
Accurate ICP-based Floating-Point Reasoning

Albert-Ludwigs-Universität Freiburg

Karsten Scheibler, Felix Neubauer, Ahmed Mahdi,
Martin Fränzle, Tino Teige, Tom Bienmüller,
Detlef Fehrer, Bernd Becker
Chair of Computer Architecture
FMCAD 2016

Context of this Work

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 2 / 67

Context of this Work (1)

Cooperation with Industrypartners (AVACS Transfer Project 1):
“Accurate Dead Code Detection in Embedded
C Code by Arithmetic Constraint Solving”

University of Oldenburg: BTC-ES (Oldenburg):
Ahmed Mahdi Tino Teige
Martin Fränzle Tom Bienmüller

University of Freiburg: SICK (Waldkirch):
Felix Neubauer Detlef Fehrer
Karsten Scheibler
Bernd Becker

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 3 / 67

Context of this Work (2)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 4 / 67

Context of this Work (3)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts

annotate with coverage goal
cone of influence reduction
resolve loops and functions
flatten data types
static single assignment form
BMC problem

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 5 / 67

Context of this Work (4)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts
This presentation:

accurate reasoning for
floating-point arithmetic
support for bitwise integer
operations

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 6 / 67

How does iSAT3 Work

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 7 / 67

iSAT3 = CDCL + ICP

CDCL: conflict-driven clause learning
ICP: interval constaint propagation

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 8 / 67

CDCL (1)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 9 / 67

CDCL (1)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

Tseitin-
Transformation

(h1⇔ (¬b∧c))
(h2⇔ (a⊕h1))

Boolean Formula

(a⊕ (¬b∧c))

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 10 / 67

CDCL (2)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 11 / 67

CDCL (3)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 12 / 67

CDCL (4)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 13 / 67

CDCL (4)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 14 / 67

CDCL (4)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision
(or SAT)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 15 / 67

CDCL (5)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision
(or SAT)

conflict

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 16 / 67

CDCL (5)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision
(or SAT)

conflict

Conflict Analysis
and Backtrack

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 17 / 67

CDCL (5)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision
(SAT)

conflict

Conflict Analysis
and Backtrack
(or UNSAT)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 18 / 67

iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 19 / 67

iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

Tseitin-like
Transformation

(h1 = y2)
(h2 = x +h1)

(h3⇔ (h2 < 5))
(h4⇔ (a⊕h3))

SMT Formula

(a⊕ (x +y2 < 5))

linear and nonlinear real arithmetic

with transcendental functions

• maintain interval for every real- or integer-valued variable
• PC: primitive constraints: (h1 = y2), (h2 = x +h1)
• MAP: map literals to simple bounds: (h3⇔ (h2 < 5))

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 20 / 67

iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

Tseitin-like
Transformation

(h1 = y2)
(h2 = x +h1)

(h3⇔ (h2 < 5))
(h4⇔ (a⊕h3))

SMT Formula

(a⊕ (x +y2 < 5))

linear and nonlinear real arithmetic

with transcendental functions

• maintain interval for every real- or integer-valued variable
• PC: primitive constraints: (h1 = y2), (h2 = x +h1)
• MAP: map literals to simple bounds: (h3⇔ (h2 < 5))

Assignment
Variable Type Value
a bool false
x real . . .
y real . . .
h1 real . . .
h2 real h3
h3 bool true

simple bound
(h2 < 5)

h4 bool true

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 21 / 67

iSAT3 (2)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 22 / 67

iSAT3 (3)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 23 / 67

iSAT3 (4)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP

no conflict

Decision,
Split

(or SAT)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 24 / 67

iSAT3 (5)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP

no conflict

Decision,
Split

(or SAT)

conflict

Conflict Analysis
and Backtrack
(or UNSAT)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 25 / 67

iSAT3 (6)

SAT iSAT3
Deductions • BCP for clauses • BCP for clauses

evaluate simple bound
literals
 implication clauses
• ICP for PC
 arithmetic clauses

Decisions • decide literals • decide literals
• generate new simple

bound literals
and decide them

Conflict Analyses • traverse implication • traverse implication
graph (1UIP) graph (1UIP)
 conflict clauses conflict clauses

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 26 / 67

iSAT3 (6)

SAT iSAT3
Deductions • BCP for clauses • BCP for clauses

evaluate simple bound
literals
 implication clauses
• ICP for PC
 arithmetic clauses

