
Verification of Cache Coherence Protocols wrt. Trace Filters

Parosh Aziz Abdulla∗, Mohamed Faouzi Atig∗, Zeinab Ganjei†, Ahmed Rezine† and Yunyun Zhu∗
∗Department of Information Technology

Uppsala University
Uppsala, Sweden

†Deptartment of Computer and Information Science
Linköping University
Linköping, Sweden

Abstract—We address the problem of parameterized verifica-
tion of cache coherence protocols for hardware accelerated
transactional memories. In this setting, transactional memo-
ries leverage on the versioning capabilities of the underlying
cache coherence protocol. The length of the transactions, their
number, and the number of manipulated variables (i.e., cache
lines) are parameters of the verification problem. Caches in
such systems are finite-state automata communicating via
broadcasts and shared variables. We augment our system
with filters that restrict the set of possible executable traces
according to existing conflict resolution policies. We show that
the verification of coherence for parameterized cache protocols
with filters can be reduced to systems with only a finite number
of cache lines. For verification, we show how to account for the
effect of the adopted filters in a symbolic backward reachability
algorithm based on the framework of constrained monotonic
abstraction. We have implemented our method and used it to
verify transactional memory coherence protocols with respect
to different conflict resolution policies.

1. Introduction

The behavior of many types of systems can be described
using one or more parameters such as the number of
processes, or the number of variables that may be used
in a given run of the system. Parameterized systems are
ubiquitous and serve as natural models of mutual exclusion
algorithms, bus protocols, distributed algorithms, telecom-
munication protocols, and cache coherence protocols. The
goal of parameterized verification is to prove (or refute) the
correctness of the system for all values of the parameters.
For instance, in a cache coherence protocol, copies of a
variable may exists in an arbitrary number of caches. It is
then relevant to verify exclusive ownership of the cache line
regardless of the number of caches in a particular session
of the protocol. The state space of a such a system is
infinite since we are dealing with an unbounded number
of instances, namely one for each size.

Several techniques for the verification of parameterized
systems have been developed during the last two decades
[1], [2], [3], [4], [5]. One approach, related to this paper,

is monotonic abstraction [6]. It defines an abstraction that
allows to apply the framework of well quasi-ordered systems
(wqo for short) [7] and based on backward reachability anal-
ysis in order to perform parameterized verification. Mono-
tonic abstraction has been successfully applied to several
non-trivial examples of mutual exclusion, leader election,
and cache coherence protocols.

This paper addresses parameterized verification of trans-
actional memory cache coherence protocols. Such protocols
are not expected to guarantee coherence under arbitrary se-
quences of transitions. However, coherence should be guar-
anteed for all sequences that respect the transactional mem-
ory. Transactional memories usually make use of conflict
tables in order to track read/write and write/write conflicts
at a cache line granularity. Detected conflicts can be resolved
according to different policies. For instance, in an eager
policy, the conflict is resolved by aborting a transaction
as soon as the conflict is detected. In a lazy policy, the
resolution can wait until the commit before deciding on
which transaction to abort.

Since the numbers of transactions, caches and cache
lines are arbitrary, we need to consider systems that are
parameterized in multiple dimensions. Furthermore, conflict
policies can in general not be definable by finite-state au-
tomata since they quantify over the sets of threads and vari-
ables both of which are unbounded. Hence, parameterized
verification of such systems is beyond the applicability of
existing techniques. In this work, we present for the first
time a method for automatic verification of cache coherence
in the presence of transactional memories. We capture the
conflict resolution mechanism, one for each policy, using so
called filters, each of which is a set of forbidden “patterns”.
All traces of the system that do not match the patterns are
allowed to occur. For instance, an eager conflict resolution
will forbid traces where two different transactions continue
running although a write/write conflict has been detected.
Given a filter, we check reachability for the cache coherence
protocol under the constraints imposed by the filter. For
this we proceed in two steps. First, we give a small model
theorem establishing that if coherence is violated then it
is also violated using only a fixed small number of cache
lines. Then we perform backward reachability analysis by

modifying classical monotonic abstraction by accounting for
information from the filters in order to exclude traces that
are eliminated by the conflict resolution mechanism. We
show that this is possible for the class of filters we use,
and establish termination of the analysis.

We have implemented our approach and managed to
show, for arbitrarily many caches on which arbitrary trans-
actions are repeatedly run, that transactional memories such
as FlexTM and DynTM with their proper cache coherence
protocol extensions cannot violate coherence.

Related Work. To the best of our knowledge, this is the
first work that considers parameterized verification of cache
protocols in the presence of conflict policies.

Regular model checking [8], [9] performs parameterized
verification by encoding the set of configurations using
finite-state automata. The method has been augmented with
techniques such as widening [10], [11], abstraction [12], and
acceleration [13].

There are numerous techniques less general than regular
model checking, but that are lighter and more dedicated
to the problem of parameterized verification. The idea of
counter abstraction is to keep track of the number of pro-
cesses which satisfy a certain property [14], [15], [16], [17].
In general, counter abstraction is designed for systems with
unstructured or clique architectures, but may be used for
systems with other topologies too [18].

Several works reduce parameterized verification to the
verification of finite-state models. Among these, the invisible
invariants method [19], [20] and the work of [21] exploit
cut-off properties to check invariants for mutual exclusion
protocols.

Monotonic abstraction [6], [22], [23] combines regular
model checking with abstraction in order to produce systems
that have monotonic behaviors wrt. a wqo on the state-space.

Methods relying on dynamic detection of cutoff condi-
tions are described in [1] and [24].

