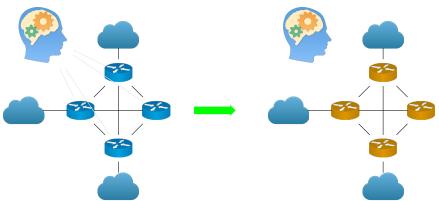
Optimizing Horn Solvers for Network Repair

Hossein Hojjat 1,4 Philipp Rümmer 2 Jedidiah McClurg 3 Pavol Černý 3 Nate Foster 1

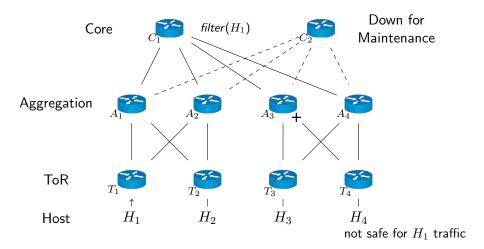
 1 Cornell University, 2 Uppsala University, 3 University of Colorado Boulder, 4 Rochester Institute of Technology

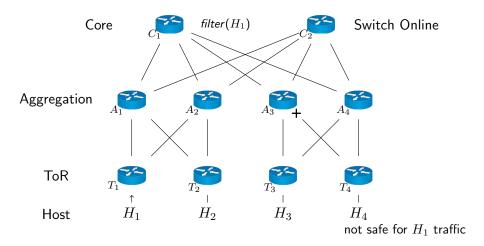
16th International Conference on Formal Methods in Computer Aided Design $October\ 6th,\ 2016$

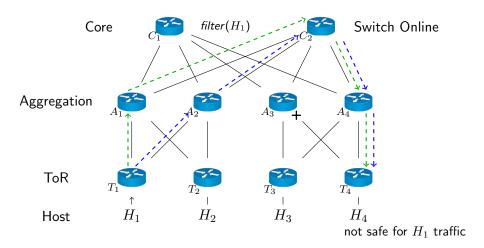
Software-Defined Networking (SDN)

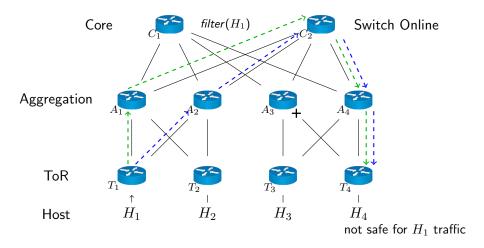


- Software-Defined Networking (SDN): emerging network architecture
- SDN Controllers are the **brains** of network
 - Determine how the switches and routers should handle network traffic
 - Can update the forwarding tables of switches

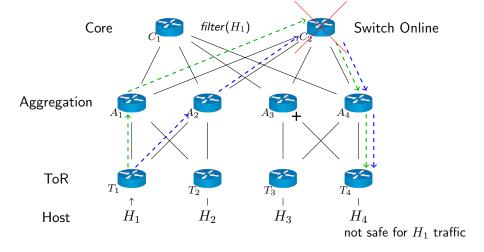




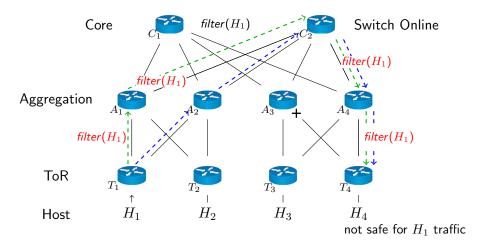




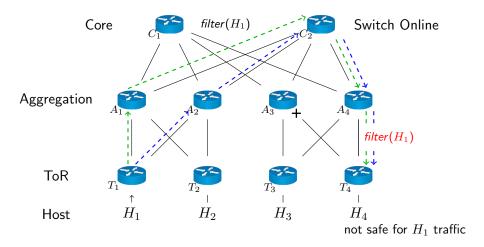
- How can we return back to safety by adding filters on links?
- There are several possible repair solutions
- Interested in best solutions:
 - e.g. the ones that touch minimal number of switches
 - and maintain connectivity



- How can we return back to safety by adding filters on links?
- There are several possible repair solutions
- Interested in best solutions:
 - e.g. the ones that touch minimal number of switches
 - and maintain connectivity