Decisions • decide literals • decide literals
• generate new simple

bound literals
and decide them

Conflict Analyses • traverse implication • traverse implication
graph (1UIP) graph (1UIP)
 conflict clauses conflict clauses

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 27 / 67

iSAT3 (7)

Implication Clauses:
unassigned simple bound literals are evaluated lazily
therefore implications possible: (h2 < 5)⇒ (h2 < 7)

Arithmetic Clauses:
result of interval constraint propagation (ICP)
e.g. h2 = x +h1: ((x ≤ 3)∧ (h1 < 2))⇒ (h2 < 5)
redirect, e.g. x = h2−h1: ((h2 < 10)∧ (h1 ≥ 1))⇒ (x < 9)
using floating-point numbers for interval bounds
always round outwards for safe enclosing intervals
generate new simple bound literals

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 28 / 67

iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 29 / 67

iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions

iSAT3 is the 3rd implementation of the iSAT
algorithm. Abstract CDCL with interval abstrac-
tion has similarities to the iSAT algorithm
iSAT algorithm: “Efficient Solving of Large Non-linear Arithmetic Constraint Systems

with Complex Boolean Structure”, JSAT 2007
Abstract CDCL: “Deciding Floating-Point Logic with Systematic Abstraction”,

FMCAD 2012

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 30 / 67

iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions

1 new arithmetic operations add ICP-contractors

2 need to adapt Boolean abstraction for floating-point

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 31 / 67

Accurate Reasoning for
Floating-Point Arithmetic

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 32 / 67

Accurate Reasoning for FP (1)

IEEE-754 Specification (float, 32 bits)

Bitpos→ 31 30 . . . 23 22 . . . 0
sign exponent fraction / mantissa

1 normal numbers:
mantissa bitpos 23 assumed to be 1
exponent 1 −126 . . . 254 +127
sign 0 positive 1 negative

2 special numbers:
signed zeros (−0, +0)
−∞,+∞ (-inf, +inf)
subnormal numbers (leading zeros in mantissa)
not a number (NaN)

3 rounding modes (up, down, nearest)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 33 / 67

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 34 / 67

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 35 / 67

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

hexadecimal floating-point notation

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 36 / 67

Accurate Reasoning for FP (3)

simple bound ordering:
-inf < -0x1.fffffep+127 < . . .
. . .< -0x0.000002p-126 < -0 < +0 < +0x0.000002p-126 < . . .
. . .< +0x1.fffffep+127 < +inf

no strict bounds needed:
reals: (x ≤ 5)⇔¬(x > 5)
floating-point: (x ≤-0x0.000002p-126)⇔¬(x ≥-0)

floating-point comparison operators and signed zeros:
(x <= 0) (x ≤+0)
(x >= 0) (x ≥-0)
(x == 0) (x ≥-0)∧ (x ≤+0)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 37 / 67

Accurate Reasoning for FP (3)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 38 / 67

Accurate Reasoning for FP (3)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

NaN ?

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 39 / 67

Accurate Reasoning for FP (4)

#include <math.h>
#include <stdio.h>
int main(void) {

double a = sqrt(-1);
printf("%1.2f\n", a);

if (a < 0) printf("if\n");
else printf("else\n");

if (a >= 0) printf("if\n");
else printf("else\n");
return (0);
}

-nan
else
else
FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 40 / 67

Accurate Reasoning for FP (4)

#include <math.h>
#include <stdio.h>
int main(void) {

double a = sqrt(-1);
printf("%1.2f\n", a);

if (a <= 0) printf("if\n");
else printf("else\n");

if (a > 0) printf("if\n");
else printf("else\n");
return (0);
}

-nan
else
else
FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 41 / 67

Accurate Reasoning for FP (4)

#include <math.h>
#include <stdio.h>
int main(void) {

double a = sqrt(-1);
printf("%1.2f\n", a);

if (a == 0) printf("if\n");
else printf("else\n");

if (a != 0) printf("if\n");
else printf("else\n");
return (0);
}

-nan
else
if
FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 42 / 67

Accurate Reasoning for FP (5)

SAT iSAT3
Deductions • BCP for clauses • BCP for clauses

evaluate simple bound
literals
 implication clauses
• ICP for PC
 arithmetic clauses

