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Safety Verification

Consider a verification problem (Init, Tr, Bad)

The problem is UNSAFE if and only if there exists a path from an Init-state to a Bad-state, that is 
Init(X0)  Tr(X0, X1)  …  Tr(XN-1, XN)  Bad(XN) is satisfiable for some N

The problem is SAFE if and only if there exists a safe inductive invariant G, that is
Init(X)  G(X)
G(X)  Tr(X, X’) G(X’)
G(X) Bad(X)



Agenda

IC3 is one of the most powerful algorithms for proving safety

Very active area of research:

• A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable Correctness”)

• N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed reachability.
FMCAD 2011
(PDR stands for “Property Directed Reachability”)

…

• In this work we present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)



A brief preview of Quip 

Quip extends IC3 by considering 

• A wider range of conjectures (proof obligations)
• Designed to push already existing lemmas more aggressively
• Allows to push a given lemma by learning additional supporting lemmas 

(and hopefully to compute an inductive invariant faster)

• Forward reachable states
• Explain why a lemma cannot be pushed
• Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure.

The experimental results look good.



A quick review of IC3

Input: 
• A safety verification problem (Init, Tr, Bad)

Output: 
• A counterexample (if the problem is UNSAFE), 
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (explained in a moment)
• A set of proof obligations (explained in a moment)



Inductive Trace

Let F0, F1, F2, …, F be conjunctions of lemmas (in practice, clauses). 
We say that F0, F1, F2, …, F is an inductive trace if:

(1) F0 = INIT
(2) F0  F1  F2  …  F
(3) F1  F2  …  F as sets of lemmas
(4) Fi  TR  Fi+1’ for i  0 (including F  Tr F’)

Remarks:
• This definition is slightly different from the original definition:

• The sequence F0, F1, F2, … is conceptually infinite (with Fi = T for all i sufficiently large)
• We add F as the last element of the trace (as suggested in PDR)

• Each Fi over-approximates states that are reachable in i steps or less
(in particular, F contains all reachable states)



Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where
• s is a (generalized) cube over state variables 
• i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if Fis.
Given a proof obligation (s, i), IC3 attempts to strengthen the inductive trace in order to block it.

Remarks:
• In the IC3 algorithm, s is identified with a counterexample-to-induction (and called a CTI)
• If (s, i) is a proof obligation and i1, then (s, i-1) is assumed to be already blocked
• All proof obligations are managed via a priority  queue:

• Proof obligations with smallest level are considered first
• (additional criteria for tie-breaking)



IC3 algorithm

The next two slides briefly describe the two main stages of IC3
• The recursive blocking stage
• The pushing stage

We omit many important details, and concentrate on how IC3 works rather than why
(there are many excellent references for this)



Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace s.t. FN  s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while Empty(Q) do

(s, k)  Pop(Q)
if (k = 0) return “Counterexample”
if (Fk  s) continue
if (Fk-1  Tr  s’) is SAT

t  generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
t  generalize s by inductive generalization (to level mk)
add t to Fm
if (m<N) Add(Q, (s, m+1))



Pushing stage in IC3

// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do 
for c  Fk \ Fk+1 do

if (Fk  Tr  c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant



Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:
• Each lemma in the inductive trace is neither an over-approximation nor an under-

approximations of reachable states (a lemma in Fk only over-approximates states reachable 
within k steps):
• IC3 may learn lemmas that are too weak (ex. C1) – prune less states
• IC3 may learn lemmas that are too strong (ex. C2) – cannot be in the inductive invariant

Init Reach

C1

C2

Bad



Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F) or bad (ex. C2 from before):
• Avoid periodically pushing bad lemmas
• Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over learning of new ones:
• When the same cube s is blocked at different levels, usually different lemmas are discovered

• Though, IC3 partially addresses this using pushing (and other optimizations)
• Use the same lemma to block s (at the expense of deriving additional supporting lemmas)

• Though, in general different lemmas are of different “quality” and having some choice 
may be beneficial



Immediate improvement: unlimited pushing

// Push each clause to the highest possible frame up to N
IC3_Push_Unlimited() 

for k = 1 .. do 
for c  Fk \ Fk+1 do

if (Fk  Tr  c’)
add c to Fk+1

if (Fk = Fk+1)
F  Fk

if (F  Bad)
return “Proof” // F is a safe inductive invariant

Claim: after pushing F represents a maximal inductive subset of all lemmas discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in PDR but claimed to be 
ineffective. In our implementation, “unlimited pushing” leads to ~10% overall speed up.



More about pushing (1)

Why pushing is useful:
• During the execution of IC3, the sets Fi are incrementally strengthened, and so it may happen 

that Fk  TR  c’, even though this was not true at the time that c was discovered

Why pushing is good:
• By pushing c from Fk to Fk+1, we make Fk more inductive

(and if Fk becomes equal to Fk+1, then Fk becomes an inductive invariant)
• Suppose that cFk blocks a proof obligation (s, k). 

By pushing c from Fk to Fk+1, we also block the proof obligation (s, k+1)
• Pushing Clauses = Improving Convergence = Reusing old lemmas for blocking bad states



More about pushing (2)

Why pushing may fail: suppose that c  Fk \ Fk+1 but Fk  TR does not imply c’. Why?

