endeavor. Over time, users of formal verification
tools have developed their own guidelines to converge on a
“good” set of constraints. Some different guidelines are:
• Begin with the environment as under-constrained as pos-

sible, so you avoid missing bugs by accidentally over-
constraining the setup.

• Begin with an over-constrained setup, to minimize false
failures and avoid inefficient use of designer debug time.

• Avoid writing constraints on the outputs or on internal
signals of the DUT.

• If possible, write constraints as implications with the
constrained input appearing in the consequent of the
implications.

• Avoid dead-ends.

A. Intentional dead-ends

Dead-ends are artifacts of using constraints. In any RTL
design, without any constraints, any sequence of input values is
permitted (and the design will produce some output, no matter
what the input sequence is). In the presence of constraints,
however, we can have permissible finite sequences of input
values that cannot be extended any further if every choice of
the next input value violates at least one constraint. Dead-ends
are recursively defined as states from which either no transition
is possible (0-cycle dead-ends), or the only transitions are to
states that are dead-ends (multi-cycle dead-ends).

The SystemVerilog standard [7] does not mandate what the
tools should do with dead-ends, and unfortunately, different
commercial tools treat dead-ends differently – some tools
never trim dead-ends (i.e. a finite trace is considered a legal
counter-example to a safety property even if it ends in a dead-
end) unless explicitly instructed by the user, whereas other
tools trim dead-ends, and sometimes they trim 0-cycle and
1-cycle dead-ends, but not other dead-ends!

The above-mentioned guideline of writing constraints care-
fully to avoid dead-ends, is religious, and different opinions
exist. Sometimes the process of avoiding dead-ends can make
the code less intuitive or less readable. Consider a design with
one input a, and where a should be constrained such that it is
never asserted in three consecutive cycles, nor deasserted in
three consecutive cycles. One popular method of implementing
constraint models is through state machines. The state machine
in Fig. 4 can be used to implement this constraint via the
following code:

2In the following sections, we will use the word constraints to refer to
assumptions, because the use of constraints as well as under-constraints and
over-constraints is more popular in commercial tools.

000start

101

001

110

010

111

a

¬a

a

¬a

a

¬aa

¬a

a ¬a

a ∨ ¬a

Fig. 4. Constraint implemented using a state machine

no_000_111_c: assume property(
@(posedge clk) disable iff(!rstn)

sm != 3’b111
);

The state 111, the error state, is a dead-end. Using the
code above, the user intends for the tool to remove any input
sequences that will cause the state machine to go to this error
state. Consider a 5-cycle long input sequence 0·1·0·0·0, which
violates the desired constraint that a should not be deasserted
for 3 consecutive cycles, causing the state machine to arrive in
state 111 in the 6-th cycle. If some design assertion fails on the
5-th cycle on this input sequence, the questions is whether that
failure is a legal counter-example or not. Likely, the author of
this constraint code considers that sequence illegal, and would
not be happy with the false failure. We think that might be
the reason why some tools trim dead-ends, perhaps in response
to such seemingly reasonable expectations. In fact, using the
same state machine, coding constraints to avoid any dead-ends
in the first place would require code like the following:

no_000_c: assume property(
@(posedge clk) disable iff(!rstn)

(sm == 3’b010) |-> a
);
no_111_c: assume property(
@(posedge clk) disable iff(!rstn)

(sm == 3’b110) |-> (!a)
);

This is more verbose than the previous code, and one can
imagine it being even more so, if there were more arcs to the
error state.

B. Compositional reasoning with dead-ends

Even though it might seem reasonable for tools to trim
dead-ends, we show a serious problem that can happen during
compositional reasoning due to this.

Consider modules A and B shown in Fig 5. B receives
packets sent by A, buffers them in a FIFO structure which
is 8 entries deep, and then sends the packets downstream.
A is responsible for making sure that it does not send more
packets than B can hold, while B is responsible for notifying A
when packets are being drained from the FIFO. The interface
signals depicted in the figure show a simplified view of the
flow control used in the actual design – A sets signal push



push

data

pop

A B

8

Fig. 5. A sends packets to B. B buffers the packets in a FIFO of size 8.

when valid data is sent and B uses signal pop to indicate
when an entry has been dequeued from the FIFO.