2. Motivating example

We use a hardware accelerated transactional memory
in order to describe the different steps we use to establish
coherence in the presence of execution filters.

An example of a hardware accelerated transactional
memories. FlexTM [25] is a hardware accelerated transac-
tional memory that orchestrates the execution of concurrent
transactions by only allowing a subset of the possible traces
(this subset includes the strictly serializable ones [26]). A
finite but arbitrary number of caches participate in such
executions. At most one transaction is run on each cache.
Transactions can access arbitrarily many cache lines. The
lines that do not fit in the caches are handled in software,
and hence do not affect the cache coherence. We assume, to
simplify the presentation, that the caches are large enough
to hold all lines accessed by the transactions. Each transac-
tion consists in some arbitrary sequence of read and write

instructions on an arbitrary number of cache lines1. At
any moment, transactions are either pending, committed or
aborted. FlexTM tracks all transactions and might decide to
abort a transaction based on some conflict resolution policy
(e.g., lazy or eager). A transaction can therefore be aborted
at any time, in which case a new arbitrary transaction might
be started.

Like other hardware accelerated transactional memories
[25], [27], FlexTM builds on the inherent versioning capabil-
ities of the underlying cache coherence protocol. In the case
of FlexTM, the MESI [28] protocol is extended. Schemati-
cally, FlexTM makes use of an extension of the MESI cache
protocol, called TMESI [25] in order to maintain tentative
versions of the accessed cache lines. In this protocol, a cache
line can be in one of the states in {I, S, E, M, TI, TMI}. The
four first states are the usual MESI states: Invalid, Shared,
Exclusive and Modified. The last two ones are FlexTM
additions. TMI and TI respectively correspond to a tentative
written copy or to a read copy that is threatened by a
tentative write by another transaction.

Table 1 depicts a run of two transactions reading and
writing to cache lines l and l′. In the first transition (t1), a
read instruction from an invalid cache line (state I) results
in an exclusive state E. We will say that the cache line
“takes” the transition and changes its state from I to E.
This transition is enabled if the state of the same line in all
other caches is I. This appears in the transition because we
forbid all other states using f [S, E, M, TI, TMI].

The second transition (t2) is also a read. Here, a cache
line that takes the transition moves from the invalid state to
the shared one. This transition requires that at least another
cache has the same line at a shared, exclusive, modified
or threatened state (hence the r[S, E, M, TI]). In addition, the
transition is not enabled if another cache associates the same
line to TMI (hence the forbid f [TMI]). If enabled, the transi-
tion t2 performs a broadcast where it moves all exclusive or
modified states to shared (hence the b[(E, S)(M, S)]). Except
for the line firing the transition, a broadcast keeps all non
mentioned lines unmodified. For instance, in this transition,
the states of all I lines remain unchanged.

Transitions t1, t2, t3, t4 are said to be horizontal tran-
sitions because they focus on a particular cache line in all
caches. More concretely, a cache line that “takes” such a
transition changes state if there is at least another cache
where the same line is at a state specified by the r[] part
and if none of the other caches associates the same line
to one of the states mentioned in f []. In this case, the
line that takes the transition changes its state and moves the
state of the same line in all other caches as described in the
broadcast part b[].

Some transitions are said to be vertical transitions when
they focus on all the lines of the same cache (as opposed
to the same line in all caches). In FlexTM, commit and
aborts correspond to vertical transitions. When a transaction
is aborted (t5), all lines in the cache running the transaction

1. Of course, transactions read and write variables, but as far as the cache
protocol is concerned, these are tracked at a cache line granularity.

t1 =

(
I

r[] f [S,E,M,TI,TMI] b[]−−−−−−−−−−−−−−→
read

E

)

t2 =

(
I

r[S,E,M,TI] f [TMI] b[(E,S)(M,S)]−−−−−−−−−−−−−−−−−−→
read

S

)

t3 =

(
I

r[] f [] b[(S,I)(E,I)(M,I)]−−−−−−−−−−−−−−−→
write

TMI

)

t4 =

(
I

r[TMI] f [] b[]−−−−−−−−−→
read

TI

)

t5 =

(
• b[(TMI,I)(TI,I)]−−−−−−−−−→

abort
•
)

t6 =

(
• b[(TMI,M)(TI,I)]−−−−−−−−−→

commit
•
)

ci cj
: :

l ·· I ·· I ··
l′ ·· I ·· I ··

: :
t1 ↓
: :

l ·· I ·· I ··
l′ ·· E ·· I ··

: :
t2 ↓

: :
l ·· I ·· I ··
l′ ·· S ·· S ··

: :
t3 ↓

: :
l ·· I ·· TMI ··
l′ ·· S ·· S ··

: :
t4 ↓
: :

l ·· TI ·· TMI ··
l′ ·· S ·· S ··

: :
t5 ↓
: :

l ·· I ·· TMI ··
l′ ·· I ·· S ··

: :
t6 ↓

: :
l ·· I ·· M ··
l′ ·· I ·· S ··

: :

TABLE 1: A possible FlexTM [25] run is depicted to the right. At least two transactions are running on the caches ci and
cj . In this execution, the ci transaction tmi reads line l′, the cj transaction tmj reads line l′ and writes line l, then tmi

reads l and is aborted by FlexTM before tmj commits. This results in the TMESI transitions t1, . . . t6 listed to the left.

that is to be aborted are invalidated. In a commit transition
(t6) all TMI lines are changed to M, and all TI lines are
invalidated.