There are two alternatives:
1. c is a valid over-approximation of states reachable within k+1 steps, but Fk is not strong 

enough to imply this
• We can strengthen the inductive trace so that Fk  TR  c’ becomes true

2. c is NOT a valid over-approximation of states reachable within k+1 steps
• There is a real forward reachable state r that is excluded by c
• c has no chance to be in the safe inductive invariant
• c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013



Two interdependent ideas

1. Prioritize pushing existing lemmas
• Given a lemma c  Fk \ Fk+1, we can add (c, k+1) as a may-proof-obligation

• May-proof-obligations are “nice to block”, but do not need to be blocked
• If (c, k+1) can be blocked, then c is pushed to Fk+1

• If (c, k+1) cannot be blocked, then we discover a concrete reachable state r that is 
excluded by c and that explains why c cannot be inductive

2. Discover new forward reachable states
• These are an under-approximation of forward reachable states
• Given a reachable state, all the existing lemmas that exclude it are bad

• Bad lemmas are never pushed 
• Reachable states may show that certain may-proof-obligations cannot be blocked
• Reachable states may be used when generalizing lemmas 
• Conceptually, computing new reachable states can be thought of as new Init states



Quip

Input: 
• A safety verification problem (Init, Tr, Bad)

Output: 
• A counterexample (if the problem is UNSAFE), 
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (same as IC3)
• A set of proof obligations (similar to IC3)
• A set R of forward reachable states 



Proof Obligations in Quip

A proof obligation in Quip is a triple (s, i, p), where
• s is a (generalized) cube over state variables 
• i is a natural number
• p  {may, must}

Remarks:
• As in IC3, if (s, i, p) is a proof obligation and i1, then (s, i-1) is assumed to be already blocked
• As in IC3, all proof obligations are managed via a priority  queue:

• Proof obligations with smallest level are considered first
• In case of a tie, proof obligations with smallest number of literals are considered first
• (additional criteria for tie-breaking)

• Have a “parent map” from a proof obligation to its parent proof obligation
• parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
• In fact, this is usually done in IC3 as well (for trace reconstruction)



Recursive Blocking Stage in Quip (1)

1. Each time that we examine a proof obligation (s, k, p), check whether s intersects a reachable 
state rR

2. Discover new reachable states when possible
• Claim: if s intersects rR and if parent(s) exists, then there exists a reachable state r’ that 

intersects parent(s)
• Indeed, ALL states in s lead to a state in parent(s)
• Therefore r leads to a state in parent(s) as well

• A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A counterexample-guided 
interpolant generation algorithm for SAT-based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma t, add (t, k+1, may) as a new proof 
obligation
• Try to push t to Fk+1 instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large (important, not in pseudocode)



Recursive Blocking Stage in Quip (2)

// Find a reachable state rs, or strengthen the inductive trace s.t. FN  s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while Empty(Q) do

(s, k, p)  Pop(Q)
if (k = 0) && (p = must) return “Counterexample”
if (k = 0) && (p = may) 

find a state r one-step-reachable from Init,
such that r intersects parent(s)

add r to R; continue
if (Fk  s) continue
if (s intersects some state rR) && (p = must) return “Counterexample”
if (s intersects some state rR) && (p = may)

if parent(s) exists, find a state r’ one-step-reachable from r,
such that r’ intersects parent(s)

add r’ to R; continue
// -- continued on the next slide --



Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
//  -- continued from the previous slide –-

if (Fk-1  Tr  s’) is SAT
t  generalized predecessor of s
Add(Q, (t, k-1, p))
Add(Q, (s, k, p))

else
t  generalize s by inductive generalization (to level mk)
add t to Fm
if (m<N)

if (t = s) Add(Q, (t, m+1, p))
else Add(Q, (t, m+1, may)) // attempt to block t (not s)



Experiments: IC3 vs. Quip on HWMCC’13 and ’14

• Implemented in IBM formal verification tool Rulebase-Sixthsense
• Data for 140 instances that were not trivially solved by preprocessing but could be solved 

either by IC3 or Quip within 1-hour
• Detailed results at http://arieg.bitbucket.org/quip



Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

Q
u

ip
 (

se
c)

• Data for 140 instances from last slide



There are many ways to combine basic algorithmic steps to a complete algorithm. We have tried 
the following variants (more details in the paper).

Reset-Free Variant:
• Keep (negation of) every lemma as a proof obligation (at the corresponding level)
• Can avoid the external pushing stage altogether!

Garbage-Collection Variant:
• Periodically remove all bad lemmas from the system

Quip – alternative implementations



• Improve handling of forward reachable states (both for performance and memory)

• Generalize forward reachable states 

• Incorporate these ideas with other known IC3 developments
• Abstraction-Refinement:

Y. Vizel, O. Grumberg, S. Shoham: Lazy abstraction and SAT-based reachability in 
hardware model checking. FMCAD 2012

• Lemma generalization:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

• Experiment with other ways to combine the ideas into a full algorithm

• Lift Quip to more general domains

Quip – future work



Thank You!!!

P.S.: We hope the title of the paper now makes sense. 

P.P.S.: Can you guess what are google images for Push to the Top?



Experiments: IC3 vs. Quip on HWMCC’13 and ’14


