Optimizing Horn Solvers for Network Repair

Hossein Hojjat* Philipp Riimmer 2

Jedidiah McClurg® Pavol Cerny® Nate Foster !

LCornell University, 2Uppsala University, 3University of Colorado Boulder,
4Rochester Institute of Technology

16th International Conference on Formal Methods in Computer Aided Design

October 6th, 2016

Software-Defined Networking (SDN)

@ o

o Software-Defined Networking (SDN): emerging network architecture
@ SDN Controllers are the brains of network

Determine how the switches and routers should handle network traffic
Can update the forwarding tables of switches

Core Ce filter(Hy) Down for
1

Maintenance

not safe for Hy traffic

Ce Switch Online
2

Ce filter(H)
1

/

Core

\

Aggregation

Host

not safe for Hy traffic

not safe for Hy traffic

Aggregation = = = ==
Al » A2 AT Ag ¥
| ,, >< |
1 , (B}
1 4 (]
i, [
[b
ToR 2= 2= 2=
Tl T T3 T4
T | | |
Host Hy Hj H,

not safe for Hy traffic

@ How can we return back to safety by adding filters on links?
@ There are several possible repair solutions

@ Interested in best solutions:

e.g. the ones that touch minimal number of switches
and maintain connectivity

Core Switch Online
\
A}
ANAY
_ vy
Aggregation = = = ==
AIT A2 AT Ag ¥
| ’, >< |
1 , (B}
1 4 (]
i, [
[b
ToR 2= 2= 2=
Tl T T3 T4
T | | |
Host Hy Hj H,

not safe for Hy traffic

@ How can we return back to safety by adding filters on links?
@ There are several possible repair solutions

@ Interested in best solutions:

e.g. the ones that touch minimal number of switches
and maintain connectivity

Core Ca filter(H) -~ Switch Online
1

Q{t?r(Hl)

-

_ filter (Hy)

I . vy
Aggregation ([= = =
A’ ;442. AT AT,
1 Vs [|
filter(H1)| % >< filter(H1)
: , . [
[_ \%1«
ToR o~ T~ e~ =~
B B 8 L
T \ \ \
Host H,y Hy Hj3 Hy

not safe for Hy traffic

@ How can we return back to safety by adding filters on links?
@ There are several possible repair solutions
o Interested in best solutions:

e.g. the ones that touch minimal number of switches
and maintain connectivity

T ,-442 AT A

1 a [|

Y >< filter(H)

: ,', [

[_ \%1«
ToR ‘7’-; S S o~

Tl T T3 T4

T |

Host H, Hy Hj H,
not safe for Hy traffic

@ How can we return back to safety by adding filters on links?

@ There are several possible repair solutions

o Interested in best solutions:
e.g. the ones that touch minimal number of switches

and maintain connectivity

Contributions

@ Translation of network and its correctness conditions to Horn clauses

@ Repair unsatisfiable Horn clauses (i.e. buggy system violating
correctness)

© New lattice-based optimization procedure for Horn clause repair

Repair Framework

Translate Repair Back

Horn Clauses:

Network Description ™ V. ¢(t) A Rio(®) A+ A Ruo(®) = Roo(®)
V0. ¢1(0) A Ry, (0).A -+ A Ry 1 (0) = Ro(0)

—_—
/v”. Sm(0) A Ry n(0) A+ A Ry (0) = Rom(0)

'l

\

/

HORN
SOLVER

(Eldarica)

Safety Description

Strengthen
Clauses

(Optimizer)

Weaken
Clauses

T

Our Repair Approach

vo. Yo (V) A Rio(0) Av -+ A Ry o(V :
Vo. Y1(0) ARy 1 (D) A=+ AN Ry 1(0) = Ro,1(0)
Vo, Y (®) A Rim(

v
vo. G (U) A Ry i (

) TARRRNA Rn,m(ﬁ) — RO,m(T})
V)N -+ ARy (0) — false

Our Repair Approach

Vo. R*O(T)) A\ ’(/)0(1_)) A Rl,O('U) A=A Rn,o(ﬁ) — Rop(@)
V. R*l(’l_)) A ’(/11(’[7) A Rl)l(’f)) VARERIVAN Rn)l(f)) — Ro’l(’T))