Coherence for transactional memory cache protocols. It
turns out that cache coherence is violated if no restrictions
are imposed on the sequences of horizontal (i.e., read and
write) and vertical (i.e., abort and commit) transitions. For
instance, assume that two transactions start running on
caches c1 and c2 from a cache configuration where the line l
is mapped to I in both caches (written (I, I)). The sequence
(write, l, c1)(write, l, c2)(commit, c1)(commit, c2) where
both transactions write the same l line and commit would
result in executing transitions t3, t3, t6 and t6 by, respec-
tively, caches c1, c2, c1 and c2. This sequence translates, for
the l cache line, into the following states:

(I, I)
write,l,c1−−−−−−→ (TMI, I)

write,l,c2−−−−−−→ (TMI, TMI)

(TMI, TMI)
commit,c1−−−−−−−→ (M, TMI)

commit,c2−−−−−−−→ (M, M)

Coherence is violated in the last cache configuration.
This is because the same cache line is mapped to the
modified state M in two different caches. Intuitively, such
configurations are bad because it is not clear which version
to use if a transaction was to read a value as two possibly
different versions coexist.

As it happens, FlexTM forbids such bad traces, based
on some conflict resolution policy, by aborting transactions
if certain conflicts arise.

In this work, we aim to show coherence in the presence
of conflict resolution policies. Observe that the numbers of
transactions, caches and cache lines are arbitrary. In other
words, we are tackling coherence in the presence of conflict
resolution policies for systems that are parameterized in the
number of transactions, caches and cache lines.

Capturing transactional memory policies. FlexTM makes
use of conflict tables in order to track read write and write
write conflicts at a cache line granularity. Detected conflicts
can be resolved according to different policies. For instance,
in an eager policy, the conflict is resolved by aborting a
transaction as soon as the conflict is detected. In a lazy
policy, the resolution can wait until the commit before
deciding on which transaction to abort.

We are interested in cache coherence in this work. We
capture the conflict resolution mechanism using what we
call filters. These consist in simple “patterns” that are going
to be forbidden by the conflict resolution mechanisms. All
traces that do not match the patterns are allowed. There
will be simple patterns for each conflict resolution policy.
Soundness requires that the patterns we use do not eliminate
traces allowed by FlexTM. For instance, an eager conflict
resolution will forbid traces where two different transactions

continue running although a write write conflict has been
detected.

Given such filters, we check reachability on the product
of the cache coherence protocol and the filter and establish
coherence for arbitrary transactions running on arbitrarily
many caches and involving arbitrarily many cache lines.

3. Preliminaries

Let N denote the set of natural numbers. Given two
natural numbers i, j ∈ N, we use [i, j] to denote the set
{k ∈ N | i ≤ k ≤ j}. For sets A and B, we use f : A 7→ B
to denote that f is a function that maps any element from
A to an element of B. Let [A 7→ B] denote the set of all
functions from A to B. For a ∈ A and b ∈ B, we use
f [a ← b] to denote the function f ′ where f ′(a) = b and
f ′(a′) = f(a′) for all a′ 6= a. For a set A′ ⊆ A, we use
f(A′) to denote the set {f(a) | a ∈ A′}.

For a set Σ, we use Σ∗ to denote the set of finite words
over Σ. We use ε to denote the empty word. For a word w ∈
Σ∗, we use |w| to denote its length (observe that |ε| = 0).
For 1 ≤ i ≤ |w|, we use w[i] to denote the letter at position
i in w.

Let Θ be a subset of Σ. Given two words w and w′,
we define w vΘ w′ to denote that there is a function h :
[1, |w|] 7→ [1, |w′|] such that: (1) for every i, j ∈ [1, |w|]
such that i < j, h(i) < h(j), (2) for every i ∈ [1, |w|],
w′[h(i)] = w[i], and (3) {i |w′[i] ∈ Θ} ⊆ h([1, |w|]).

4. Parameterized Cache Protocols with Filters

In this section, we introduce a formal model for pa-
rameterized cache protocols with filters, and define their
coverability problem.

4.1. Parameterized Cache Protocols

A parameterized cache protocol consists of an arbitrary
(but finite) number of caches. Each cache is a finite-state
system manipulating an arbitrary (but finite) set of cache
lines. Each cache can perform two kinds of operations: (1)
vertical actions that only affect the states of the lines of one
single cache, and (2) horizontal actions that affect the states
of the same line but for different caches.

Formally, a parameterized cache protocol P is a tuple
(Q,A,∆, qinit) where Q is a finite set of states, A is a
finite set of actions partitioned into two sets: the set of
vertical actions Aver and the set of horizontal actions Ahor,
qinit ∈ Q is the initial state, and ∆ is a finite set of
transitions. A transition can be of one of the following

two forms: (1) q
r[Q1] f [Q2] b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−−−−−−−−−→
ahor

q′ or (2)

•
b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−→
aver

• where: (i) q, q′ in Q are cache

line states, (ii) aver is a vertical action in Aver and ahor
is a horizontal action in Ahor, (iii) Q1 ⊆ Q is the set
of existentially required states, (iv) Q2 ⊆ Q is the set of

universally forbidden states, and (v) the sequence of pairs
(q1, q

′
1), . . . , (qm, q

′
m) ∈ Q × Q, such that qi 6= qj for all

i 6= j, corresponds to a broadcast.
Let C be a finite set of caches and L be a finite set

of cache lines. We write c to mean a cache in C and l to
mean a cache line in L. A configuration ν over (C,L) is a
mapping ν : C 7→ [L 7→ Q]. We write ν(C,L) to make the
sets of caches and lines explicit. We use cachesOf(ν(C,L))
and linesOf(ν(C,L)) to respectively mean C and L. Let
νinit(C,L) denote the configuration that associates qinit to all
cache lines, i.e., νinit(C,L)(c)(l) = qinit for all c ∈ C and
l ∈ L.

