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Software-Defined Networking (SDN)

@ o

o Software-Defined Networking (SDN): emerging network architecture
@ SDN Controllers are the brains of network

Determine how the switches and routers should handle network traffic
Can update the forwarding tables of switches
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@ How can we return back to safety by adding filters on links?
@ There are several possible repair solutions

@ Interested in best solutions:

e.g. the ones that touch minimal number of switches
and maintain connectivity
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@ There are several possible repair solutions
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@ How can we return back to safety by adding filters on links?

@ There are several possible repair solutions

o Interested in best solutions:
e.g. the ones that touch minimal number of switches

and maintain connectivity




Contributions

@ Translation of network and its correctness conditions to Horn clauses

@ Repair unsatisfiable Horn clauses (i.e. buggy system violating
correctness)

© New lattice-based optimization procedure for Horn clause repair




Repair Framework

Translate Repair Back

Horn Clauses:
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Our Repair Approach
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Our Repair Approach
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o Conjoin fresh relation symbols R to the bodies of Horn clauses
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Weaken
o Conjoin fresh relation symbols R to the bodies of Horn clauses
o Weaker system is satisfiable, may have undesirable solutions

@ Any of the new relation symbols can be false
(effectively removing the clause)




Our Repair Approach
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Weaken
o Conjoin fresh relation symbols R to the bodies of Horn clauses
o Weaker system is satisfiable, may have undesirable solutions

@ Any of the new relation symbols can be false
(effectively removing the clause)

Strengthen
@ Add more constraints to rule out undesirable solutions

@ User can select the “best” repairs (e.g. reject false solutions,if possible)
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Goal: find solutions for set of Horn clauses subject to objective function

Space of all
interpretations of relation symbols
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Goal: find solutions for set of Horn clauses subject to objective function

Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

Walk smartly in the lattice to find the
best solution:
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Example: Interval Lattice
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@ Interval lattices are useful to filter out a range of packets
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@ Interval lattices are useful to filter out a range of packets
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Heuristic (Feasibility Bound)
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o Every feasible interval I above [z,y] must be below (or equal to) [, z]
Feasibility is anti-monotonic
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Correctness

@ Search algorithm is guaranteed to terminate on finite lattices

Theorem

@ Optimization algorithm is sound and complete
Always finds the global optimum

Proof

@ Induction on lattice structure
use monotonicity of feasibility and objective function




Horn Clauses for Network
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Ingress. H; sends out the special traffic type 0

(typ=0ANdst € {2,3,4}) — t1(dst,typ)
(typ > 0 ANtyp < 8 Ndst € {1,3,4}) — ta(dst,typ)
(typ > 0 Atyp < 8 Adst € {1,2,4}) — tz(dst, typ)
(typ > 0 Atyp < 8 Adst € {1,2,3}) — tq(dst,typ)




Horn Clauses for Network
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We use a special relation symbol D for dropping a packet
t1(dst,typ) A (dst #1) — az(dst,typ)
ti(dst, typ) A (dst #1) — az(dst,typ)

t1(dst, typ) A = ((dst > 1) A
(dst <4) A (typ > 0) A (typ < 7)) — D(dst, typ)




Horn Clauses for Network

Core Cﬁ filter(H1) ﬁ
/AL
Aggregationaﬁ aﬁ aﬁ_ aﬁ
X X

Host Hy Hy Hs Hy
not safe for H; traffic

Properties. Flow 0 should not reach destination 4 or the drop state

ta(dst, typ) A (typ =0) — false
D(dst,typ) A (typ =0) —  false




buffer size=10

Bandwidth Repair
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Not safe for green.

@ We use tokens to represent the sizes of the flows
C(r1,b2,93,74,b4, 94,75, b5, 95,76, be, 96, 47, 48, 99)
Ay >0)A (g >1))
Alry—ry =71y —r) A(ry + by + g4 <10) =
C(r, b2, 93,77, ba, 94,75, b5, 95, 76, b6, Y6, 7, 48, 49)




Implementation and Experiments

@ We use Internet Topology Zoo - real world topologies
@ Randomly generate forwarding tables to connect hosts
@ Make a set of nodes unsafe for certain types of traffics

@ Repair the buggy network with updating a minimal number of
switches
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Implementation and Experiments

Benchmarks #Nodes#Links #Rels. #Lattice #Eld Time(s)

Cesnet200304 29 33 3 222x10'9 145 4.98
Arpanet19706 9 10 3 222x10'9 a1 2.98
Oxford 20 26 8  3.80x10%" 664 16.70
Garr200902 54 71 6  4.92x10%° 3045 107.62
Getnet 7 8 2 7.90x10° 61 1.45
Surfnet 50 73 3 222x10'° 101  3.49
ltnet 11 10 1 2.81x10° 17 0.18
Garr199904 23 25 1 2.81x10° 19 0.33
Darkstrand 28 31 5 1.75x10'7 425 14.81
Carnet 44 43 2 7.90x106 37 0.49
Atmnet 21 22 1 2.81x10% 15 0.67
HiberniaCanada 13 14 11 8.63x10%7 1795 84.56
Evolink 37 45 1 2.81x10% 14 0.20
Ernet 30 32 4  6.23x103 140 4.94

Bren 37 38 6 4.92x10%° 974 25.14
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Summary

Conservative repair procedure:
@ Does not add new clauses
@ Does not change the structure of the relation symbols

@ Can only add constraints to the bodies of clauses

Pros:

@ Relation symbols have normally a specific interpretation
in the problem domain

@ Translation of the repair solution back to the domain is easy

@ There are many applications
e.g. in software defined networking
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