V0. R* (D) A Y (0) A Ry (

.R D) A+ ARy m(0) = Rom(0)
V0. R* 0/ (D)A @ (U) A Ry s (D

) “A Ry, 1 (D) — false

Weaken

o Conjoin fresh relation symbols R to the bodies of Horn clauses

Our Repair Approach

Vo, R*(8) A ol
V2. R*l(’l_)) A ’(/Jl(

DS
&
>
el
o
O
—~
D)
S~—
>
>
sl
3
o
=
< e
S~—
1
usl
(=]
[}
=
< e
S~—

V0. R*a(8) A o (8) A Rin(D) A--- A Ry a(5) = Rom(0)
V5. R (B)A s (T) A Ryt (T) A -+ A Ryyr (T) — false

Weaken
o Conjoin fresh relation symbols R to the bodies of Horn clauses
o Weaker system is satisfiable, may have undesirable solutions

@ Any of the new relation symbols can be false
(effectively removing the clause)

Our Repair Approach

V. R*O('f}) AN 1/)0(1_1) A Rl,o(ﬁ) VARERWAN Rn,O(
V. R*l(’l_)) A ’(/Jl(ﬁ) A Rl)l(’U) VARERWA Rn,l(

[]]
~—
1
usl
(=]
K=}
ER

S| S
S~—

V0. R*(0) A o (8) A R (8) A+~ A Rpn(5) = Rom(0)
V. R* 0/ (O)A ¢y (U) A Ry oy (17) “A Ry, 1 (D) — false

Weaken
o Conjoin fresh relation symbols R to the bodies of Horn clauses
o Weaker system is satisfiable, may have undesirable solutions

@ Any of the new relation symbols can be false
(effectively removing the clause)

Strengthen
@ Add more constraints to rule out undesirable solutions

@ User can select the “best” repairs (e.g. reject false solutions,if possible)

v

Goal: find solutions for set of Horn clauses subject to objective function

Space of all
interpretations of relation symbols

Goal: find solutions for set of Horn clauses subject to objective function

%t Solutions
Q

Solutions

Space of all
interpretations of relation symbols

Goal: find solutions for set of Horn clauses subject to objective function

—

AR AW
(el |)
\ B /

\ Solutions /

)/
/

N

— | | —
Space of all
interpretations of relation symbols

Goal: find solutions for set of Horn clauses subject to objective function

)/
/

AN AW
e @ s)

\ /J

\ Solutions /
— | | —
Space of all

interpretations of relation symbols

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Space of all
interpretations of relation symbols

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Space of all
interpretations of relation symbols

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

\ J
w Solutiong /

— | | —
Space of all
interpretations of relation symbols

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:
Rank nodes of lattice monotonically

0

/N

Feasibility Frontier

N

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:
Rank nodes of lattice monotonically

0

Search Algorithm: // \\C\
Walk smartly in the lattice to find the

best solution:
@ inside the feasibility cone

Feasibility Frontier

N

all interpretations

@ has maximum ranking

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:
Rank nodes of lattice monotonically

0

Search Algorithm: // \\C\
Walk smartly in the lattice to find the

best solution:
@ inside the feasibility cone

Feasibility Frontier
@ has maximum ranking

@ Pick a feasible node and walk until
reach frontier

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:
Rank nodes of lattice monotonically

0

Search Algorithm: // \\C\
Walk smartly in the lattice to find the

best solution:
@ inside the feasibility cone

Feasibility Frontier
@ has maximum ranking

@ Pick a feasible node and walk until
reach frontier

@ Pick a lower rank incomparable

c all interpretations
node and walk again P

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:
Rank nodes of lattice monotonically

0

Search Algorithm: // \\C\
Walk smartly in the lattice to find the

best solution:
@ inside the feasibility cone

Feasibility Frontier
@ has maximum ranking

@ Pick a feasible node and walk until
reach frontier

@ Pick a lower rank incomparable
node and walk again

@ Use feasibility bounds as heuristic to
prune search

all interpretations

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

Walk smartly in the lattice to find the
best solution:

(]