Let Aext
ver = (Aver × C) and Aext

hor = (Ahor × C × L)
respectively be the sets of extended vertical and horizontal
actions over (C,L). Let Aext = Aext

ver ∪ Aext
hor be the set of

extended actions. Given an extended action a of the form
(a, c, l) or (a, c), we let cacheOf(a) mean the associated
cache c.

Let ν and ν′ be two configurations over (C,L). Let a ∈
Aext be an extended action. We use ν a−→(C,L) ν

′ to denote
that one of the following cases holds:

Case 1: a = (a, c) for some vertical action a ∈ Aver and
cache c ∈ C, and there is a transition t ∈ ∆ of the form

•
b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−→
aver

• such that the following conditions
are satisfied:

• For every cache line l ∈ L such that ν(c)(l) = qi
for some i ∈ [1,m], we have ν′(c)(l) = q′i. This
corresponds to a transition resulting from a vertical
action that changes the state of each cache line at qi
to q′i.

• For every cache line l ∈ L such that ν(c)(l) 6∈
{qi|i ∈ [1,m]}, we have ν′(c)(l) = ν(c)(l), i.e., all
the remaining cache lines keep their states.

• For every cache c′ ∈ C such that c′ 6= c, we have
ν′(c′) = ν(c′), i.e., states of lines belonging to other
caches remain unchanged.

Case 2: a = (a, c, l) for some a ∈ Ahor, c ∈ C and
l ∈ L, and there are a transition t ∈ ∆ of the form

q
r[Q1] f [Q2] b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−−−−−−−−−→
a

q′, and a cache c′ ∈ C,
with c 6= c′, such that the following conditions are satisfied:

• ν(c)(l) = q and ν′(c) = ν(c)[l ← q′]. The state of
line l of the cache c changes from q to q′.

• ν(c′)(l) ∈ Q1. This condition corresponds to the
existential requirement. It states that the line l of at
least another cache c′ belongs to Q1.

• ν(c′′)(l) /∈ Q2 for all c′′ ∈ C\{c, c′}. This condition
corresponds to the universal requirement. It states
that none of the lines l belonging to any cache other
than c and c′ is in Q2.

• Any cache c′′ ∈ C \ {c} such that ν(c′′)(l) = qi for
some i ∈ [1,m], will change the state of l according
to ν′(c′′) = ν(c′′)[l ← q′i]. This corresponds to a
horizontal broadcast where the state of the line l in
any other cache is changed from qi to q′i.

• All other lines remain unchanged. In other words,
for all caches c′′ ∈ C \ {c} with ν(c′′)(l) 6∈
{qi|i ∈ [1,m]} we have ν′(c′′) = ν(c′′).

A trace σ ∈ (Aext)∗ over (C,L) is a sequence of
extended actions. We use ν σ−→(C,L) ν

′ to denote that one of
the following two cases hold: (1) σ = ε and ν = ν′, or (2)
there is a sequence of configurations ν0, . . . , νn over (C,L)
such that ν0 = ν, νn = ν′, and for every i ∈ [0, n − 1],
we have νi

ai−−→(C,L) νi+1 with σ = a0a1 · · ·an−1. In this
case, we say that the configuration ν′ is reachable from ν.
Finally we say that the configuration ν′ is reachable if it is
reachable from νinit(C,L).

4.2. Filter Model

Let C be a finite set of caches and L be a finite set of
cache lines. A pattern π over (C,L) is a finite sequence in
(Aext)∗ of extended actions. We define a filter over (C,L)
to be a finite set of forbidden patterns over (C,L).

Let C ′ be a set of caches and L′ be a set of cache
lines. Let σ be a trace over (C ′, L′). Let us assume that
π = a1a2 · · ·an and σ = b1b2 · · ·bm. We say that the
pattern π appears in σ (denoted by σ |= π) if and only if
there are injective functions φ : C 7→ C ′, ψ : L 7→ L′ and
h : [1, n] 7→ [1,m] such that:

• For every i, j ∈ [1, n] such that i < j, h(i) < h(j).
• For every i ∈ [1, n], we have σ[h(i)] =

(ai, φ(ci), ψ(li)) if π[i] is of the form (ai, ci, li) and
σ[h(i)] = (ai, φ(ci)) if π[i] is of the form (ai, ci).

• For every i ∈ [1, n] such that ai is of the form
(ai, ci, li) and there is an index j such that i < j and
cacheOf(aj) = ci, we have bk /∈ (Aver×φ(ci)) for
all h(i) < k < h(j′) with j′ is the minimal index
such that i < j′ and cacheOf(aj′) = ci.

A filter F over (C,L) is a finite set of forbidden patterns
over (C,L). We say that a trace σ over (C ′, L′) is valid with
respect to a filter F if and only if σ 6|= π for all π ∈ F .

4.3. Coverability Problem

Let ν and ν′ be two configurations respectively over
(C,L) and (C ′, L′). Let φ : C 7→ C ′ and ψ : L 7→ L′

be two injective functions. We use ν �(φ,ψ) ν
′ to denote

that for every cache c ∈ C and every line l ∈ L, we
have ν′(φ(c))(ψ(l)) = ν(c)(l). We use ν � ν′ to denote
that there are two injective functions φ : C 7→ C ′ and
ψ : L 7→ L′ such that ν �(φ,ψ) ν

′. Intuitively, this means
that ν (modulo renaming of the caches and lines) is the
restriction of ν′ to the subsets of caches φ(C) ⊆ C ′ and
lines ψ(L) ⊆ L′.