The checks that the FIFO does not overflow or underflow
are implemented using a counter ctr in the interface monitor
as follows:

logic [3:0] ctr;
always @(posedge clk or negedge rstn)
begin

if (!rstn)
ctr <= 0;

else
ctr <= ctr + push - pop;

end

A_no_overflow: assert property(
@(posedge clk) disable iff(!rstn)

ctr + push <= 8
);

B_no_underflow: assert property(
@(posedge clk) disable iff(!rstn)

pop <= ctr
);

Since ctr is 4-bit wide, an underflow makes it wrap around
to 15. Suppose the design has a bug where B sends pop when
ctr is 0, but this bug can only happen when push is 0. When
this failure of B no underflow happens, ctr will have the value
15 in the next cycle and that will cause A no overflow to
fail. Since A no overflow is used as an assumption when
checking B no underflow on B, the failure of B no underflow
is witnessed only by 0-cycle dead-end traces.

If the user enables the tool setting to hide failure traces that
cannot be extended by at least one more cycle, or if the tool
trims dead-ends by default, then the tool will trim all failures
of B no underflow and report it as proven.

We recommend implementing constraints so dead-ends are
avoided altogether, even if that makes the code more verbose,
as in Section IV-A. For the current example, one way to avoid
the dead-ends is to rewrite the A no underflow property as:

A_no_overflow: assert property(
@(posedge clk) disable iff(!rstn)

(ctr == 8) |-> !push
);

The above approach to removing unintentional dead-ends is
reactive. We would instead like the tools to support a check
that the formal testbench permits no dead-ends, and if the
check fails, to produce a finite witness ending in a dead-end.

Write Address (AW)
Write Data (W)

Read Address (AR)

Write Response (B)
Read Data (R)

AXI4
Master

AXI4
Slave

Fig. 6. ARM AMBA AXI4 interface

V. COMPOSITIONAL PROOFS OF FORWARD PROGRESS

We describe a system we have seen where a deadlock
may be missed in the process of compositional proofs, if the
properties are expressed as liveness properties.

A. Liveness syntax and semantics in SystemVerilog 2009

Before going on to describe the missed deadlock, we want
to alert the reader that the SystemVerilog semantics adopted
in 2009 (IEEE Standard 1800-2009 [7]) significantly change
the meaning of property expressions like the one below:

a |-> ##[0:$] b

Before 2009, this syntax was used to express the property
that if a is true, eventually b must be true [1]. However, with
the change in the standard, the property expression written
above is equivalent to true, even if a and b are primary
inputs with no constraints on them! This was a surprise to the
authors, and given that tools do not typically warn the users
that such property expressions are very likely not doing what
the user intended, we consider this very dangerous.

In contrast, the tools do error out on a property expression
like the one below which is deemed illegal:

a |-> eventually b

The safer way to express liveness in SystemVerilog 2009 is
using syntax like the following:

a |-> s_eventually b

B. AXI4 deadlock missed while composing liveness properties

This design3, a simplified version of a real-system design,
is based on the popular ARM AMBA AXI4 on-chip interface
standard [8]. The AXI4 standard connects a master to a slave
via five asynchronous channels (Fig. 6): Write Address (AW),
Write Data (W), Read Address (AR), Write Response (B) and
Read Data (R). The standard assumes a synchronous clock
ACLK.

The Write Address and Write Data transactions are re-
sponded by a single-beat Write Response (B) that indicates
whether the write succeeded without errors, or not. Two
important signals in this B channel are BVALID and BREADY.
BVALID indicates that the slave is sending the write response
on this cycle, and BVALID stays asserted until the master

3The RTL of our simplified design is available at
http://www.oskitechnology.com/wp-content/uploads/2015/09/fmcad15.tar.gz



acknowledges the response with BREADY. Similarly, the Read
Data (R) channel is used to send the read response, which
includes the read data. Besides the read data itself, three
important signals in the R channel are RVALID, RLAST and
RREADY. RVALID is asserted on each cycle the slave is
sending the read data, and since the read could be a burst
read, RLAST is used to indicate whether the current beat of
data is the last beat. Like with the B channel, the ready signal
RREADY is used by the master to indicate to the slave that it
has accepted the current beat – until that happens, the slave is
required to hold it values of RVALID, RLAST and read data.