(*]

inside the feasibility cone

has maximum ranking

o

Pick a feasible node and walk until
reach frontier

Pick a lower rank incomparable
node and walk again

Use feasibility bounds as heuristic to
prune search

0

/I

Feasibility_Frontier

all interpretations

Example: Interval Lattice

Interval lattice f(x) 2,2] 3, 3] [4,4]
for {2, 4} e N~ /N - ~
(—00,2] 2, 3] [3, 4] [4, +00)
AN e N/ AN e
(_0073] [2a4] [37+OO>
AN 7\ e
(—00,4] [2,+00)
AN /
(—o0, +00)

@ Interval lattices are useful to filter out a range of packets

Example: Interval Lattice

Interval lattice f(x) 2,2] 3, 3] [4,4]
for {2, 4} - ~ 7 N 7 >
(—00,2 (2, 3] (3, 4] [4, +00)
2 s N/ N s
(_0033] [2a4] [37+OO)
N 7/ N\ e
(—00,4] [2,+00)
N\ /
(—00, +00)

@ Interval lattices are useful to filter out a range of packets

o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,00) or [= (—00,00)
00 if I =10

Example: Interval Lattice

Interval lattice f(x) 2,2] 3, 3] [4,4]
for {2, 4} 7 ~ /7 N\ e <
(—00,2 (2, 3] (3, 4] 4,4-00)
2 s N/ N s
(00, 3] 2, 4] [)
N /
(=00, 4] @

\

@ Interval lattices are useful to filter out a range of packets

o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,)orI—(00, 00)
00 if I =10

Example: Interval Lattice

Interval lattice f(x) 2,2] 3, 3] [4, 4]
for {2, 4} 7 ~ 7\ 7 >
(—00,2] [2, 3] (3, 4] [4, +00)

> AN / N i
(00,3 [2.4]

N / N\ 7

(004

N /
(—00, +00)

@ Interval lattices are useful to filter out a range of packets

o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,00) or [= (—00,00)
o ifI=0

Example: Interval Lattice

Interval lattice f(x) 2, 2] (3, 3] [4,4] LOC3.|
for {2, 4} e ~ VRN e > Maximum
(~00,2] (2,3 ~_[3,4]
> NN S
(<00,3] [2,4]
N N
(~00, 4] (R0
N7

@ Interval lattices are useful to filter out a range of packets

o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,00) or [= (—00,00)
o ifI=0

Example: Interval Lattice

Interval lattice f(x) 2, 2] (3, 3] [4,4] LOC3.|
for {2, 4} e ~ VRN e > Maximum

(—o0, 2] (2, 3]~ [3,4]

N e N/ N <l

(—00,3] [2.4]

. . N Z N\ e
Pick a minimal
incomparable nod
(—00, +00)

@ Interval lattices are useful to filter out a range of packets

o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,00) or [= (—00,00)
o ifI=0

Example: Interval Lattice ?
Interval lattice f(x) 2, 2] (3, 3] [4,4] LOC3.|
for {2, 4} e ~ AN e > Maximum

/
(-00,2) " (3D~ [3.4)

N 7 \N__/ N

-
o

: . ~ / N\
Pick a minimal
incomparable nod
(—00, +00)

@ Interval lattices are useful to filter out a range of packets
o Example: TTL scoping (for network details see paper)
1 if I =[z,y] or I =(—00,y]
obj(I) =< —oo if I =[x,00) or [= (—00,00)
oo fI=10

Heuristic (Feasibility Bound)

[z, 2] R ,
[Z,y—2] [.Qﬁ—l-l,y—l] o
N / N\ .7
[z,y —1] [z+1,y] : infeasible
N/
[,y] : feasible
l l L
1 1 —
r x+1 y
infeasible

o Every feasible interval I above [z,y] must be below (or equal to) [, z]
Feasibility is anti-monotonic

8

Correctness

@ Search algorithm is guaranteed to terminate on finite lattices

Theorem

@ Optimization algorithm is sound and complete
Always finds the global optimum

Proof

@ Induction on lattice structure
use monotonicity of feasibility and objective function

Horn Clauses for Network
Core Cﬁ filter (1) ﬁ
/AL
Aggregationaﬁ aﬁ aﬁl- aﬁ

X X
B B B B
2 3 4

1 | | |

Host H,y Hy Hj Hy

not safe for H; traffic

Ingress. H; sends out the special traffic type 0

(typ=0ANdst € {2,3,4}) — t1(dst,typ)
(typ > 0 ANtyp < 8 Ndst € {1,3,4}) — ta(dst,typ)
(typ > 0 Atyp < 8 Adst € {1,2,4}) — tz(dst, typ)
(typ > 0 Atyp < 8 Adst € {1,2,3}) — tq(dst,typ)

