Pushing to the Top
FMCAD’15

Arie Gurfinkel
Alexander lvrii

Safety Verification

Consider a verification problem (Init, Tr, Bad)

The problem is UNSAFE if and only if there exists a path from an Init-state to a Bad-state, that is
Init(Xy) A Tr(Xo, Xo) A .o ATr(X 1, Xy) A Bad(X) is satisfiable for some N

The problem is SAFE if and only if there exists a safe inductive invariant G, that is
Init(X) = G(X)
G(X) A Tr(X, X') = G(X)
G(X) = —Bad(X)

Agenda

IC3 is one of the most powerful algorithms for proving safety
Very active area of research:

* A.Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable Correctness”)

* N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed reachability.
FMCAD 2011
(PDR stands for “Property Directed Reachability”)

* In this work we present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)

A brief preview of Quip

Quip extends IC3 by considering

* A wider range of conjectures (proof obligations)
* Designed to push already existing lemmas more aggressively
* Allows to push a given lemma by learning additional supporting lemmas
(and hopefully to compute an inductive invariant faster)

* Forward reachable states
* Explain why a lemma cannot be pushed
* Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure.

The experimental results look good.

A quick review of |C3

Input:
* A safety verification problem (Init, Tr, Bad)

Output:
* A counterexample (if the problem is UNSAFE),
* A safe inductive invariant (if the problem is SAFE)

* Resource Limit

Main Data-structures:

* A current working level N

* Aninductive trace (explained in a moment)
* Aset of proof obligations (explained in a moment)

Inductive Trace

Let F,, F,, F,, ..., F., be conjunctions of lemmas (in practice, clauses).
We say that F, F,, F,, ..., F_ is an inductive trace if:

(1) Fy = INIT

(2)Fp=>F,=>F,=>..=F,

(3) F,oF,o ... oF,_as sets of lemmas

(4) F ATR=F,, fori=0 (including F., A Tr = F_)

Remarks:
* This definition is slightly different from the original definition:

* Thesequence F,, F,, F,, ... is conceptually infinite (with F, = T for all i sufficiently large)
 We add F_ as the last element of the trace (as suggested in PDR)

* Each F, over-approximates states that are reachable in i steps or less
(in particular, F_ contains all reachable states)

Proof Obligations in IC3

A proof obligation in 1C3 is a pair (s, i), where
* sisa(generalized) cube over state variables
* iis anatural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if F, = —s.
Given a proof obligation (s, i), IC3 attempts to strengthen the inductive trace in order to block it.

Remarks:
* |InthelC3 algorithm, s is identified with a counterexample-to-induction (and called a CTl)
* |f(s,i)is a proof obligation and i>1, then (s, i-1) is assumed to be already blocked
e All proof obligations are managed via a priority queue:
* Proof obligations with smallest level are considered first
e (additional criteria for tie-breaking)

IC3 algorithm

The next two slides briefly describe the two main stages of IC3
 The recursive blocking stage
 The pushing stage

We omit many important details, and concentrate on how IC3 works rather than why
(there are many excellent references for this)

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the 1inductive trace s.t. F, = —s holds

IC3 _recBlockCube(s, N)
Add(Q, (s, N))
while —Empty(Q) do
(s, k) « Pop(Q)
if (k = @) return “Counterexample”
if (F, = —s) continue
if (Fe., A Tr A s?) is SAT
t < generalized predecessor of s
Add(Q: (tJ k'l))
Add(Q, (s, k))
else
—t <« generalize —s by inductive generalization (to level m>k)
add —t to F,
if (m<N) Add(Q, (s, m+l))

Pushing stage in IC3

// Push each clause to the highest possible frame up to N
IC3 Push()
for k =1 .. N-1 do
for c € F, \ F,, do
if (F,. A Tr = ¢’)
add c to F,,
if (Fy = Fiuq)
return “Proof” // F, is a safe inductive invariant

Towards improving 1C3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:

* Each lemma in the inductive trace is neither an over-approximation nor an under-
approximations of reachable states (a lemma in F, only over-approximates states reachable
within k steps):

* IC3 may learn lemmas that are too weak (ex. C;) — prune less states
* IC3 may learn lemmas that are too strong (ex. C,) — cannot be in the inductive invariant