To describe the deadlock situation, it is convenient to
assume that each read is either 1 or 2 beats, no longer. We
will only need to look at the B and R channels. Two AXI4
properties will participate in this deadlock, one master property
(M) and one slave property (S):

1) master property M: once the master receives BVALID,
eventually it must assert BREADY

2) slave property S: once the slave sends RVALID with
RLAST deasserted (i.e. not for the last beat) and it is
accepted by the master which asserts RREADY, eventually
the slave must send RVALID with RLAST asserted

These two properties can be implemented in SystemVerilog
2009 as the following liveness properties:

property master_liveness_bready;
@(posedge aclk) disable iff (!aresetn)
(bvalid && !bready) |->

s_eventually bready;
endproperty

property slave_liveness_rlast;
@(posedge aclk) disable iff (!aresetn)
(rvalid && !rlast && rready) |->

s_eventually (rvalid && rlast);
endproperty

The AXI4 protocol allows the B and R channels to be
completely decoupled from each other. However, to optimize
resources or area, some master or slave may choose to share
a FIFO for both the B and R responses. We will call such a
device a serializing device.

The deadlock happened because a serializing master was
connected to a serializing agent. This deadlock scenario is
depicted in Fig. 7. In the simplified version of the deadlock, the
serializing master has a 2-deep FIFO that stores the B and R
responses. For the R responses, the master needs to receive the
entire read response (whether it is 1 beat or 2 beats), before it
dequeues the read response from the queue. For design-specific
reasons, the master processes the requests in order – so if a B
response arrives later than a previous R response, the prior R
response must be processed before the B response is accepted
by asserting BREADY. Similarly, the serializing slave also has
a 2-deep FIFO that stores the B and R responses that are
queued up to be sent to the master. For the deadlock to happen,
we have three transactions: a Read Response R1 composed of
two beats R1.F and R1.L, and two Write Responses B1 and
B2. The slave decides to send R1.F, followed by B1, followed

RREADY
RLAST

RVALID

BREADY
BVALID

AXI4
Master

R1.F head

B1 tail

AXI4
Slave

B2 head

R1.L tail

Fig. 7. AXI4 system deadlock

t0 t1 t2 t3 t4

aclk

bvalid

bready

rvalid

rlast

rready

Fig. 8. Deadlock failure in the composed design (last 1 cycle loops forever)

by B2, followed by R1.L. This results in a deadlock shown in
Fig. 7: the master does not assert BREADY for B2, because it
is waiting for R1.L. The slave will not send R1.L, until B2 is
dequeued first, causing the deadlock.

In fact, if the model checking setup has the DUT as the
entire system containing both the master and the slave RTL,
each of the two liveness properties fails, with infinite-length
counter-examples showing the deadlock (Fig. 8 shows one of
these two failures). The reader may observe that the deadlock
can be avoided by forcing either the master or the slave to be
non-serializing, and in that sense, it is arguable if the deadlock
is due to a bug in the master or in the slave!

However, the situation becomes interesting when we use
compositional reasoning. In the real system, the master and
slave modules were large enough (and designed by different
RTL designers) that it was important to verify the modules sep-
arately. We wanted to prove the property M on the master, and
the property S on the slave. Since each module is serializing,
and depends on fairness constraints from the other, it seems
natural to want to prove M on the master while assuming S;
and conversely, to prove S on the slave while assuming M. The
methodology described in Section III was used to carry out this
compositional argument. An expert reader may realize at this
point that each of these liveness checks may now actually pass.
In fact, that is exactly what happens! A naive user might then
incorrectly conclude that M and S are true on the composed
system and miss the deadlock bug.

When using the methodology of Section III, the proof
decomposition attempted is to prove G(M) ⇒ G(S) on the
slave and G(S) ⇒ G(M) on the master. Suppose it happens
that whenever S is false for the slave, property M must



also necessarily be false somewhere further along the same
trace. Then if we assume G(M) when proving G(S), we will
no longer see any failures for G(S).

