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What is Abduction?

Abduction: Inference of missing hypotheses

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

i.e., given invalid formula Γ⇒ φ, find a “simple” formula ψ
such that Γ ∧ ψ ⇒ φ is valid and ψ does not contradict Γ.

2 / 47



What is Abduction?

Abduction: Inference of missing hypotheses

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

i.e., given invalid formula Γ⇒ φ, find a “simple” formula ψ
such that Γ ∧ ψ ⇒ φ is valid and ψ does not contradict Γ.

2 / 47



What is Abduction?

Abduction: Inference of missing hypotheses

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

i.e., given invalid formula Γ⇒ φ, find a “simple” formula ψ
such that Γ ∧ ψ ⇒ φ is valid and ψ does not contradict Γ.

2 / 47



Simple Example

Premises: “If it rains, then it is wet and
cloudy”, “If it is wet, then it is slippery”:
(R ⇒W ∧ C ) ∧ (W ⇒ S )

Conclusion: “It is cloudy and slippery”,
i.e., C ∧ S

Conclusion doesn’t follow from premises;
use abduction to find missing hypothesis

Possible solution: R, i.e., “It is rainy”
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Arithmetic Example

Suppose we know x ≥ −2

Want to prove: x + y > 10

Abductive explanation: y > 12
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Outline of Talk

1 Properties of desired solutions

2 Algorithm for performing abduction in LRA/LIA

3 Loop invariant generation using abduction

4 Compositional verification using abduction

5 Use of abduction in program synthesis

6 Conclusion and future directions
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Properties of Desired Solutions

In general, the abduction problem Γ∧? |= φ has infinitely
many solutions

Trivial solution: φ, but not useful because does not take into
account what we know

So, what kind of solutions do want to compute?
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Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Succinctness: Minimize number of variables
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Solutions We Will Compute

Want to compute logically weakest
solutions with fewest variables

First talk about how to compute solutions with
fewest variables

Then talk about how to obtain most general
solution containing these variables
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Minimum Satisfying Assignments

To find solutions with fewest variables, we use minimum
satisfying assignments of formulas

Minimum satisfying assignment (MSA):

X assigns values to a subset of
variables in formula

X sufficient to make formula true

X Among all other partial satisfying
assignments, contains fewest variables
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Example

Consider the following formula in linear integer arithmetic:

x + y + w > 0 ∨ x + y + z + w < 5

Minimum satisfying assignment: z = 0

Note: Algorithm for computing MSAs given in our CAV’12
paper, “Minimum Satisfying Assignments for SMT”
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Why Are MSAs Useful for Abduction?

Given facts Γ and conclusion φ, MSA σ of Γ⇒ φ consistent
with Γ is a solution to abduction problem:

σ |= Γ⇒ φ hence σ ∧ Γ |= φ

Furthermore, it uses a fewest number of variables

But it is not the most general solution

11 / 47



Why Are MSAs Useful for Abduction?

Given facts Γ and conclusion φ, MSA σ of Γ⇒ φ consistent
with Γ is a solution to abduction problem:

σ |= Γ⇒ φ hence σ ∧ Γ |= φ

Furthermore, it uses a fewest number of variables

But it is not the most general solution

11 / 47



Why Are MSAs Useful for Abduction?

Given facts Γ and conclusion φ, MSA σ of Γ⇒ φ consistent
with Γ is a solution to abduction problem:

σ |= Γ⇒ φ hence σ ∧ Γ |= φ

Furthermore, it uses a fewest number of variables

But it is not the most general solution

11 / 47



Finding Most General Solutions

Key idea:
Quantifier elimination

To find most general solution containing variables in the MSA,
universally quantify all other variables V and apply quantifier
elimination to ∀V . Γ⇒ φ

This yields most general solution with fewest variables
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Abduction Algorithm

abduce yields formula ψ such that

Γ ∧ ψ |= φ

and ψ is consistent with Γ and θ

First, compute all variables in MSA of
Γ⇒ φ consistent with Γ, θ

∀-quantify variables not in the MSA
and apply quantifier elimination

Remove subparts of ψ implied or
contradicted by Γ (SAS’10)
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Simple Example

