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C Code by Arithmetic Constraint Solving”

University of Oldenburg: BTC-ES (Oldenburg):
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Context of this Work (2)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts
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Context of this Work (3)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts

annotate with coverage goal
cone of influence reduction
resolve loops and functions
flatten data types
static single assignment form
BMC problem
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Context of this Work (4)

C
BTC-Toolchain

SMI
SMI2iSAT

HYS
iSAT3

Scripts
This presentation:

accurate reasoning for
floating-point arithmetic
support for bitwise integer
operations
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How does iSAT3 Work
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iSAT3 = CDCL + ICP

CDCL: conflict-driven clause learning
ICP: interval constaint propagation

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 8 / 67



CDCL (1)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)
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CDCL (1)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

Tseitin-
Transformation

(h1⇔ (¬b∧c))
(h2⇔ (a⊕h1))

Boolean Formula

(a⊕ (¬b∧c))

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 10 / 67



CDCL (2)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)
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CDCL (3)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP
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CDCL (4)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict
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CDCL (5)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
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BCP

no conflict

Decision
(or SAT)

conflict
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CDCL (5)
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no conflict

Decision
(or SAT)

conflict

Conflict Analysis
and Backtrack
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CDCL (5)

CNF

(¬b∨¬h1) ∧
(c∨¬h1) ∧
(b∨¬c∨h1) ∧
(a∨h1∨¬h2) ∧
(a∨¬h1∨h2) ∧
(¬a∨h1∨h2) ∧
(¬a∨¬h1∨¬h2) ∧
(h2)

BCP

no conflict

Decision
(SAT)

conflict

Conflict Analysis
and Backtrack
(or UNSAT)
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iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)
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iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

Tseitin-like
Transformation

(h1 = y2)
(h2 = x +h1)

(h3⇔ (h2 < 5))
(h4⇔ (a⊕h3))

SMT Formula

(a⊕ (x +y2 < 5))

linear and nonlinear real arithmetic

with transcendental functions

• maintain interval for every real- or integer-valued variable
• PC: primitive constraints: (h1 = y2), (h2 = x +h1)
• MAP: map literals to simple bounds: (h3⇔ (h2 < 5))
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iSAT3 (1)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

Tseitin-like
Transformation

(h1 = y2)
(h2 = x +h1)

(h3⇔ (h2 < 5))
(h4⇔ (a⊕h3))

SMT Formula

(a⊕ (x +y2 < 5))

linear and nonlinear real arithmetic

with transcendental functions

• maintain interval for every real- or integer-valued variable
• PC: primitive constraints: (h1 = y2), (h2 = x +h1)
• MAP: map literals to simple bounds: (h3⇔ (h2 < 5))

Assignment
Variable Type Value
a bool false
x real . . .
y real . . .
h1 real . . .
h2 real h3
h3 bool true

simple bound
(h2 < 5)

h4 bool true
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iSAT3 (2)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

FMCAD 2016 Karsten Scheibler – Accurate ICP-based FP Reasoning 22 / 67



iSAT3 (3)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP
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iSAT3 (4)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP

no conflict

Decision,
Split

(or SAT)
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iSAT3 (5)

PC + MAP + CNF

(h1 = y2) ∧
(h2 = x +h1) ∧
(h3⇔ (h2 < 5)) ∧
(a∨h3∨¬h4) ∧
(a∨¬h3∨h4) ∧
(¬a∨h3∨h4) ∧
(¬a∨¬h3∨¬h4) ∧
(h4)

BCP, ICP

no conflict

Decision,
Split

(or SAT)

conflict

Conflict Analysis
and Backtrack
(or UNSAT)
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iSAT3 (6)

SAT iSAT3
Deductions • BCP for clauses • BCP for clauses

evaluate simple bound
literals
 implication clauses
• ICP for PC
 arithmetic clauses

Decisions • decide literals • decide literals
• generate new simple

bound literals
and decide them

Conflict Analyses • traverse implication • traverse implication
graph (1UIP) graph (1UIP)
 conflict clauses  conflict clauses
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iSAT3 (7)

Implication Clauses:
unassigned simple bound literals are evaluated lazily
therefore implications possible: (h2 < 5)⇒ (h2 < 7)