Suppose we had instead tried to prove G(M ⇒ S) on the
slave and G(S ⇒M) on the master. This proof decomposition
would be equivalent to checking true B (M ⇒ S) on
the slave and true B (S ⇒ M) on the master. For this
decomposition, we cannot use McMillan’s rule to infer that
G(M∧S) holds for the composed design, because the implied

ordering graph would be cyclic M S

(Note that trueB p is equivalent to ¬(trueU¬p) which
can be rewritten as ¬(F¬p) and then as Gp.)

C. Using liveness properties safely with McMillan’s rule

To confirm that we cannot miss the deadlock when apply-
ing McMillan’s circular compositional rule with the liveness
properties M and S, we ran the four checks listed below:

i. on the master, check (M ∧ S) B S
ii. on the master, check (M ∧ S) B (M ⇒ S)

iii. on the slave, check (M ∧ S) B S
iv. on the slave, check (M ∧ S) B (M ⇒ S)

All the above checks fail, implying that all attempts to apply
McMillan’s circular compositional rule to infer G(M∧S) will
involve a failing check. Hence, the user will not be led to the
incorrect conclusion that there is no deadlock.

For reference, the SVA implementation is shown below:

wire mlhs = (bvalid && (!bready));
wire mrhs = bready;
wire slhs = (rvalid && (!rlast) && rready);
wire srhs = (rvalid && rlast);
reg aresetn_d;
always @(posedge aclk) begin

aresetn_d <= aresetn;
end

property m;
(mlhs |=> s_eventually mrhs);

endproperty

property s;
(slhs |=> s_eventually srhs);

endproperty

property T(e);
@(posedge aclk) disable iff (!aresetn)

e;
endproperty

property F(p);
!aresetn_d |-> (p);

endproperty

property K(l,r);
not ((l) s_until (not (r)));

endproperty

chk0_s: // most constrained check
assert property (
T(F(K(m and s,s)))

);

t0 t1 t2

aclk

aresetn d

mlhs

mrhs

slhs

srhs

Fig. 9. Failure for chk0 s on the slave (last 1 cycle loops forever). The same
trace also shows chk0 m s failing.

chk0_m_s: // most constrained check
assert property (

T(F(K(m and s,m implies s)))
);

The failure trace for chk0 s on the slave is shown in Fig. 9
and shows the property s is false in the first cycle. Since
property m is true in the first cycle, the same trace is also a
failure trace for chk0 m s on the slave.

For sake of completeness, it may be noted that the only
checks that do not fail (and get proven) are the following:

i. on the master, check (M ∧ S) BM
ii. on the master, check (M ∧ S) B (S ⇒M)

iii. on the master, check S BM
iv. on the master, check S B (S ⇒M)

D. Using safety properties to express forward progress

Next, we explore the use of safety properties for compo-
sitional reasoning about forward progress properties. Users
are often divided about their preference for using liveness
versus safety properties to prove forward progress or absence
of deadlocks [9]. Liveness is usually more elegant, although
it may require some iterations to identify appropriate fairness
constraints. Safety properties can be used by picking a design-
specific constant to require the consequent to be satisfied
within this constant number of cycles, but it may need some
iterations to figure out the value of the constant.

For the example as described previously, the master and
slave properties can be written as the following safety variants:

property master_safety_bready;
@(posedge aclk) disable iff (!aresetn)

(bvalid && (!bready)) |->
##[1:‘B_TIMEOUT] bready;

endproperty

property slave_safety_rlast;
@(posedge aclk) disable iff (!aresetn)

(rvalid && (!rlast) && rready) |->
##[1:‘R_TIMEOUT] (rvalid && rlast);

endproperty

Of course, the two defined constants B TIMEOUT and
R TIMEOUT must be selected to be large enough that



t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

aclk

bvalid

bready

rvalid

rlast

rready

Fig. 10. Slave failure (B TIMEOUT=8; R TIMEOUT=8)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

aclk

bvalid

bready

rvalid

rlast

rready

Fig. 11. Master failure (B TIMEOUT=8; R TIMEOUT=12)

desirable design behaviors are not flagged as errors. When
these properties are checked on a system composed of the
master and slave, a value of 8 for each of the two constants
shows the deadlock scenario. The counter-example trace is
very similar to that in Fig. 8, except that instead of the lasso
at the end, the trace is stretched to about 8 extra cycles.

