Integrating Proxy Theories and Numeric Model Lifting for Floating-Point Arithmetic

FMCAD 2016

Jaideep Ramachandran and Thomas Wahl

Northeastern University

Oct 4, 2016
Why Floating-Point Arithmetic?

Floating-point (FP) = practical approximation of real numbers

- Finite representation on computers
- Dynamic range
- Speed, implementation in hardware
FP arithmetic different from Real arithmetic

IEEE 754 (2008) Standard says:

\[x \, op_F \, y = \text{round}(x \, op_R \, y) \]

Standard describes 5 rounding modes
IEEE 754 (2008) Standard says:

\[x \ op_F y = \text{round}(x \ op_R y) \]

Standard describes 5 rounding modes

Examples of formulas satisfiable in FP:

- \[x \oplus y = x \land y > 0 \]
- \[x \ominus (y \ominus z) > (x \ominus y) \ominus z \]
- \[x \otimes (y \ominus z) > (x \otimes y) \ominus x \otimes z \]
Floating-point reasoning: approaches

- Traditionally: theorem proving, abstract domains
- More recently: decision procedures
 - Examples: Mathsat, z3
 - Big win: witness generation
 - Technique: bit-blasting, bit-vectors
 - Limitation: leads to huge boolean encodings
Automatic Detection of Floating-Point Exceptions

Earl T. Barr Thanh Vo Vu Le Zhendong Su

Department of Computer Science, University of California at Davis
{etbarr, vo, vmle, su}@ucdavis.edu
Using Reduced Precision FP [IJCAR14]

Solving FP formula \(f \)

- \(f' = \text{reduce_precision}(f) \)
- while \(f' \neq f \)
 - if \(\exists \sigma : \sigma \models f' \)
 - if \(\sigma \models f \)
 - return \(\sigma \)
 - else
 - increase precision of \(f' \)
Consider f:
Solve instead:

$$(x \oplus y) \oplus z > x \oplus (y \oplus z)$$
$$(x \ominus_9 y) \oplus_9 z > x \ominus_9 (y \ominus_9 z)$$

Satisfiable in FP_9 (as any bit-blaster will tell you):

$x_0 = y_0 = 1.18, \quad z_0 = 1.97 \times 10^{-3}$

Problem: $f(x_0, y_0, z_0) \rightarrow \text{false}! \quad \text{What now?}$
Proxy solution

- Proxy solution gets discarded [IJCAR14] if it does not work as is:
 - effort wasted

Can we use the proxy solution in some way?

Can the proxy solution be lifted to an actual satisfying solution?
Lifting a proxy solution

Solving FP formula f

- $f' = \text{reduce_precision}(f)$
- while($f' \neq f$)
 - if $\exists \sigma : \sigma \models f'$
 - if $\sigma \models f$
 - return σ
 - else
 - do_something(σ)
 - else
 - increase precision of f'
Framework: Overview

$f_T := f$ mapped to T

$\exists \sigma_T. \sigma_T \models_T f_T$?

$\sigma := \text{ToFloat}(\sigma_T)$

$\sigma \models f$?

$\sigma := \text{ModelLift}(\sigma, \sigma_T, f_T)$

$\exists \sigma_T. \sigma_T \models_T f_T$? (success)

$f_T := \text{Refine}(f_T)$ (failure)

σ (exception)

Jaideep Ramachandran and Thomas Wahl

Proxy Theories and Model Lifting for Floating-Point Arithmetic
Proxy theories for floating-point: Conditions

- offer a mapping from FP formulas
- easier to reason about than FP
- offer a mapping to FP models
- gradually refinable back to FP
Proxy theories for floating-point: Candidates

Reduced precision (reduced exponent + mantissa) FP
- “easier”
- map solutions to original precision FP by padding bits
- refine by gradually increasing exponent, mantissa

Real arithmetic
- sometimes easier
- map solutions to FP by rounding
- refine by interpreting some real operators as FP [DATE14]
Numeric Model Lifting
Framework: overview

- $f_T := f$ mapped to T
- $\exists \sigma_T. \sigma_T \models_T f_T$?
- $\sigma := ToFloat(\sigma_T)$
- $\sigma \models f$?
- $\sigma := ModelLift(\sigma, \sigma_T, f_T)$
- $f_T := \text{Refine}(f_T)$

