
Pushing to the Top

FMCAD’15

Arie Gurfinkel
Alexander Ivrii

Safety Verification

Consider a verification problem (Init, Tr, Bad)

The problem is UNSAFE if and only if there exists a path from an Init-state to a Bad-state, that is
Init(X0)  Tr(X0, X1)  …  Tr(XN-1, XN)  Bad(XN) is satisfiable for some N

The problem is SAFE if and only if there exists a safe inductive invariant G, that is
Init(X)  G(X)
G(X)  Tr(X, X’) G(X’)
G(X) Bad(X)

Agenda

IC3 is one of the most powerful algorithms for proving safety

Very active area of research:

• A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable Correctness”)

• N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed reachability.
FMCAD 2011
(PDR stands for “Property Directed Reachability”)

…

• In this work we present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)

A brief preview of Quip

Quip extends IC3 by considering

• A wider range of conjectures (proof obligations)
• Designed to push already existing lemmas more aggressively
• Allows to push a given lemma by learning additional supporting lemmas

(and hopefully to compute an inductive invariant faster)

• Forward reachable states
• Explain why a lemma cannot be pushed
• Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure.

The experimental results look good.

A quick review of IC3

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (explained in a moment)
• A set of proof obligations (explained in a moment)

Inductive Trace

Let F0, F1, F2, …, F be conjunctions of lemmas (in practice, clauses).
We say that F0, F1, F2, …, F is an inductive trace if:

(1) F0 = INIT
(2) F0  F1  F2  …  F
(3) F1  F2  …  F as sets of lemmas
(4) Fi  TR  Fi+1’ for i  0 (including F  Tr F’)

Remarks:
• This definition is slightly different from the original definition:

• The sequence F0, F1, F2, … is conceptually infinite (with Fi = T for all i sufficiently large)
• We add F as the last element of the trace (as suggested in PDR)

• Each Fi over-approximates states that are reachable in i steps or less
(in particular, F contains all reachable states)

Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where
• s is a (generalized) cube over state variables
• i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if Fis.
Given a proof obligation (s, i), IC3 attempts to strengthen the inductive trace in order to block it.

Remarks:
• In the IC3 algorithm, s is identified with a counterexample-to-induction (and called a CTI)
• If (s, i) is a proof obligation and i1, then (s, i-1) is assumed to be already blocked
• All proof obligations are managed via a priority queue:

• Proof obligations with smallest level are considered first
• (additional criteria for tie-breaking)

IC3 algorithm

The next two slides briefly describe the two main stages of IC3
• The recursive blocking stage
• The pushing stage

We omit many important details, and concentrate on how IC3 works rather than why
(there are many excellent references for this)

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace s.t. FN  s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while Empty(Q) do

(s, k)  Pop(Q)
if (k = 0) return “Counterexample”
if (Fk  s) continue
if (Fk-1  Tr  s’) is SAT

t  generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
t  generalize s by inductive generalization (to level mk)
add t to Fm
if (m<N) Add(Q, (s, m+1))

Pushing stage in IC3

// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do
for c  Fk \ Fk+1 do

if (Fk  Tr  c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant

Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:
• Each lemma in the inductive trace is neither an over-approximation nor an under-

approximations of reachable states (a lemma in Fk only over-approximates states reachable
within k steps):
• IC3 may learn lemmas that are too weak (ex. C1) – prune less states
• IC3 may learn lemmas that are too strong (ex. C2) – cannot be in the inductive invariant

Init Reach

C1

C2

Bad

Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F) or bad (ex. C2 from before):
• Avoid periodically pushing bad lemmas
• Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over learning of new ones:
• When the same cube s is blocked at different levels, usually different lemmas are discovered

• Though, IC3 partially addresses this using pushing (and other optimizations)
• Use the same lemma to block s (at the expense of deriving additional supporting lemmas)

• Though, in general different lemmas are of different “quality” and having some choice
may be beneficial

Immediate improvement: unlimited pushing

// Push each clause to the highest possible frame up to N
IC3_Push_Unlimited()

for k = 1 .. do
for c  Fk \ Fk+1 do

if (Fk  Tr  c’)
add c to Fk+1

if (Fk = Fk+1)
F  Fk

if (F  Bad)
return “Proof” // F is a safe inductive invariant

Claim: after pushing F represents a maximal inductive subset of all lemmas discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in PDR but claimed to be
ineffective. In our implementation, “unlimited pushing” leads to ~10% overall speed up.

More about pushing (1)

Why pushing is useful:
• During the execution of IC3, the sets Fi are incrementally strengthened, and so it may happen

that Fk  TR  c’, even though this was not true at the time that c was discovered

Why pushing is good:
• By pushing c from Fk to Fk+1, we make Fk more inductive

(and if Fk becomes equal to Fk+1, then Fk becomes an inductive invariant)
• Suppose that cFk blocks a proof obligation (s, k).

By pushing c from Fk to Fk+1, we also block the proof obligation (s, k+1)
• Pushing Clauses = Improving Convergence = Reusing old lemmas for blocking bad states

More about pushing (2)

Why pushing may fail: suppose that c  Fk \ Fk+1 but Fk  TR does not imply c’. Why?