Let P = (Q,A,∆, qinit) be a parameterized cache
coherence protocol and F be a filter over a set of caches C
and a set of lines L. The coverability problem for P with
respect to the filter F and a configuration ν over (C,L),
consists in checking whether there is a configuration ν′ over
(C ′, L′), with ν � ν′, such that νinit(C′,L′)

σ−→(C′,L′) ν
′ for

some trace σ over (C ′, L′) with σ 6|= π for any π ∈ F .

5. Small Model Theorem

In this section, we show that it is possible to restrict the
analysis of the coverability problem for parameterized cache
protocols to the subclass where only finite number of vari-
ables are used. Let P = (Q,A,∆, qinit) be a parameterized
cache protocol. We will first introduce some notations.

Notations. Let C and C ′ be two sets of caches and L and
L′ be two sets of cache lines. Given two injective functions
φ : C 7→ C ′ and ψ : L 7→ L′, we use σ[φ, ψ] to denote the
trace σ′ over (C ′, L′) such that |σ′| = |σ| and for every i ∈
[1, |σ′|], σ′[i] = (a, φ(c), ψ(l)) if σ[i] = (a, c, l), and σ′[i] =
(a, φ(c)) if σ[i] = (a, c). Given a trace τ over (C ′, L′) We
use τ [φ−, ψ−] to denote the set of traces τ ′ over (C,L) such
that τ ′[φ, ψ] v(Aver×φ(C)) τ . Intuitively, τ ′ corresponds to
some trace obtained from τ by only deleting some horizontal
actions and renaming caches and lines.

In the following, we will establish two closure properties
of the considered cache protocols.

Closure property of the cache protocol. Our first property
concerns the parameterized cache protocol. Intuitively, we
show that if a configuration ν′ is reachable and ν′ is larger
than a configuration ν (w.r.t. the ordering �) then ν is also
reachable.

Lemma 1. Let C and C ′ be two sets of caches such that
|C| = |C ′|. Let L and L′ be two sets of cache lines such
that |L| ≤ |L′|. Let ν be a configuration over (C,L) and
ν′ be a configuration over (C ′, L′). If νinit(C′,L′)

σ′−−→(C′,L′) ν
′

for some trace σ′ over (C ′, L′) and ν �(φ,ψ) ν
′ for some

injective functions φ : C 7→ C ′ and ψ : L 7→ L′, then
νinit(C,L)

σ−→(C,L) ν with σ ∈ σ′[φ−, ψ−].

Closure property of the filter. Our second property con-
cerns the filter. We show that if a trace σ′ is valid wrt. a
filter then any trace which is an extended-vertical-actions-
preserving-subword (modulo renaming of the caches) of σ′
is also valid wrt. the filter.

Lemma 2. Let C and C ′ be two sets of caches such that
|C| ≤ |C ′|. Let L and L′ be two sets of cache lines such
that |L| ≤ |L′|. Let φ : C 7→ C ′ and ψ : L 7→ L′ be two
injective functions. Let σ′ be a valid trace over (C ′, L′) with
respect to a given filter F . Then every trace σ ∈ σ′[φ−, ψ−]
is valid with respect to the filter F .

Bounding the number of cache lines. We are now ready to
state our main theorem which is a consequence of Lemma
1 and Lemma 2. Intuitively, we will show that checking the
coverability problem for parameterized cache protocols can
be restricted to instances where the number of cache lines
is bounded.

Theorem 3. Let F be a filter over a set of caches C and a
set of cache lines L. Let νbad be a configuration over (C,L).
Let C ′ be a set of caches and L′ be a set of cache lines. If
νinit(C′,L′)

σ′−−→(C′,L′) ν
′ for some valid trace σ′ with respect

to F and νbad � ν′, then there is a configuration ν over

(C ′, L) such that νbad � ν and νinit(C′,L)
σ−→(C′,L) ν for some

valid trace σ w.r.t. F .

As an immediate consequence of Theorem 3, we can
restrict the coverability problem for parameterized cache
protocols where the set of cache lines is restricted to L.
More formally, we define the restricted coverability problem
as follows: The restricted coverability problem for P wrt. a
filter F and a configuration νbad over a set of caches C and
a set of cache lines L, consists in checking whether there is
a configuration ν over (C ′, L), such that: (1) νbad �(φ,ψ) ν
for some injective functions φ : C 7→ C ′ and ψ : L 7→ L
such that ψ(l) = l for all l ∈ L, and (2) νinit(C′,L)

σ−→(C′,L) ν
for some trace σ over (C ′, L) with σ 6|= π for any π ∈ F .
As a corollary of Theorem 3, we have:

Corollary 4. Let F be a filter over a set of caches C and a
set of cache lines L. Let νbad be a configuration over (C,L).
Then, the coverability problem for P wrt. F and νbad can
be reduced to the restricted coverability problem for P wrt.
F and νbad.

As a consequence of Corollary 4, we will use from now
on the term coverability problem to mean its restricted form.

6. Checking Trace Sensitive Coverability

Assume a cache protocol P = (Q,A,∆, qinit), a set
of forbidden patterns F and a configuration νbad capturing
some violation of cache coherence. Section 5 ensures that it
is enough to check for the existence or absence of F -valid
traces that cover νbad (i.e. violate coherence) on systems
with the same number of cache lines as the number of
lines in linesOf(νbad). Observe that the length of the
transactions and the number of caches (i.e. of concurrent
transactions) is still arbitrary.