Towards improving 1C3 (2)

We want to know if an already existing lemma is good (in F_) or bad (ex. C, from before):
* Avoid periodically pushing bad lemmas
* Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over learning of new ones:
* When the same cube s is blocked at different levels, usually different lemmas are discovered
* Though, IC3 partially addresses this using pushing (and other optimizations)
* Use the same lemma to block s (at the expense of deriving additional supporting lemmas)
 Though, in general different lemmas are of different “quality” and having some choice
may be beneficial

Immediate improvement: unlimited pushing

// Push each clause to the highest possible frame -tp—to—N—
IC3 Push Unlimited()
for k =1 .. do
for c € F, \ F,,, do
if (F,A Tr = ¢’)
add c to F,,
if (Fe = Fiuq)
F, < F
if (F, = —Bad)
return “Proof” // F_ is a safe 1inductive 1invariant

Claim: after pushing F_ represents a maximal inductive subset of all lemmas discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in PDR but claimed to be
ineffective. In our implementation, “unlimited pushing” leads to ~10% overall speed up.

More about pushing (1)

Why pushing is useful:
* During the execution of IC3, the sets F, are incrementally strengthened, and so it may happen
that F, A TR = ¢, even though this was not true at the time that c was discovered

Why pushing is good.:
* By pushing c from F, to F,,,, we make F, more inductive
(and if F, becomes equal to F,,,, then F, becomes an inductive invariant)
* Suppose that ceF, blocks a proof obligation (s, k).
By pushing c from F, to F,,,, we also block the proof obligation (s, k+1)
e Pushing Clauses = Improving Convergence = Reusing old lemmas for blocking bad states

More about pushing (2)

Why pushing may fail: suppose that c € F, \ F,,; but F, A TR does not imply c¢’. Why?

There are two alternatives:

1. cisavalid over-approximation of states reachable within k+1 steps, but F, is not strong
enough to imply this
* We can strengthen the inductive trace so that F, A TR = ¢’ becomes true

2. cis NOT a valid over-approximation of states reachable within k+1 steps
* Thereis areal forward reachable state r that is excluded by c
* c has no chance to be in the safe inductive invariant
* cisabadlemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

Two interdependent ideas

1. Prioritize pushing existing lemmas

Given a lemmac € F, \ F,,,, we can add (—c, k+1) as a may-proof-obligation
* May-proof-obligations are “nice to block”, but do not need to be blocked
If (—c, k+1) can be blocked, then c is pushed to F,,,

If (—c, k+1) cannot be blocked, then we discover a concrete reachable state r that is
excluded by c and that explains why c cannot be inductive

2. Discover new forward reachable states

These are an under-approximation of forward reachable states

Given a reachable state, all the existing lemmas that exclude it are bad
 Badlemmas are never pushed

Reachable states may show that certain may-proof-obligations cannot be blocked

Reachable states may be used when generalizing lemmas

Conceptually, computing new reachable states can be thought of as new Init states

QuIp

Input:
* A safety verification problem (Init, Tr, Bad)

Output:
* A counterexample (if the problem is UNSAFE),
* A safe inductive invariant (if the problem is SAFE)

* Resource Limit

Main Data-structures:

* A current working level N

* Aninductive trace (same as IC3)
* Aset of proof obligations (similar to 1C3)
 AsetR of forward reachable states

Proof Obligations in Quip

A proof obligation in Quip is a triple (s, i, p), where
* sisa(generalized) cube over state variables

e iisanatural number

 p e {may, must}

Remarks:
* AsinlIC3,if (s, i, p)is a proof obligation and i>1, then (s, i-1) is assumed to be already blocked
 AsinIC3, all proof obligations are managed via a priority queue:
* Proof obligations with smallest level are considered first
* In case of a tie, proof obligations with smallest number of literals are considered first
e (additional criteria for tie-breaking)
* Have a “parent map” from a proof obligation to its parent proof obligation
« parent(t) =sif (t, k-1, q) is a predecessor of (s, k, p)
* Infact, this is usually done in IC3 as well (for trace reconstruction)

Recursive Blocking Stage in Quip (1)