There are two alternatives:
1. c is a valid over-approximation of states reachable within k+1 steps, but Fk is not strong

enough to imply this
• We can strengthen the inductive trace so that Fk  TR  c’ becomes true

2. c is NOT a valid over-approximation of states reachable within k+1 steps
• There is a real forward reachable state r that is excluded by c
• c has no chance to be in the safe inductive invariant
• c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

Two interdependent ideas

1. Prioritize pushing existing lemmas
• Given a lemma c  Fk \ Fk+1, we can add (c, k+1) as a may-proof-obligation

• May-proof-obligations are “nice to block”, but do not need to be blocked
• If (c, k+1) can be blocked, then c is pushed to Fk+1

• If (c, k+1) cannot be blocked, then we discover a concrete reachable state r that is
excluded by c and that explains why c cannot be inductive

2. Discover new forward reachable states
• These are an under-approximation of forward reachable states
• Given a reachable state, all the existing lemmas that exclude it are bad

• Bad lemmas are never pushed
• Reachable states may show that certain may-proof-obligations cannot be blocked
• Reachable states may be used when generalizing lemmas
• Conceptually, computing new reachable states can be thought of as new Init states

Quip

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (same as IC3)
• A set of proof obligations (similar to IC3)
• A set R of forward reachable states

Proof Obligations in Quip

A proof obligation in Quip is a triple (s, i, p), where
• s is a (generalized) cube over state variables
• i is a natural number
• p  {may, must}

Remarks:
• As in IC3, if (s, i, p) is a proof obligation and i1, then (s, i-1) is assumed to be already blocked
• As in IC3, all proof obligations are managed via a priority queue:

• Proof obligations with smallest level are considered first
• In case of a tie, proof obligations with smallest number of literals are considered first
• (additional criteria for tie-breaking)

• Have a “parent map” from a proof obligation to its parent proof obligation
• parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
• In fact, this is usually done in IC3 as well (for trace reconstruction)

Recursive Blocking Stage in Quip (1)

1. Each time that we examine a proof obligation (s, k, p), check whether s intersects a reachable
state rR

2. Discover new reachable states when possible
• Claim: if s intersects rR and if parent(s) exists, then there exists a reachable state r’ that

intersects parent(s)
• Indeed, ALL states in s lead to a state in parent(s)
• Therefore r leads to a state in parent(s) as well

• A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A counterexample-guided
interpolant generation algorithm for SAT-based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma t, add (t, k+1, may) as a new proof
obligation
• Try to push t to Fk+1 instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large (important, not in pseudocode)

Recursive Blocking Stage in Quip (2)

// Find a reachable state rs, or strengthen the inductive trace s.t. FN  s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while Empty(Q) do

(s, k, p)  Pop(Q)
if (k = 0) && (p = must) return “Counterexample”
if (k = 0) && (p = may)

find a state r one-step-reachable from Init,
such that r intersects parent(s)

add r to R; continue
if (Fk  s) continue
if (s intersects some state rR) && (p = must) return “Counterexample”
if (s intersects some state rR) && (p = may)

if parent(s) exists, find a state r’ one-step-reachable from r,
such that r’ intersects parent(s)

add r’ to R; continue
// -- continued on the next slide --

Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide –-

if (Fk-1  Tr  s’) is SAT
t  generalized predecessor of s
Add(Q, (t, k-1, p))
Add(Q, (s, k, p))

else
t  generalize s by inductive generalization (to level mk)
add t to Fm
if (m<N)

if (t = s) Add(Q, (t, m+1, p))
else Add(Q, (t, m+1, may)) // attempt to block t (not s)

Experiments: IC3 vs. Quip on HWMCC’13 and ’14

• Implemented in IBM formal verification tool Rulebase-Sixthsense
• Data for 140 instances that were not trivially solved by preprocessing but could be solved

either by IC3 or Quip within 1-hour
• Detailed results at http://arieg.bitbucket.org/quip

Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

Q
u

ip
 (

se
c)

• Data for 140 instances from last slide

There are many ways to combine basic algorithmic steps to a complete algorithm. We have tried
the following variants (more details in the paper).

Reset-Free Variant:
• Keep (negation of) every lemma as a proof obligation (at the corresponding level)
• Can avoid the external pushing stage altogether!

Garbage-Collection Variant:
• Periodically remove all bad lemmas from the system

Quip – alternative implementations

• Improve handling of forward reachable states (both for performance and memory)

• Generalize forward reachable states

• Incorporate these ideas with other known IC3 developments
• Abstraction-Refinement:

Y. Vizel, O. Grumberg, S. Shoham: Lazy abstraction and SAT-based reachability in
hardware model checking. FMCAD 2012

• Lemma generalization:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

• Experiment with other ways to combine the ideas into a full algorithm

• Lift Quip to more general domains

Quip – future work

Thank You!!!

P.S.: We hope the title of the paper now makes sense.

P.P.S.: Can you guess what are google images for Push to the Top?

Experiments: IC3 vs. Quip on HWMCC’13 and ’14