In fact, state reachability for any given two counters
Minsky machine can be encoded using a parameterized
cache protocol with a single cache line. The idea is to
capture the value of each counter using the number of caches
having their line at some cache state. Tests for zero are
captured with the forbidding part of horizontal transitions.
Coverability is therefore undecidable even in the case of
a single cache line per cache. We use over-approximated
systems where the analysis is exact and terminates and we
refine the approximation in case of false positives.

The tail recursive procedure checkCov is used to check
coherence. It takes three arguments. A cache protocol P , a
filter F , a configuration νbad and a preorder E on pairs
of configurations and traces. All manipulated configura-
tions have L = linesOf(νbad) lines. The procedure is
invoked with checkCov(P, F, νbad,E0) where (ν, σ) E0

(ν′, σ′) iff there are renamings φ : cachesOf(ν) 7→
cachesOf(ν′) and ψ : L 7→ L such that ν �(φ,ψ) ν

′ and
truncateF (σ[φ, ψ]) v(Aver×φ(cachesOf(ν))) truncateF (σ′)
(see 3, 4.3). The result of truncateF (σ) is defined to be
the longest prefix of σ that does not contain more vertical in-
structions than the number of vertical instructions appearing
in any of the patterns in F . Observe that such a prefix can be

arbitrarily long. The idea is that the traces will be checked
against the filter incrementally while being constructed, so
we only need to check the “freshest” part of it. Intuitively,
(ν, σ) E0 (ν′, σ′) holds if, up to eliminating some caches,
ν and ν′ coincide and the truncateF (σ) sequence can
be obtained from the truncateF (σ′) sequence by deleting
the same caches and some horizontal (but not vertical)
instructions. The idea is that vertical instructions are not
deleted from larger traces because this would not preserve
F -validity. However, considering whole traces without ap-
plying truncateF (σ) would result in a non wqo E0 for
which there is no guarantee of termination even without
refinement [7].

Lemma 5. The preorder E0 is a wqo on{
(ν(C,L), truncateF (σ))|σ ∈ ((Aver × C) ∪ (Ahor × C × L))∗

}
.

Procedure checkCov checks whether an F -valid trace
σ can cover νbad. The procedure tracks pairs of the form
(ν, σ), where ν is a configuration and σ is a trace. Intuitively,
such a pair denotes all pairs (ν′, σ′) that are larger wrt.
the current ordering, i.e. an upward closed set wrt. the
current ordering E. The procedure is a classical working
list algorithm that maintains two sets of pairs, namely the
working set W of pairs that have not been treated yet, and the
visited set V of pairs that have been treated. The union of the
two sets is minimal in the sense that one cannot find a pair
of E-related pairs. Given a pair in W (i.e., that has not been
treated yet), the procedure computes the predecessor image
wrt. each action that would not violate, given the trace in the
pair, the filter F . For this reason, the trace σ that lead from
νbad to the current configuration ν is maintained in each
pair. Notice that the same configuration ν can participate
in two E-unrelated pairs (ν, σ) and (ν, σ′). The procedure

Input: A protocol P = (Q,A,∆, qinit), a filter F , a bad configuration
νbad and a wqo E on pairs of configurations and (Aext)∗

Output: uncoverable or an F -valid trace covering νbad

1 W, V :=
{

(νbad, ε)
}
, {};

2 while W is not empty do
3 remove a (ν, σ) from W and add it to V;
4 if (ν = νinitcachesOf(ν),linesOf(ν)) then
5 if σ is possible in P then return σ;
6 else return checkCov(P, F, νbad, strengthen(E, σ));
7 foreach c ∈ cachesOf(ν) ∪ newCache(cachesOf(ν)) do
8 Σ := {};
9 foreach a ∈ Ahor and l ∈ linesOf(νbad) do add (a, c, l) to Σ;

10 foreach a ∈ Aver do add (a, c) to Σ ;
11 foreach a ∈ Σ do
12 σ′ := aσ;
13 if σ′ |= π for some π ∈ F then continue;
14 Γ := minOfE(preOf(a, upOfE(ν)));
15 foreach ν′ ∈ Γ do
16 if (ν′′, σ′′) 6E (ν′, σ′) for each (ν′′, σ′′) ∈ W ∪ V then
17 remove from W ∪ V each (ν′′, σ′′) s.t. (ν′, σ′) E (ν′′, σ′′);
18 add (ν′, σ′) to W;
19 return uncoverable

Procedure checkCov(P, F, νbad,E)

makes use of the following operations:

1) at line 6, strengthen(E, σ) is invoked in case
the obtained trace σ is a false positive due to
the application of the upward closure. It returns

a stronger ordering E′. The new ordering can be
chosen to be a wqo in case E is a wqo [29], [30].

2) at line 7, newCache(C) returns a singleton c that
is not in the set C of caches (i.e., c 6∈ C).

3) at line 14, upOfE(ν) is the upward closure of ν
wrt. the current ordering E.

4) at line 14, preOf(a,Γ) returns a representation of
the (possibly infinite) set of configurations that can
reach the upward set of configurations Γ in one step
with the action a.

5) at line 14, minOfE(Γ) returns a finite set of con-
figurations that are pairwise E unrelated and such
that each element in Γ is larger than some of them.

Lemma 6. The operations 1-5 are effectively computable.