Consider abduction problem in LIA defined by conclusion
φ : x + y > 10 and known facts Γ : x ≥ −2 ∧ x = y

Compute MSA for Γ⇒ φ:

y = 15

Universally quantify x and eliminate from Γ⇒ φ:

y < −2 ∨ y > 5

Simplify with respect to assumptions:

y > 5
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Applications

interpolation

CEGAR
    Abstract interpretation

Abduction

Loop invariant generation (OOPSLA’13)

Compositional program verification
(TACAS’13)

Inference of missing library specifications
(APLAS’13)

Diagnosis of static analysis warnings
(PLDI’12)

Synthesis of missing guards (CAV’14)
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Application #1: Loop Invariant Generation

Most challenging aspect of program verification: loop
invariant generation

Inductive loop invariant Inv is implied by Pre and preserved in
each iteration assuming only Inv

But Inv is only useful if it is sufficient to prove Post
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High Level Idea

Key idea 1: Given loop L and postcondition Post,  
use abduction to speculate candidate invariants 

Use abduction to speculate an invariant I that
implies post-condition Q :

(¬C ∧ ?)⇒ Q

Three possibilities:

I is inductive: I ∧ C ⇒ wp(S , I ), P ⇒ I

I is an invariant, but not inductive

I is not an invariant
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Candidate Invariant not Inductive

If candidate invariant I is not inductive, our algorithm tries to
strengthen it

Use abduction again to find a strengthening I ′ of I :

(?? ∧ (I ∧ C ))⇒ wp(S , I )

If I ′ is an invariant, then so is I , i.e.,

 I is inductive relative to I' 

Now, check if I ∧ I ′ is inductive, if not, keep strengthening
using (i) proof goes through, or (ii) get contradiction
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Simple Example

while(i <= n) {
   j := j+i;
   i := i+j;
}

{i=1, j = 0, n<5}

{i >= 1}

Start by solving abduction problem:

i > n ∧ ??⇒ i ≥ 1

Algorithm returns solution i ≥ 1

Not inductive; so try strengthening:

i ≤ n ∧ i ≥ 1 ∧ ??⇒ j + 2i ≥ 1

Solution is j ≥ −1, so new candidate
invariant:

i ≥ 1 ∧ j ≥ −1

This is inductive, so algorithm terminates
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Overall Algorithm

Current
invariants

VCGen

Done
Abduction

No solution

Backtrack!

 Solution

Strengthened 
invariant

Initialize to true
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How to Perform Backtracking

Recall: Abduction procedure takes Γ,
φ, and set θ

Solution must be consistent with
every ϕ ∈ θ

If I is refuted, add ¬I to θ to obtain
different solution

Algorithm lazily generates abductive explanations
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Some Experimental Results

Evaluated this technique on 46 loop invariant benchmarks

Compared our results against BLAST, InvGen, and Interproc:

HOLA

BLAST

Inv
Gen Inter

proc

Can verify 13 benchmarks that no other tool can verify, but
cannot prove two benchmarks at least one tool can show

No termination guarantees
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Application #2: Compositional Verification

Program P

...Lemma

      #1 Lemma

      #2

Lemma

    #n

Correctness
proof of P

Compositional approaches decompose
proof into lemmas

Two key advantages:

1 Scalability: Each lemma concerns
small syntactic part ⇒ reason about
program fragments in isolation

2 Abstraction: Each lemma can be
proven using a different abstraction
⇒ combine strengths of different
techniques
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Overview of Compositional Verification Approach

Key idea: Use abduction to
decompose proof into auxiliary lemmas

Lemmas are snippets annotated with
assertions and assumptions

Lemmas are discharged using portfolio
of client analyses

Combine lemmas into overall proof
using circular compositional reasoning

Each lemma can assume correctness
of all other lemmas

Analysis 1

Analysis 2

Fragment
+ assumtions
+ assertions

Abduction

Program

Analysis Portfolio

Analysis 3
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Example

Consider this code snippet

Want to reason about two
fragments in isolation

Focus on fragment
containing assertion

Cannot verify it yet because
need precondition “z is odd”

Want to automatically infer
such missing assumptions!