Arithmetic Clauses:
result of interval constraint propagation (ICP)
e.g. h2 = x +h1: ((x ≤ 3)∧ (h1 < 2))⇒ (h2 < 5)
redirect, e.g. x = h2−h1: ((h2 < 10)∧ (h1 ≥ 1))⇒ (x < 9)
using floating-point numbers for interval bounds
always round outwards for safe enclosing intervals
generate new simple bound literals
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iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions
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iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions

iSAT3 is the 3rd implementation of the iSAT
algorithm. Abstract CDCL with interval abstrac-
tion has similarities to the iSAT algorithm
iSAT algorithm: “Efficient Solving of Large Non-linear Arithmetic Constraint Systems

with Complex Boolean Structure”, JSAT 2007
Abstract CDCL: “Deciding Floating-Point Logic with Systematic Abstraction”,

FMCAD 2012
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iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains
CDCL(T) iSAT3

combinations of truth values interval bounds of theory
of the theory atoms variables and sub-expressions

1 new arithmetic operations add ICP-contractors

2 need to adapt Boolean abstraction for floating-point
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Accurate Reasoning for
Floating-Point Arithmetic
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Accurate Reasoning for FP (1)

IEEE-754 Specification (float, 32 bits)

Bitpos→ 31 30 . . . 23 22 . . . 0
sign exponent fraction / mantissa

1 normal numbers:
mantissa bitpos 23 assumed to be 1
exponent 1 −126 . . . 254 +127
sign 0 positive 1 negative

2 special numbers:
signed zeros (−0, +0)
−∞,+∞ (-inf, +inf)
subnormal numbers (leading zeros in mantissa)
not a number (NaN)

3 rounding modes (up, down, nearest)
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Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering
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Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127
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Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

hexadecimal floating-point notation
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Accurate Reasoning for FP (3)

simple bound ordering:
-inf < -0x1.fffffep+127 < . . .
. . .< -0x0.000002p-126 < -0 < +0 < +0x0.000002p-126 < . . .
. . .< +0x1.fffffep+127 < +inf

no strict bounds needed:
reals: (x ≤ 5)⇔¬(x > 5)
floating-point: (x ≤-0x0.000002p-126)⇔¬(x ≥-0)

floating-point comparison operators and signed zeros:
(x <= 0) (x ≤+0)
(x >= 0) (x ≥-0)
(x == 0) (x ≥-0)∧ (x ≤+0)
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Accurate Reasoning for FP (3)

32 bit floating-point values and their ordering

-inf
-0x0.000002p-126 +0x0.000002p-126

+inf

-0x1.fffffep+127
-0 +0

+0x1.fffffep+127

NaN ?
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Accurate Reasoning for FP (4)

#include <math.h>
#include <stdio.h>
int main(void) {

double a = sqrt(-1);
printf("%1.2f\n", a);

if (a < 0) printf("if\n");
else printf("else\n");

if (a >= 0) printf("if\n");
else printf("else\n");
return (0);
}

-nan
else
else
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Accurate Reasoning for FP (4)

#include <math.h>
#include <stdio.h>
int main(void) {

double a = sqrt(-1);
printf("%1.2f\n", a);

if (a == 0) printf("if\n");
else printf("else\n");

if (a != 0) printf("if\n");
else printf("else\n");
return (0);
}

-nan
else
if
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Accurate Reasoning for FP (5)

SAT iSAT3
Deductions • BCP for clauses • BCP for clauses

evaluate simple bound
literals
 implication clauses
• ICP for PC
 arithmetic clauses

Decisions • decide literals • decide literals
• generate new simple

bound literals
and decide them

Conflict Analyses • traverse implication • traverse implication
graph (1UIP) graph (1UIP)
 conflict clauses  conflict clauses
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Accurate Reasoning for FP (5)

NaN incomparable against all other values:
(x ∼ NaN), ∼∈ {<,≤,=,≥,>} is always false

adapt Boolean encoding: special literal xNaN
xNaN x is NaN
¬xNaN x is determined by simple bound literals

(x ≤-inf) . . . (x ≤-0) . . .
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Accurate Reasoning for FP (5)

implication clauses:
(¬xNaN ∧ (x ≤ 5))⇒ (x ≤ 7)

arithmetic clauses: h = x +y
(¬xNaN ∧¬yNaN ∧¬hNaN ∧ (x ≤ 3)∧ (y ≤ 2))⇒ (h≤ 5)

not shown here, but xNaN also relevant during Tseitin-like
transformation

besides <,≤,=,≥,> operators, further operator to mimic
behaviour of assignments: x = y vs. x == y
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Accurate Reasoning for FP (6)

New ICP-Contractors for +,−,∗,/ (round-to-nearest):