Further, as discussed in Section V-B, for this to work
in practice on real-sized designs, we need to prove these
two properties separately on the master and slave RTL mod-
ules. Choosing constant values of B TIMEOUT = 8 and
R TIMEOUT = 8, if we assume slave safety rlast, the
master property master safety bready passes on the master
RTL module. However, doing the reverse, while assuming
master safety bready , the slave property slave safety rlast
fails with the waveform in Fig. 10.

The root cause of the failure appears to be that the
master might be responsible for this since it is not accept-
ing the second BVALID in the trace with a corresponding
BREADY. So, the user is tempted to re-run by increasing
R TIMEOUT relative to B TIMEOUT. Choosing constant
values of B TIMEOUT = 8 and R TIMEOUT = 12,
indeed, the slave property slave safety rlast passes while
assuming master safety bready. However, now the master
property master safety bready fails on the master RTL with
the waveform in Fig. 11.

In fact, one can try all possible values of B TIMEOUT
and R TIMEOUT , and observe that no matter which val-
ues are chosen, either the master RTL or the slave RTL
or both show a failure. Table I shows the results for

TABLE I
ASSUME-GUARANTEE RESULTS WITH SAFETY PROPERTIES

master slave
B TIMEOUT R TIMEOUT result result

8 ≤ 9 Pass Fail
8 10 or 11 Fail Fail
8 ≥ 12 Fail Pass

B TIMEOUT = 8, and similar results are seen for other
values of B TIMEOUT . This is a good result, because unlike
the liveness situation (Section V-B), a naive user does not have
to take on the burden of avoiding the circularity pitfall.

VI. CONCLUSION

While doing compositional reasoning, users need to be
careful about avoiding circularity. They need to be careful
that the properties combined with the hardware design do not
create zero-delay loops. If tools trim dead-ends, compositional
proofs may not work, unless constraints are written in a
specific coding style. Liveness properties with compositional
reasoning are dangerous unless users have taken care to order
properties, or otherwise use McMillan’s method accurately.

We hope the examples and our experiences are useful for
other users practicing formal verification on hardware designs.

ACKNOWLEDGMENT

The authors would like to thank Prashant Aggarwal and
Arun Khurana for experimenting and sharing their results on
some design examples we discussed in this paper, and Jin
Zhang for her review on an earlier version of the paper. We
also thank the reviewers for their useful comments.

REFERENCES

[1] F. Haque, J. Michelson, and K. Khan, “The art of verification with
SystemVerilog assertions,” Verification Central, 2006.

[2] K. L. McMillan, “Circular compositional reasoning about liveness,” in
Advances in Hardware Design and Verification: IFIP WG10.5 Interna-
tional Conference on Correct Hardware Design and Verification Methods
(CHARME 99), volume 1703 of Lecture Notes in Computer Science.
Springer-Verlag, 1999, pp. 342–345.

[3] K. S. Namjoshi and R. J. Trefler, “On the completeness of compositional
reasoning,” in Computer Aided Verification. Springer, 2000, pp. 139–153.

[4] N. Amla, E. A. Emerson, K. Namjoshi, and R. Trefler, “Abstract patterns
for compositional reasoning,” in In Concurrency Theory (CONCUR),
LNCS 2761. SpringerVerlag, 2003, pp. 423–448.

[5] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[6] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,”
Distributed computing, vol. 2, no. 3, pp. 117–126, 1987.

[7] “IEEE Standard for SystemVerilog–Unified Hardware Design, Specifica-
tion, and Verification Language,” IEEE STD 1800-2009, pp. 1–1285, Dec
2009.

[8] ARM Ltd., “AMBA AXI and ACE protocol specification, issue D,” 2011.
[9] B. Krishna, J. Michelson, V. Singhal, and A. Jain, “Liveness vs safety–a

practical viewpoint,” in Hardware and Software: Verification and Testing.
Springer, 2012, pp. 80–94.