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

 assert(x==y);

 z+=x+y+w;

 y++;
 x+=z%2;

 w+=2;

}
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Example cont.
Program Decoration and VC Generation

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

assume( );

while(*) {
  assert(x==y);

  z+=x+y+w;

  y++;

  x+=z%2;

  w+=2;

}

assume( );

Idea: Decorate program
with assume statements
containing placeholders
(e.g., φ1, φ2)

Generate VCs over
unknowns φ1 and φ2

VC 1:

VALID

(x = 0 ∧ y = 0
∧w = 0 ∧ φ1)⇒ x = y

VC 2:

NOT VALID

(φ2 ∧ x = y)⇒ wp(σ, x = y)
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Example, cont.
Lemma Inference using Abduction

Fix VC2 using abduction:

φ2 : (w + z )%2 = 1

Now use circular
compositional reasoning

Subgoal 1: Prove x = y
using (w + z )%2 = 1

Subgoal 2: Prove φ2
assuming x = y

Subgoal 1 is immediately
discharged; focus on subgoal 2

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
assume( );

while(*) {
  assert(x==y);

  z+=x+y+w;
  y++;

  x+=z%2;

  w+=2;

}

assume( );
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Example, cont.

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;
while(*) {

  assume(x==y);

  z+=x+y+w;

  y++;
  x+=z%2;

  w+=2;
}

assert((w+z)%2==1);

Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

Invoke client analyses to discharge proof subgoal

No client can prove it because initial value of z unconstrained
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Example, cont.

int i=1, j=0;
while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {
 assume(x==y);

 z+=x+y+w;
 y++;

 x+=z%2;

 w+=2;

}

assert((w+z)%2==1);

( );assume

Go back to lemma inference
and annotate program with
unknown precondition

Generate VC and solve for
unknown φ1:

φ1 : z%2 = 1

Now, φ1 becomes a lemma
(assertion) to be proven
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Example, cont.
Invoking Client Analyses

int i=1, j=0;

while(*) {j++; i+=3;}

int z = i-j;

while(*) {

 assume(x==y);

z+=x+y+w;

assert((w+z)%2==1);

assert(z%2==1);
Analysis 1

Analysis 2

Analysis 3

Analysis Portfolio

Now, annotate first fragment with assertion and invoke clients

Can be shown by any client analysis that can establish
i = 3j + 1
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Example, cont.
Final Piece

int i=1, j=0;

while(*) {j++; i+=3;}
int z = i-j;

int x=0, y=0, w=0;

while(*) {

  assume(x==y);

  z+=x+y+w;

  y++;
  x+=z%2;

  w+=2;
}

assert((w+z)%2==1);

assume(z%2==1);

Now, add this as assumption to second fragment

Again, invoke client analyses to verify second fragment

– can
be proven using linear congruences

We have now proven the original assertion!
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Essence of Technique

Approach involves two key ingredients: assertion elimination
and assertion introduction

Assertions introduced using abductive inference

Assertions eliminated using client analyses and circular
compositional reasoning

Similar to SMT solver – core part performs VC gen +
abduction

SAT Solver

Client analyses similar to theory solvers
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Experiments

Used this technique to verify safety properties in C programs

Used four different static analysis tools as clients
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Experiments

Used this technique to verify safety properties in C programs

Used four different static analysis tools as clients

Property can be proven using our technique,
but not using individual clients
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Experiments

Used this technique to verify safety properties in C programs

Used four different static analysis tools as clients

Verification time reasonable (0.6-16.9s)
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Fragments extracted for queries small in practice
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Application #3: Automated Guard Synthesis

...
if(??) {
  S
} 
else S'
...