Assume each E is a wqo and the operations are as stated
above. Termination of each non recursive call to checkCov
is obtained using a wqo argument. Intuitively each call to
checkCov terminates and results in uncoverable, an F -
valid trace, or in another call to checkCov with a stronger
ordering. Indeed, an infinite execution that involves only
a finite number of recursive calls would mean that there
is a call where W never gets empty. This means that we
keep on finding new pairs that cannot be eliminated by the
elements in W ∪ V in lines 15-18. This infinite sequence of
new elements contradicts that E is a wqo.

Lemma 7. Each infinite execution of checkCov contains an
infinite number of recursive calls where each call is made
with a preorder that is stronger than the orderings of the
previous calls.

Restriction to pairs corresponding to F -valid executions
is obtained because lines 12-13, together with the fact that E
is stronger than E0, ensure we discard actions and pairs that
violate the filter. Soundness is guaranteed by the fact that
line 14 computes an over-approximation of the predecessor
configurations, that we consider all actions and that we
eliminate pairs only if they denote less configurations and
stronger traces. Returned traces are valid by construction.

Theorem 8. If checkCov returns uncoverable, then none
of the F -valid executions from νinit cover νbad. If it returns
an F -valid trace σ, then νbad is coverable using σ.

7. Experimental Results

We have implemented our techniques from Section 6 as
an extension of the tool ZAAMA [30]. ZAAMA implements
constrained monotonic abstraction [29]. The tool can address
the parameterized verification problem for cache coherence
protocols (without any restriction on the input sequence of
traces). The input of our prototype includes the description
of the parameterized cache protocol, the set bad configura-
tions and the filter.

We have applied our prototype to a number of different
cache coherence protocols and filters. In fact, we have con-
sidered two cache protocols: The TMESI protocol [25] and
the UTCP protocol [27]. Both of them are adaptations of the

well-known MESI protocol [28] to the case of transactional
memories. TMESI is used in the hardware accelerated trans-
actional memory FlexTM [25], while UTCP in the hybrid
transactional memory DynTM [27].

These hardware accelerated transactional memories
come with conflict resolution policies describing the set
of forbidden traces. We model these policies using our
filter models. FlexTM admits two conflict resolution policies
which are the lazy and eager policies. In the lazy policy,
the resolution can wait until the commit before deciding
on which transaction to abort. While in the eager policy
the conflict is resolved by aborting a transaction as soon
as the conflict is detected. Therefore, FlexTM can be run
with different modes. On the other hand, DynTM allows
the eager and lazy modes to execute simultaneously. Fur-
thermore, we have also defined a new filter for the lazy
execution mode of FlexTM which allows the transactions
whose read instructions precede all the conflicting writing
instructions to survive when a conflicting transaction com-
mits. For instance, the transaction running on c1 would sur-
vive in (read, l, c1)(write, l, c2)(commit, c2)(commit, c1).
This behavior does not cause incoherent states and still
satisfies the strict serializability definition [31]. We have also
considered the filter allowing only strict serializable traces
[26], [31].

The results of our analyses can be seen in Table 2. Our
results show that TMESI (resp. UTCP) cannot violate coher-
ence when run together with its proper filters, namely lazy
FlexTM or eager FlexTM (resp. eager & lazy DynTM). To
the best of our knowledge, this is the first time that coher-
ence of such hardware accelerated transactional memories is
proven automatically. Our results show that coherence is still
preserved when TMESI is run together with the new lazy
filter in spite of the fact that it allows for more traces than
the ones allowed by the lazy FlexTM. Finally, our results
show that both TMESI and UTCP become incoherent when
considering only strict serializable traces.

All experiments were performed on a 2.9 Ghz Intel Core
i7 with 8GB of RAM.

8. Conclusion

In this paper, we have addressed for the first time the pa-
rameterized verification of cache coherence protocols in the
presence of transactional memories. We have first proposed
a formal model for this class of systems in order to capture
behaviours of parameterized cache coherence protocols as
restricted by filters to capture transactional memories con-
flict resolution policies. Our first contribution was a small
model theorem allowing us to restrict the analysis of such
systems to only a fixed number of cache lines. Our second
contribution was an non-trivial extension of the classical
framework of monotonic abstraction in order to exclude the
traces that are not allowed by our filter. Finally, we have im-
plemented a prototype that is able to successfully establish
or refute coherence for several challenging examples.

Cache protocol (filter) #rules # bad states Reachable (Y/N) Execution time
TMESI (eager FlexTM) 92 36 N 48.7s
TMESI (lazy FlexTM) 48 34 N 12.7s

UTCP (eager & lazy DynTM) 128 137 N 236.8s
UTCP (serial. filter) 70 47 Y, bad state (M, M) 117.3s

TMESI (new lazy filter) 47 34 N 13.5s
TMESI (serial. filter) 42 38 Y, bad state (M, M) 35.8s

TABLE 2: Experimental Results. The columns “#rules” and “# bad” states give the number of rules and the number of bad
states used to model the cache coherence protocols, respectively. A “N” in the column “Reachable (Y/N)” means that the
parameterized cache protocol with filter is coherent. A “Y” in the column “Reachable (Y/N)” means that the parameterized
cache protocol with filter is not coherent and we provide the first reachable bad state. Finally, the column “Execution time”
gives the running time in seconds.

A direction for future work is to address the problem
of automatically synthesizing filters in order to ensure the
coherence of a given cache protocol.

References

[1] A. Kaiser, D. Kroening, and T. Wahl, “Dynamic cutoff detection
in parameterized concurrent programs,” in CAV’10, ser. LNCS, vol.
6174. Springer, 2010, pp. 645–659.