Decisions • decide literals • decide literals
• generate new simple

bound literals
and decide them

Conflict Analyses • traverse implication • traverse implication
graph (1UIP) graph (1UIP)
 conflict clauses conflict clauses

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 43 / 67

Accurate Reasoning for FP (5)

NaN incomparable against all other values:
(x ∼ NaN), ∼∈ {<,≤,=,≥,>} is always false

adapt Boolean encoding: special literal xNaN
xNaN x is NaN
¬xNaN x is determined by simple bound literals

(x ≤-inf) . . . (x ≤-0) . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 44 / 67

Accurate Reasoning for FP (5)

implication clauses:
(¬xNaN ∧ (x ≤ 5))⇒ (x ≤ 7)

arithmetic clauses: h = x +y
(¬xNaN ∧¬yNaN ∧¬hNaN ∧ (x ≤ 3)∧ (y ≤ 2))⇒ (h≤ 5)

not shown here, but xNaN also relevant during Tseitin-like
transformation

besides <,≤,=,≥,> operators, further operator to mimic
behaviour of assignments: x = y vs. x == y

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 45 / 67

Accurate Reasoning for FP (6)

New ICP-Contractors for +,−,∗,/ (round-to-nearest):

1 NaN cases: handled outside with separate clauses

2 forward deduction: execute operation with round-to-nearest

3 backward deduction: only redirecting the primitive
constraint is not enough

ICP-contractors called when NaN-literals of operands false
(otherwise the created arithmetic clauses not unit)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 46 / 67

Accurate Reasoning for FP (6)

New ICP-Contractors for +,−,∗,/ (round-to-nearest):

1 NaN cases: handled outside with separate clauses

2 forward deduction: execute operation with round-to-nearest

3 backward deduction: only redirecting the primitive
constraint is not enough

ICP-contractors called when NaN-literals of operands false
(otherwise the created arithmetic clauses not unit)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 46 / 67

Accurate Reasoning for FP (6)

1 Separate clauses for primitive constraint (h = x +y):

x or y is NaN ⇒ h is NaN
x and y are infinities with opposite signs ⇒ h is NaN
x and y are not NaN and x is never -inf or +inf ⇒ h is not NaN
x and y are not NaN and y is never -inf or +inf ⇒ h is not NaN
x and y are not NaN and x and y are never -inf ⇒ h is not NaN
x and y are not NaN and x and y are never +inf ⇒ h is not NaN

(¬xNaN ∨hNaN) ∧ (¬yNaN ∨hNaN) ∧
(xNaN ∨yNaN ∨¬(x ≤-inf)∨¬(y ≥+inf)∨hNaN) ∧
(xNaN ∨yNaN ∨¬(x ≥+inf)∨¬(y ≤-inf)∨hNaN) ∧
(xNaN ∨yNaN ∨ (x ≤-inf)∨ (x ≥+inf)∨¬hNaN) ∧
(xNaN ∨yNaN ∨ (y ≤-inf)∨ (y ≥+inf)∨¬hNaN) ∧
(xNaN ∨yNaN ∨ (x ≤-inf)∨ (y ≤-inf)∨¬hNaN) ∧
(xNaN ∨yNaN ∨ (x ≥+inf)∨ (y ≥+inf)∨¬hNaN)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 47 / 67

Accurate Reasoning for FP (6)

2 Forward deduction primitive constraint (h = x +y):

h ∈ [-inf, +inf],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

hlb = xlb +ylb =0x1.1p+100+ -0x1.1p+11=0x1.1p+100
hub = xub +yub =0x1.1p+100+ -0x1.1p+10=0x1.1p+100

apply operation with round-to-nearest

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 48 / 67

Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint (h = x +y):

h ∈ [0x1.1p+100, 0x1.1p+100],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

ylb = hlb−xub = 0x1.1p+100−0x1.1p+100 = 0
yub = hub−xlb = 0x1.1p+100−0x1.1p+100 = 0

[-0x1.1p+11, -0x1.1p+10]∩ [0,0] = /0
simply redirecting and rounding outward is WRONG!