Flowchart:
- Yes: σ, continue
- No: $f_T := \text{Refine}(f_T)$, success or failure
- Exception: UNSAT

Jaideep Ramachandran and Thomas Wahl
Proxy Theories and Model Lifting for Floating-Point Arithmetic
Assumption: proxy theory T delivers satisfying T assignment such that an FP solution is nearby

Idea for lifting proxy soln to FP soln:
- T assign. gives satisfying Boolean skeleton
- fix constraints where T and FP disagree
- pick small subset $\text{Vars}(f)$ to do so, keep others constant
Numeric Model Lifting: Example

\[f(x, y) \equiv x \otimes y \otimes y \oplus 2 \lor x \oplus y \ominus 0 \]

- **\(\mathbb{R} : x \ast y^2 > 2 \lor x + y < 0 : \bar{x} = 1, \bar{y} = 1.42 \)**
- **\(\ln \mathbb{R} : T \lor F = T \) \(\ln \text{FP} : F \lor F = F \)**
- **Goal:** fix FP assign. so that \(x \otimes y \otimes y \oplus 2 = T \)

\[f'(x) \equiv x \otimes \bar{y} \otimes \bar{y} \oplus 2 \land \neg(x \oplus \bar{y} \ominus 0) \]

\(f' \) is: (i) univariate, (ii) linear, (iii) conjunctive
1. Reduces decision problem \((f)\) to simpler one \((f')\)
2. Uses off-the-shelf floating-point SMT solver for \(f'\)

Benefits:

- Propositional structure of \(f\) reduced to conjunction
- Typically, \(\text{Vars}(f') \subseteq \text{Vars}(f)\)
- Often, degree \(\text{deg}(f') < \text{deg}(f)\)
- Independent of where proxy solution came from
Framework: On Soundness, Termination, Completeness

\[f_T := f \text{ mapped to } T \]

\[\exists \sigma_T. \sigma_T \models_T f_T? \]

\[f_T := \text{Refine}(f_T) \]

\[\sigma := \text{ToFloat}(\sigma_T) \]

\[\sigma \models f \]

\[\sigma := \text{ModelLift}(\sigma, \sigma_T, f_T) \]

Failure

Success

Exception

Jaideep Ramachandran and Thomas Wahl
Proxy Theories and Model Lifting for Floating-Point Arithmetic
Experimental Evaluation
Set I:
- Non-linear benchmarks [FMSD14]
- Ignored casts (single precision), ignored special values
- Benchmarks are satisfiable or status is unknown

Set II:
- False identity non-linear benchmarks, $E - \hat{E} > \epsilon$
 e.g., $(a^2 \ominus b^2) - (a \ominus b)(a \oplus b) > \epsilon$
- is of interest in compiler optimization
- single precision

Timeout: 20 min
Experimental Evaluation (Set II)

<table>
<thead>
<tr>
<th>Problem</th>
<th>It</th>
<th>Lifted?</th>
<th>Time (s)</th>
<th></th>
<th>Lifted?</th>
<th>Time (s)</th>
<th>Lifted?</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>3</td>
<td>✓</td>
<td>148.6</td>
<td>8</td>
<td>✓</td>
<td>163.7</td>
<td>8</td>
<td>60.5</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>✓</td>
<td>64.6</td>
<td>8</td>
<td>✓</td>
<td>137.9</td>
<td>8</td>
<td>108.4</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>×</td>
<td>162.7</td>
<td>8</td>
<td>×</td>
<td>137.2</td>
<td>8</td>
<td>108.4</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>✓</td>
<td>0.9</td>
<td>8</td>
<td>✓</td>
<td>137.2</td>
<td>8</td>
<td>108.2</td>
</tr>
<tr>
<td>27</td>
<td>8</td>
<td>×</td>
<td>278.2</td>
<td>8</td>
<td>×</td>
<td>162.8</td>
<td>8</td>
<td>47.7</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>✓</td>
<td>12.4</td>
<td>8</td>
<td>✓</td>
<td>123.1</td>
<td>8</td>
<td>51.8</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>×</td>
<td>70.2</td>
<td>4</td>
<td>×</td>
<td>9.8</td>
<td>4</td>
<td>112.4</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>✓</td>
<td>62.6</td>
<td>8</td>
<td>✓</td>
<td>108.5</td>
<td>8</td>
<td>108.7</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>✓</td>
<td>144.5</td>
<td>8</td>
<td>✓</td>
<td>172.4</td>
<td>8</td>
<td>122.5</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>✓</td>
<td>157.2</td>
<td>8</td>
<td>✓</td>
<td>TO</td>
<td>8</td>
<td>133.6</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>✓</td>
<td>1.1</td>
<td>4</td>
<td>✓</td>
<td>0.6</td>
<td>4</td>
<td>133.6</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>✓</td>
<td>181.4</td>
<td>8</td>
<td>✓</td>
<td>TO</td>
<td>8</td>
<td>605.4</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>✓</td>
<td>2.1</td>
<td>8</td>
<td>✓</td>
<td>7.7</td>
<td>8</td>
<td>596.5</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>×</td>
<td>0.1</td>
<td>1</td>
<td>×</td>
<td>0.1</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>×</td>
<td>0.5</td>
<td>3</td>
<td>×</td>
<td>0.5</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Experimental Evaluation (Results)