1 NaN cases: handled outside with separate clauses

2 forward deduction: execute operation with round-to-nearest

3 backward deduction: only redirecting the primitive
constraint is not enough

ICP-contractors called when NaN-literals of operands false
(otherwise the created arithmetic clauses not unit)
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Accurate Reasoning for FP (6)

1 Separate clauses for primitive constraint (h = x +y):

x or y is NaN ⇒ h is NaN
x and y are infinities with opposite signs ⇒ h is NaN
x and y are not NaN and x is never -inf or +inf ⇒ h is not NaN
x and y are not NaN and y is never -inf or +inf ⇒ h is not NaN
x and y are not NaN and x and y are never -inf ⇒ h is not NaN
x and y are not NaN and x and y are never +inf ⇒ h is not NaN

(¬xNaN ∨hNaN ) ∧ (¬yNaN ∨hNaN ) ∧
(xNaN ∨yNaN ∨¬(x ≤-inf)∨¬(y ≥+inf)∨hNaN ) ∧
(xNaN ∨yNaN ∨¬(x ≥+inf)∨¬(y ≤-inf)∨hNaN ) ∧
(xNaN ∨yNaN ∨ (x ≤-inf)∨ (x ≥+inf)∨¬hNaN ) ∧
(xNaN ∨yNaN ∨ (y ≤-inf)∨ (y ≥+inf)∨¬hNaN) ∧
(xNaN ∨yNaN ∨ (x ≤-inf)∨ (y ≤-inf)∨¬hNaN ) ∧
(xNaN ∨yNaN ∨ (x ≥+inf)∨ (y ≥+inf)∨¬hNaN)
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Accurate Reasoning for FP (6)

2 Forward deduction primitive constraint (h = x +y):

h ∈ [-inf, +inf],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

hlb = xlb +ylb =0x1.1p+100+ -0x1.1p+11=0x1.1p+100
hub = xub +yub =0x1.1p+100+ -0x1.1p+10=0x1.1p+100

apply operation with round-to-nearest
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Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint (h = x +y):

h ∈ [0x1.1p+100, 0x1.1p+100],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

ylb = hlb−xub = 0x1.1p+100−0x1.1p+100 = 0
yub = hub−xlb = 0x1.1p+100−0x1.1p+100 = 0

[-0x1.1p+11, -0x1.1p+10]∩ [0,0] = /0
simply redirecting and rounding outward is WRONG!
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Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint (h = x +y):

h ∈ [0x1.1p+100, 0x1.1p+100],
x ∈ [0x1.1p+100, 0x1.1p+100],
y ∈ [-0x1.1p+11, -0x1.1p+10]

ylb = hlb−xub = prev(0x1.1p+100)−next(0x1.1p+100)
= 0x1.0ffffep+100 - 0x1.100002p+100
= -0x1.000000p+78

yub = hub−xlb = next(0x1.1p+100)−prev(0x1.1p+100)
= 0x1.100002p+100 - 0x1.0ffffep+100
= 0x1.000000p+78
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Accurate Reasoning for FP Summarized

floating-point arithmetic contains special values

ordering possible, except NaN

unordered NaN adapted Boolean encoding
implication clauses
arithmetic clauses

new ICP-contractors for floating-point operations
NaN-cases handled with BCP
outward rounding not enough in backward deduction
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ICP-Contractors for
Bitwise Integer Operations
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ICP-Contractors for Bitwise Operations (1)

operating on intervals
a bit-pattern can be interpreted as signed or unsigned

00010001 10000001
signed char 17 -127
unsigned char 17 129

need to know bitwidth and signedness of each operation
s_not(arg,bitwidth), u_not(arg,bitwidth)
s_and(arg1,arg2,bitwidth), u_and(arg1,arg2,bitwidth)
s_or(arg1,arg2,bitwidth), u_or(arg1,arg2,bitwidth)
s_xor(arg1,arg2,bitwidth), u_xor(arg1,arg2,bitwidth)
s_cast(arg,bitwidth), u_cast(arg,bitwidth)
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ICP-Contractors for Bitwise Operations (2)

(h = x +y), x ∈ [1,7], y ∈ [1,8]:
hlb = xlb +ylb = 1+1 = 2
hub = xub +yub = 7+8 = 15
 operating on bounds OK

(h = u_and(x,y,8)), x ∈ [1,7], y ∈ [1,8]:
hlb = xlb & ylb = 1 & 1 = 1 (1 & 2 = 0)
hub = xub & yub = 7 & 8 = 0 (7 & 7 = 7)
 operating on bounds WRONG
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ICP-Contractors for Bitwise Operations (3)