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 49 / 67

Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint (h = x +y):

h ∈ [0x1.1p+100, 0x1.1p+100],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

ylb = hlb−xub = prev(0x1.1p+100)−next(0x1.1p+100)
= 0x1.0ffffep+100 - 0x1.100002p+100
= -0x1.000000p+78

yub = hub−xlb = next(0x1.1p+100)−prev(0x1.1p+100)
= 0x1.100002p+100 - 0x1.0ffffep+100
= 0x1.000000p+78

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 50 / 67

Accurate Reasoning for FP Summarized

floating-point arithmetic contains special values

ordering possible, except NaN

unordered NaN adapted Boolean encoding
implication clauses
arithmetic clauses

new ICP-contractors for floating-point operations
NaN-cases handled with BCP
outward rounding not enough in backward deduction

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 51 / 67

ICP-Contractors for
Bitwise Integer Operations

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 52 / 67

ICP-Contractors for Bitwise Operations (1)

operating on intervals
a bit-pattern can be interpreted as signed or unsigned

00010001 10000001
signed char 17 -127
unsigned char 17 129

need to know bitwidth and signedness of each operation
s_not(arg,bitwidth), u_not(arg,bitwidth)
s_and(arg1,arg2,bitwidth), u_and(arg1,arg2,bitwidth)
s_or(arg1,arg2,bitwidth), u_or(arg1,arg2,bitwidth)
s_xor(arg1,arg2,bitwidth), u_xor(arg1,arg2,bitwidth)
s_cast(arg,bitwidth), u_cast(arg,bitwidth)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 53 / 67

ICP-Contractors for Bitwise Operations (2)

(h = x +y), x ∈ [1,7], y ∈ [1,8]:
hlb = xlb +ylb = 1+1 = 2
hub = xub +yub = 7+8 = 15
 operating on bounds OK

(h = u_and(x,y,8)), x ∈ [1,7], y ∈ [1,8]:
hlb = xlb & ylb = 1 & 1 = 1 (1 & 2 = 0)
hub = xub & yub = 7 & 8 = 0 (7 & 7 = 7)
 operating on bounds WRONG

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 54 / 67

ICP-Contractors for Bitwise Operations (3)

1 use addition, subtraction, minimum and maximum to get
safe overapproximations of the lower and upper bounds,
e.g. (h = u_and(x,y,8)), x ∈ [1,7], y ∈ [1,8]:
hub = min(xub,yub) = min(7,8) = 7

2 exploit common bit-prefixes,
e.g. (h = u_and(x,y,8)), x ∈ [18,30], y ∈ [89,92]:
xlb = 18 = 00010010
xub = 30 = 00011110

0001 common bit-prefix for values in x

ylb = 89 = 01011001
yub = 92 = 01011100

01011 common bit-prefix for values in y

hlb = 00010000 & 01011000 = 00010000 = 16 trailing bits are 0
hub = 00011111 & 01011111 = 00011111 = 31 trailing bits are 1

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 55 / 67

ICP-Contractors for Bitwise Operations (3)

1 use addition, subtraction, minimum and maximum to get
safe overapproximations of the lower and upper bounds,
e.g. (h = u_and(x,y,8)), x ∈ [1,7], y ∈ [1,8]:
hub = min(xub,yub) = min(7,8) = 7

2 exploit common bit-prefixes,
e.g. (h = u_and(x,y,8)), x ∈ [18,30], y ∈ [89,92]:
xlb = 18 = 00010010
xub = 30 = 00011110

0001 common bit-prefix for values in x

ylb = 89 = 01011001
yub = 92 = 01011100

01011 common bit-prefix for values in y

hlb = 00010000 & 01011000 = 00010000 = 16 trailing bits are 0
hub = 00011111 & 01011111 = 00011111 = 31 trailing bits are 1

A detailed description of all operations can be found
in AVACS Technical Report 116:
“Extending iSAT3 with ICP-Contractors for Bitwise In-
teger Operations”

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 56 / 67

Optimizations

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 57 / 67

Intermediate Point-Splits

decomposition into PCs might lead to coarser intervals,
e.g. ((x +y)−x ≤ 7) (h1 = x +y)∧ (h2 = h1−x)
x,y ∈ [0,10] : h1 ∈ [0,20],h2 ∈ [−10,30]⊃ [0,10]

tighter intervals if x is point interval

change decision heuristic, every k-th interval split will
assign a point interval (k = 4)

might help to find a solution, BUT: detrimental for conflict
clauses

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 58 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

with a = 1:
. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .

with b = 1:
. . . ∧ (i1 6= s_cast(i1,32))∧ . . .

with i1 ∈ [0,231−1]:
. . . ∧ (i1 6= i1)∧ . . .