Set I: total 22, Set II: total 15

<table>
<thead>
<tr>
<th></th>
<th>Molly</th>
<th>Approx</th>
<th>Mathsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Solved</td>
<td>14(9)</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Total Time(s)</td>
<td>3067</td>
<td>1650</td>
<td>6656</td>
</tr>
<tr>
<td>Avg. Time(s)</td>
<td>219</td>
<td>127</td>
<td>443</td>
</tr>
<tr>
<td># TO</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Solved</td>
<td>15(10)</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Total Time(s)</td>
<td>1287</td>
<td>1161</td>
<td>2237</td>
</tr>
<tr>
<td>Avg. Time(s)</td>
<td>86</td>
<td>89</td>
<td>149</td>
</tr>
<tr>
<td># TO</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Future Directions

- Non-symbolic model lifting
- Numeric solvers for approximate solutions
- Handling other combinations of proxy ↔ actual solutions
 - UNSAT ↔ UNSAT
 - UNSAT ↔ SAT
 - SAT ↔ UNSAT
Thank You!
Backup Slides
Experimental Evaluation (Set I)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Molly (RPFPA)</th>
<th>Approx [IJCAR14]</th>
<th>Mathsat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>It</td>
<td>Lifted?</td>
<td>Time (s)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>✓</td>
<td>7.8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>✓</td>
<td>15.8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>×</td>
<td>60.1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>×</td>
<td>337.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>✓</td>
<td>3.2</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>×</td>
<td>680.5</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>✓</td>
<td>863.3</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>TO</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>×</td>
<td>484.7</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>×</td>
<td>350.3</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>✓</td>
<td>4.9</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>✓</td>
<td>22.1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>✓</td>
<td>3.3</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>✓</td>
<td>263.4</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>✓</td>
<td>39.1</td>
</tr>
</tbody>
</table>
Instantiation with Real Arithmetic Proxy Theory

Set III:

- $E > \hat{E}$
 $$(((a_1 \oplus a_2) \oplus (a_3 \oplus a_4)) \oplus a_5) > (((a_1 \oplus a_2) \oplus a_3) \oplus a_4) \oplus a_5$$

- $(0, 1024.0]$
- single precision, RoundToNearestEven
- Offset O is singleton (gradient analysis)
Experimental Evaluation

Set III benchmarks

<table>
<thead>
<tr>
<th>#Vars</th>
<th>It</th>
<th>Lifted?</th>
<th>Time (s)</th>
<th>It</th>
<th>Time (s)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>6</td>
<td>✓</td>
<td>30.5</td>
<td>15</td>
<td>153</td>
<td>81.6</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>✓</td>
<td>11.9</td>
<td>7</td>
<td>34</td>
<td>278.2</td>
</tr>
<tr>
<td>45</td>
<td>8</td>
<td>✓</td>
<td>448.6</td>
<td>33</td>
<td>TO</td>
<td>457.1</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>✓</td>
<td>25.1</td>
<td>20</td>
<td>344</td>
<td>164.5</td>
</tr>
<tr>
<td>55</td>
<td>5</td>
<td>✓</td>
<td>28.3</td>
<td>16</td>
<td>210</td>
<td>754.8</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>✓</td>
<td>17.2</td>
<td>34</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>65</td>
<td>7</td>
<td>✓</td>
<td>42.0</td>
<td>11</td>
<td>88</td>
<td>TO</td>
</tr>
</tbody>
</table>