[2] P. Liu and T. Wahl, “Infinite-state backward exploration of boolean
broadcast programs,” in FMCAD, 2014.

[3] E. M. Clarke, M. Talupur, and H. Veith, “Environment abstraction
for parameterized verification,” in VMCAI’06, ser. LNCS, vol. 3855.
Springer, 2006, pp. 126–141.

[4] D. Sethi, M. Talupur, and S. Malik, “Using flow specifications of
parameterized cache coherence protocols for verifying deadlock free-
dom,” in ATVA, ser. LNCS, vol. 8837, 2014.

[5] K. L. McMillan, “Parameterized verification of the FLASH cache
coherence protocol by compositional model checking,” in CHARME,
ser. Lecture Notes in Computer Science, vol. 2144, 2001.

[6] P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine, “Regular
model checking without transducers (on efficient verification of pa-
rameterized systems),” in TACAS’07, ser. LNCS, vol. 4424. Springer,
2007, pp. 721–736.

[7] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in LICS’96, 1996,
pp. 313–321.

[8] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar, “Symbolic
model checking with rich assertional languages,” Theor. Comput. Sci.,
vol. 256, no. 1-2, pp. 93–112, 2001.

[9] D. Dams, Y. Lakhnech, and M. Steffen, “Iterating transducers,” in
CAV’01, ser. LNCS, vol. 2102. Springer, 2001.

[10] B. Boigelot, A. Legay, and P. Wolper, “Iterating transducers in the
large,” in CAV’03, ser. LNCS, vol. 2725. Springer, 2003, pp. 223–
235.

[11] T. Touili, “Regular Model Checking using Widening Techniques,”
ENTCS, vol. 50, no. 4, 2001, proc. of VEPAS’01.

[12] A. Bouajjani, P. Habermehl, and T. Vojnar, “Abstract regular model
checking,” in CAV’04, ser. LNCS, vol. 3114. Springer, 2004, pp.
372–386.

[13] P. A. Abdulla, A. Legay, J. d’Orso, and A. Rezine, “Simulation-based
iteration of tree transducers,” in TACAS’05, ser. Lecture Notes in
Computer Science, vol. 3440. Springer, 2005, pp. 30–44.

[14] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, no. 3, pp. 675–735, 1992.

[15] G. Delzanno, “Automatic verification of cache coherence protocols,”
in CAV’00, ser. LNCS, Emerson and Sistla, Eds., vol. 1855. Springer,
2000, pp. 53–68.

[16] ——, “Verification of consistency protocols via infinite-state symbolic
model checking,” in FORTE’00, ser. IFIP Conference Proceedings,
vol. 183. Kluwer, 2000, pp. 171–186.

[17] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0,1,infinity)-counter
abstraction,” in CAV’02, ser. LNCS, vol. 2404. Springer, 2002.

[18] P. Ganty and A. Rezine, “Ordered counter-abstraction,” in Language
and Automata Theory and Applications, ser. LNCS. Springer Inter-
national Publishing, 2014, vol. 8370, pp. 396–408.

[19] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck, “Parameterized
verification with automatically computed inductive assertions,” in
CAV’01, ser. LNCS, vol. 2102. Springer, 2001, pp. 221–234.

[20] A. Pnueli, S. Ruah, and L. D. Zuck, “Automatic deductive verifica-
tion with invisible invariants,” in TACAS’01, ser. LNCS, vol. 2031.
Springer, 2001, pp. 82–97.

[21] K. S. Namjoshi, “Symmetry and completeness in the analysis of pa-
rameterized systems,” in VMCAI’07, ser. LNCS, vol. 4349. Springer,
2007, pp. 299–313.

[22] P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine, “Han-
dling parameterized systems with non-atomic global conditions,” in
VMCAI’08, ser. LNCS, vol. 4905. Springer, 2008, pp. 22–36.

[23] N. Yonesaki and T. Katayama, “Functional specification of synchro-
nized processes based on modal logic,” in IEEE 6th International
Conference on Software Engineering, 1982, pp. 208–217.

[24] P. A. Abdulla, F. Haziza, and L. Holı́k, “All for the price of few
(parameterized verification through view abstraction),” in VMCAI, ser.
LNCS, vol. 7737, 2013, pp. 476–495.

[25] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in ISCA’08. IEEE Computer Society,
2008, pp. 139–150.

[26] P. A. Abdulla, S. Dwarkadas, A. Rezine, A. Shriraman, and Y. Zhu,
“Verifying safety and liveness for the flextm hybrid transactional
memory,” in DATE 13. EDA Consortium San Jose, CA, USA /
ACM DL, 2013, pp. 785–790.

[27] M. Lupon, G. Magklis, and A. González, “A dynamically adaptable
hardware transactional memory,” in MICRO 10. IEEE Computer
Society, 2010, pp. 27–38.

[28] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solu-
tion for multiprocessors with private cache memories,” in ISCA 84.
ACM, 1984, pp. 348–354.

[29] P. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and
A. Rezine, “Constrained monotonic abstraction: A cegar for parame-
terized verification,” in CONCUR 2010, ser. LNCS. Springer Berlin
Heidelberg, 2010, vol. 6269, pp. 86–101.

[30] Z. Ganjei, A. Rezine, P. Eles, and Z. Peng, “Abstracting and count-
ing synchronizing processes,” in VMCAI 05, ser. LNCS, vol. 8931.
Springer, 2015, pp. 227–244.

[31] C. H. Papadimitriou, “The serializability of concurrent database up-
dates,” J. ACM, vol. 26, no. 4, pp. 631–653, 1979.