In program sketching, programmer writes a
draft program with “holes”

Program synthesizer completes the holes in a
way that satisfies specification

Abduction is useful for synthesizing unknown
guards in program sketches
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Concrete Use Case: Memory Safety

Programmers often write checks to prevent memory safety
errors (buffer overruns, null dereferences, ...)

if(C) {R} else { /* handle error */}

Such checks are tedious to write and error-prone (e.g,
off-by-one errors common cause of buffer overflows)
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Guard Synthesis for Memory Safety

Key Idea: Program synthesis to guarantee memory safety

if(???) {R} else { /* handle error */}

1 Programmer specifies which parts of the program should be
protected and how to handle error

2 Technique synthesizes guards that guarantee memory safety

Guards should be as permissive and concise as possible

Key ingredient of synthesis algorithm is abduction
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Solution Overview

prog.c

Constraint
generation

Constraint
solving

 

1 Constraint Generation:

Represent unknown guards using
placeholders

Perform dual forward and backward analysis
to generate constraint for each unknown

2 Constraint Solving:

An extended abduction algorithm for solving
constraint system with multiple unknowns
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In More Detail

{
   ...
}

if(??)
{
   ...
}

Generate one constraint per unknown

Compute postcondition φ of code
before unknown

Compute safety precondition ψ of
code nested inside unknown

To guarantee memory safery, find ??
such that φ∧ ?? |= ψ

This is almost an abduction problem,
but φ, ψ can have other unknowns

Impose ordering on constraints and
reduce to standard abduction
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Example

Code snippet from Unix
Coreutils with protected
memory access

Convention: For pointer p:

p+ represents distance to end
of memory block

p− represents distance from
beginning of memory block

int main(int argc, 
   char** argv)
{
  if(argc<=1) return -1;
  argv++; argc--;

  optind=0;
  while(...) { 
    optind++;
    if(*) {argv++;
           argc--;}
  }
  if(??) {
    argv[optind+1]=...;
  }
}  
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Example Cont.

First Step: Compute what is
known at ?? ⇒ postcondition φ

From language semantics:

argv+ = argc ∧ argv− = 0

From computing the
strongest postcondition:

argv+ = argc ∧
argv− ≥ 1 ∧ optind ≥ 0

int main(int argc, 
   char** argv)
{
  if(argc<=1) return -1;
  argv++; argc--;

  optind=0;
  while(...) { 
    optind++;
    if(*) {argv++;
           argc--;}
  }
  if(??) {
    argv[optind+1]=...;
  }
}  
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Example Cont.

Second Step: Compute what
needs to hold at ?? to ensure
memory safety
⇒ precondition ψ

Buffer access:

optind + 1 < argv+∧
optind + 1 ≥ −argv−
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Example Cont.

Solve abduction problem
φ ∧ ?? |= ψ where

φ :
argv+ = argc ∧

argv− ≥ 1 ∧ optind ≥ 0

ψ :
optind + 1 < argv+∧
optind + 1 ≥ −argv−

Solution: argc − optind > 1
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Experiments

Evaluated technique on the Unix
Coreutils and parts of OpenSSH

Removed conditionals used to
prevent memory safety errors

Used our new technique to
synthesize the missing guards
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Experiments Cont.

Used technique to synthesize 27 unknown
guards in real C programs
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Experiments Cont.

In 21 out of 27 cases, tool inferred same
predicate as programmer
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Experiments Cont.

In 4 cases, syntactically different, but
semantically equivalent guards
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Experiments Cont.

In 2 cases, guards did not match
⇒ bug in original program!
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Summary

?

Abduction = logical formulation of “guessing”

Lots of uses in automated reasoning about programs,
particularly when combined with backtracking search

If you are interested in using abduction, check out:

http://www.cs.utexas.edu/∼tdillig/mistral/explain.html

Easy to use: expl = conclusion.abduce(premises);
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Limitations and Future Work

Abduction algorithm uses quantifier elimination ⇒ limited
scalability and requires to theories that admit QE

Future work: Alternative algorithms that don’t use QE

Abduction requires single unknown in LHS, but sometimes
there are multiple unknowns

On-going work: Multi-abduction algorithm to simultaneously
infer multiple unknowns
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            Questions?