Horn Clauses for Network
Core Cﬁ filter(Hl) ﬁ
/ \
Aggregationaﬁ aﬁ aﬁ_ aﬁ
X [X
R B B B B
2 3 4
T | | |

H, Hy Hj Hy

Host
not safe for H; traffic

We use a special relation symbol D for dropping a packet
t1(dst,typ) A (dst #1) — az(dst,typ)
ti(dst, typ) A (dst #1) — az(dst,typ)

t1(dst, typ) A = ((dst > 1) A
(dst <4) A (typ > 0) A (typ < 7)) — D(dst, typ)

Horn Clauses for Network

Core Cﬁ filter(H1) ﬁ
/AL
Aggregationaﬁ aﬁ aﬁ_ aﬁ
X X

Host Hy Hy Hs Hy
not safe for H; traffic

Properties. Flow 0 should not reach destination 4 or the drop state

ta(dst, typ) A (typ =0) — false
D(dst,typ) A (typ =0) — false

buffer size=10

Bandwidth Repair
10 5 ot 5
1 & L3 @
S1 S4 S7
15 —pu — ,'l —
Hy 5— @ 5 — H;
52§ 85 i;ffé;;;ifgg 58

Hy = @ —
S9

Not safe for green.

@ We use tokens to represent the sizes of the flows
C(r1,b2,93,74,b4, 94,75, b5, 95,76, be, 96, 47, 48, 99)
Ay >0)A (g >1))
Alry—ry =71y —r) A(ry + by + g4 <10) =
C(r, b2, 93,77, ba, 94,75, b5, 95, 76, b6, Y6, 7, 48, 49)

Implementation and Experiments

@ We use Internet Topology Zoo - real world topologies
@ Randomly generate forwarding tables to connect hosts
@ Make a set of nodes unsafe for certain types of traffics

@ Repair the buggy network with updating a minimal number of
switches

12

Implementation and Experiments

Benchmarks #Nodes#Links #Rels. #Lattice #Eld Time(s)

Cesnet200304 29 33 3 222x10'9 145 4.98
Arpanet19706 9 10 3 222x10'9 a1 2.98
Oxford 20 26 8 3.80x10%" 664 16.70
Garr200902 54 71 6 4.92x10%° 3045 107.62
Getnet 7 8 2 7.90x10° 61 1.45
Surfnet 50 73 3 222x10'° 101 3.49
ltnet 11 10 1 2.81x10° 17 0.18
Garr199904 23 25 1 2.81x10° 19 0.33
Darkstrand 28 31 5 1.75x10'7 425 14.81
Carnet 44 43 2 7.90x106 37 0.49
Atmnet 21 22 1 2.81x10% 15 0.67
HiberniaCanada 13 14 11 8.63x10%7 1795 84.56
Evolink 37 45 1 2.81x10% 14 0.20
Ernet 30 32 4 6.23x103 140 4.94

Bren 37 38 6 4.92x10%° 974 25.14

Related Work

(*]

Nikolaj Bjgrner, Arie Gurfinkel, Ken McMillan, and Andrey
Rybalchenko:
“ Horn clause solvers for program verification”, 2015.

Shambwaditya Saha, M. Prabhu, P. Madhusudan:
“NETGEN: Synthesizing Data-plane configurations for Network
Policies”, SOSR 2015.

Aws Albarghouthi, Yi Li, Arie Gurfinkel, Marsha Chechik:
“UFO: A Framework for Abstraction- and Interpolation-Based
Software Verification”, CAV 2012.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, Andrey
Rybalchenko:

“Synthesizing Software Verifiers from Proof Rules”, PLDI 2012.
Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki and Edmund M.
Clarke:

“Automated Abstraction in SMT-Based Unbounded Software
Model Checking”, CAV 2013

14

Summary

Conservative repair procedure:
@ Does not add new clauses
@ Does not change the structure of the relation symbols

@ Can only add constraints to the bodies of clauses

Pros:

@ Relation symbols have normally a specific interpretation
in the problem domain

@ Translation of the repair solution back to the domain is easy

@ There are many applications
e.g. in software defined networking

15