1. Each time that we examine a proof obligation (s, k, p), check whether s intersects a reachable
state reR

2. Discover new reachable states when possible
* Claim: if sintersects reR and if parent(s) exists, then there exists a reachable state r’ that
intersects parent(s)
* Indeed, ALL states in s lead to a state in parent(s)
 Therefore r leads to a state in parent(s) as well
 Asimilarideais presentin: C. Wu, C. Wu, C. Lai, C. Huang: A counterexample-quided
interpolant generation algorithm for SAT-based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma —t, add (t, k+1, may) as a new proof
obligation

* Tryto push —tto F,, instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large (important, not in pseudocode)

Recursive Blocking Stage in Quip (2)

// Find a reachable state res, or strengthen the 1inductive trace s.t. F, = —s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while —Empty(Q) do

(s, k, p) < Pop(Q)
if (k = 0) & (p = must) return “Counterexample”
if (k = 0) && (p = may)
find a state r one-step-reachable from Init,
such that r intersects parent(s)
add r to R; continue
if (F, = —s) continue
if (s intersects some state reR) & & (p = must) return “Counterexample”
if (s intersects some state reR) & & (p = may)
if parent(s) exists, find a state r’ one-step-reachable from r,
such that r’ intersects parent(s)
add r’ to R; continue
// -- continued on the next slide --

Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide --
if (Fe., A Tr A s?) is SAT
t <« generalized predecessor of s
Add(Q) (t: k_l) p))
Add(Q, (s, k, p))
else
—t <« generalize —s by inductive generalization (to level m>k)
add —t to F,
if (m<N)
if (t =s) Add(Q, (t, m+l, p))
else Add(Q, (t, m+1, may)) // attempt to block t (not s)

Experiments: IC3 vs. Quip on HWMCC’13 and "14

UNSAFE solved UNSAFE time SAFE solved SAFE time
IC3 22 (2) 52,302 76 (7) 137,244
Quip 32 (12) 20,302 99 (30) 69,590

Experimental results on the instances solved by either IC3 or Quip separated into
unsafe and safe instances. The numbers in parentheses represent the unique solves. The
times are in seconds.

* Implemented in IBM formal verification tool Rulebase-Sixthsense

* Data for 140 instances that were not trivially solved by preprocessing but could be solved
either by IC3 or Quip within 1-hour

* Detailed results at http://arieg.bitbucket.org/quip

Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

0 00

) X X/// X X/

1000 4 P 2
- 4 X o~
- e X /X
s/ X 4
/// % X x

- 7/ X/
o e X % x
@ 100 3 e X.// >><< /./
~] 4 s X 7
o] /7 X >§ /
Q s e e X
> // rd
d " X X/ X //'/ %

i 4 X

i 7 XX X 7 X

- / /

i X,// X ///

: X X /// X

X i
1 - X’)(g X /// x
1 7
. TTT] |/|/|||| TTTT] TTTTT] I
| 10 100 1000

Data for 140 instances from last slide

Quip — alternative implementations

There are many ways to combine basic algorithmic steps to a complete algorithm. We have tried
the following variants (more details in the paper).

Reset-Free Variant:
* Keep (negation of) every lemma as a proof obligation (at the corresponding level)
* Can avoid the external pushing stage altogether!

Garbage-Collection Variant:
* Periodically remove all bad lemmas from the system

Quip — future work

Improve handling of forward reachable states (both for performance and memory)
* Generalize forward reachable states

* Incorporate these ideas with other known IC3 developments
* Abstraction-Refinement:
Y. Vizel, O. Grumberg, S. Shoham: Lazy abstraction and SAT-based reachability in
hardware model checking. FMCAD 2012
* Lemma generalization:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

* Experiment with other ways to combine the ideas into a full algorithm

e Lift Quip to more general domains

hank You!ll

P.S.: We hope the title of the paper now makes sense.

P.P.S.: Can you guess what are google images for Push to the Top?

Experiments: IC3 vs. Quip on HWMCC’13 and "14

TABLE II. DATA ON REACHABLE STATES DISCOVERED BY QUIP
reach. states 0-10 11 — 100 101 — IK IK — 10K 10K — 50K
Instances 42 19 29 32 0
unique solved I l 10 22 8