but this symbolic dependency is not visible for ICP
(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
with a = 1:

. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .

with b = 1:
. . . ∧ (i1 6= s_cast(i1,32))∧ . . .

with i1 ∈ [0,231−1]:
. . . ∧ (i1 6= i1)∧ . . .

but this symbolic dependency is not visible for ICP
(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
with a = 1:

. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .
with b = 1:

. . . ∧ (i1 6= s_cast(i1,32))∧ . . .

with i1 ∈ [0,231−1]:
. . . ∧ (i1 6= i1)∧ . . .

but this symbolic dependency is not visible for ICP
(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
with a = 1:

. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .
with b = 1:

. . . ∧ (i1 6= s_cast(i1,32))∧ . . .
with i1 ∈ [0,231−1]:

. . . ∧ (i1 6= i1)∧ . . .

but this symbolic dependency is not visible for ICP
(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
with a = 1:

. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .
with b = 1:

. . . ∧ (i1 6= s_cast(i1,32))∧ . . .
with i1 ∈ [0,231−1]:

. . . ∧ (i1 6= i1)∧ . . .
but this symbolic dependency is not visible for ICP

(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
with a = 1:

. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .
with b = 1:

. . . ∧ (i1 6= s_cast(i1,32))∧ . . .
with i1 ∈ [0,231−1]:

. . . ∧ (i1 6= i1)∧ . . .
but this symbolic dependency is not visible for ICP

(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 59 / 67

Global-ICP (2)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

more than 64 deductions per variable per decision level:
1 no further deductions for this variable
2 analyze implication graph, collect involved primitive

constraints (the 4 PCs from previous slide)

analyze primitive constraints semi-symbolically

conflicting clause which spans more than one PC, e.g.
(b∧ (h1 ≥ 0)∧ (h1 ≤ 0)∧ (i2 ≥ 0)∧ (i2 ≤ 231−1))⇒ (h4 ≤ 0)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 60 / 67

Results

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 61 / 67

Results (1)

213 pure floating-point benchmarks from the FP-ACDCL
paper
Comparison between FP-ACDCL (ICP-based), Mathsat
(bit-blasting) and iSAT3 (ICP-based)
Timeout: 900 seconds, Memout: 2 GB

Solver S+U SAT UNSAT TO MO
FP-ACDCL 173 97 76 40 0
Mathsat 5.3.11 182 101 81 23 8
iSAT3 164 90 74 47 2
iSAT3 + psplits 186 111 75 27 0
iSAT3 + psplits + gicp 193 111 82 20 0

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 62 / 67

Results (1)

900s

600s

300s

0s
0 50 100 150 200

Number of solved benchmarks

Ti
m
e

FP-ACDCL
Mathsat 5.3.11
iSAT3 + psplits + gicp

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 63 / 67

Results (2)

8778 BMC benchmarks generated by BTC toolchain,
containing floating-point and bitwise integer operations
Comparison between CBMC (bit-blasting, k-induction) and
iSAT3 (ICP-based, Craig interpolation)
both with on-the-fly translation from SMI to their input language

Timeout: 60 seconds

Solver S+U SAT U51 U∞ TO
SMI-CBMC 8099 7424 44 631 679
SMI-iSAT3 7647 6671 153 823 1131
SMI-iSAT3 + psplits 8169 7192 156 821 609
SMI-iSAT3 + psplits + gicp 8430 7427 172 831 348

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 64 / 67

Results (2)

60s

40s

20s

0s
0 2 100 4 200 6 300 8 400

Number of solved benchmarks

Ti
m
e

SMI-CBMC
SMI-iSAT3 + psplits + gicp

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 65 / 67

Conclusion

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 66 / 67

Conclusion

dead-code detection in C programs = accurate
floating-point reasoning + bitwise integer operations

iSAT3: first non-bit-blasting SMT solver supporting the full
range of basic data types and operations in C programs

promising results:
outperforms bit-blasting solvers (MathSAT, CBMC)
outperforms other ICP-based solver (FP-ACDCL)

Outlook: also integrate ICP-contractors for floating-point
sine, cosine

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 67 / 67

	Context of this Work
	How does iSAT3 Work
	Accurate Reasoning for Floating-Point Arithmetic
	ICP-Contractors for Bitwise Operations
	Optimizations
	Results
	Conclusion