1 use addition, subtraction, minimum and maximum to get
safe overapproximations of the lower and upper bounds,
e.g. (h = u_and(x,y,8)), x ∈ [1,7], y ∈ [1,8]:
hub = min(xub,yub) = min(7,8) = 7

2 exploit common bit-prefixes,
e.g. (h = u_and(x,y,8)), x ∈ [18,30], y ∈ [89,92]:
xlb = 18 = 00010010
xub = 30 = 00011110

0001 common bit-prefix for values in x

ylb = 89 = 01011001
yub = 92 = 01011100

01011 common bit-prefix for values in y

hlb = 00010000 & 01011000 = 00010000 = 16 trailing bits are 0
hub = 00011111 & 01011111 = 00011111 = 31 trailing bits are 1
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hub = 00011111 & 01011111 = 00011111 = 31 trailing bits are 1

A detailed description of all operations can be found
in AVACS Technical Report 116:
“Extending iSAT3 with ICP-Contractors for Bitwise In-
teger Operations”
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Optimizations
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Intermediate Point-Splits

decomposition into PCs might lead to coarser intervals,
e.g. ((x +y)−x ≤ 7) (h1 = x +y)∧ (h2 = h1−x)
x,y ∈ [0,10] : h1 ∈ [0,20],h2 ∈ [−10,30]⊃ [0,10]

tighter intervals if x is point interval

change decision heuristic, every k-th interval split will
assign a point interval (k = 4)

might help to find a solution, BUT: detrimental for conflict
clauses
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Global-ICP (1)

. . . ∧ (a→ (i1− i2 = 0)) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .

with a = 1:
. . . ∧ (i1− i2 = 0) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
. . . ∧ (i1 = i2) ∧ (i1 6= s_cast(ite(b, i2,0),32))∧ . . .
. . . ∧ (i1 6= s_cast(ite(b, i1,0),32))∧ . . .

with b = 1:
. . . ∧ (i1 6= s_cast(i1,32))∧ . . .

with i1 ∈ [0,231−1]:
. . . ∧ (i1 6= i1)∧ . . .

but this symbolic dependency is not visible for ICP
(h1 = i1− i2)∧
(h2 = ite(b, i2,0))∧ just looking at these
(h3 = s_scast(h2,32))∧ primitive constraints
(h4 = i1−h3)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .
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Global-ICP (2)

ICP with smallest possible bound improvement for i1:
 [1,231−1] [2,231−1] [2,231−2] . . .

more than 64 deductions per variable per decision level:
1 no further deductions for this variable
2 analyze implication graph, collect involved primitive

constraints (the 4 PCs from previous slide)

analyze primitive constraints semi-symbolically

conflicting clause which spans more than one PC, e.g.
(b∧ (h1 ≥ 0)∧ (h1 ≤ 0)∧ (i2 ≥ 0)∧ (i2 ≤ 231−1))⇒ (h4 ≤ 0)
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Results
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Results (1)

213 pure floating-point benchmarks from the FP-ACDCL
paper
Comparison between FP-ACDCL (ICP-based), Mathsat
(bit-blasting) and iSAT3 (ICP-based)
Timeout: 900 seconds, Memout: 2 GB

Solver S+U SAT UNSAT TO MO
FP-ACDCL 173 97 76 40 0
Mathsat 5.3.11 182 101 81 23 8
iSAT3 164 90 74 47 2
iSAT3 + psplits 186 111 75 27 0
iSAT3 + psplits + gicp 193 111 82 20 0
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Results (1)
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Results (2)

8778 BMC benchmarks generated by BTC toolchain,
containing floating-point and bitwise integer operations
Comparison between CBMC (bit-blasting, k-induction) and
iSAT3 (ICP-based, Craig interpolation)
both with on-the-fly translation from SMI to their input language

Timeout: 60 seconds

Solver S+U SAT U51 U∞ TO
SMI-CBMC 8099 7424 44 631 679
SMI-iSAT3 7647 6671 153 823 1131
SMI-iSAT3 + psplits 8169 7192 156 821 609
SMI-iSAT3 + psplits + gicp 8430 7427 172 831 348
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Results (2)
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Conclusion
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Conclusion

dead-code detection in C programs = accurate
floating-point reasoning + bitwise integer operations

iSAT3: first non-bit-blasting SMT solver supporting the full
range of basic data types and operations in C programs

promising results:
outperforms bit-blasting solvers (MathSAT, CBMC)
outperforms other ICP-based solver (FP-ACDCL)

Outlook: also integrate ICP-contractors for floating-point
sine, cosine
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