- How can we return back to safety by adding filters on links?
- There are several possible repair solutions
- Interested in best solutions:
 - e.g. the ones that touch minimal number of switches
 - and maintain connectivity

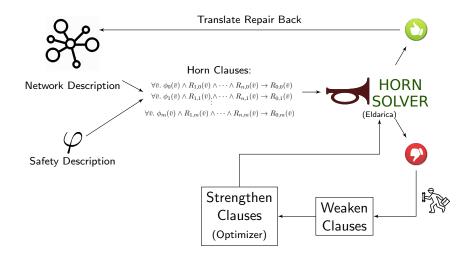


- How can we return back to safety by adding filters on links?
- There are several possible repair solutions
- Interested in best solutions:
 - e.g. the ones that touch minimal number of switches
 - and maintain connectivity

Contributions

- Translation of network and its correctness conditions to Horn clauses
- Repair unsatisfiable Horn clauses (i.e. buggy system violating correctness)
- 3 New lattice-based optimization procedure for Horn clause repair

Repair Framework



```
\begin{array}{lll} \forall \bar{v}. & \psi_0(\bar{v}) \wedge \mathbf{R}_{1,0}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,0}(\bar{v}) \rightarrow \mathbf{R}_{0,0}(\bar{v}) \\ \forall \bar{v}. & \psi_1(\bar{v}) \wedge \mathbf{R}_{1,1}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,1}(\bar{v}) \rightarrow \mathbf{R}_{0,1}(\bar{v}) \\ & \vdots & & \models false \\ \forall \bar{v}. & \psi_m(\bar{v}) \wedge \mathbf{R}_{1,m}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m}(\bar{v}) \rightarrow \mathbf{R}_{0,m}(\bar{v}) \\ \forall \bar{v}. & \phi_{m'}(\bar{v}) \wedge \mathbf{R}_{1,m'}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m'}(\bar{v}) \rightarrow false \end{array}
```

```
\forall \bar{v}. \mathbf{R}^*_{0}(\bar{v}) \wedge \psi_{0}(\bar{v}) \wedge \mathbf{R}_{1,0}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,0}(\bar{v}) \rightarrow \mathbf{R}_{0,0}(\bar{v})
\forall \bar{v}. \mathbf{R}^*_{1}(\bar{v}) \wedge \psi_{1}(\bar{v}) \wedge \mathbf{R}_{1,1}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,1}(\bar{v}) \rightarrow \mathbf{R}_{0,1}(\bar{v})
\vdots
\forall \bar{v}. \mathbf{R}^*_{m}(\bar{v}) \wedge \psi_{m}(\bar{v}) \wedge \mathbf{R}_{1,m}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m}(\bar{v}) \rightarrow \mathbf{R}_{0,m}(\bar{v})
\forall \bar{v}. \mathbf{R}^*_{m'}(\bar{v}) \wedge \phi_{m'}(\bar{v}) \wedge \mathbf{R}_{1,m'}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m'}(\bar{v}) \rightarrow false
```

Weaken

ullet Conjoin fresh relation symbols $oldsymbol{R}_i^*$ to the bodies of Horn clauses

```
\forall \bar{v}. \mathbf{R}^*_{0}(\bar{v}) \wedge \psi_{0}(\bar{v}) \wedge \mathbf{R}_{1,0}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,0}(\bar{v}) \rightarrow \mathbf{R}_{0,0}(\bar{v})
\forall \bar{v}. \mathbf{R}^*_{1}(\bar{v}) \wedge \psi_{1}(\bar{v}) \wedge \mathbf{R}_{1,1}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,1}(\bar{v}) \rightarrow \mathbf{R}_{0,1}(\bar{v})
\vdots
\forall \bar{v}. \mathbf{R}^*_{m}(\bar{v}) \wedge \psi_{m}(\bar{v}) \wedge \mathbf{R}_{1,m}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m}(\bar{v}) \rightarrow \mathbf{R}_{0,m}(\bar{v})
\forall \bar{v}. \mathbf{R}^*_{m'}(\bar{v}) \wedge \phi_{m'}(\bar{v}) \wedge \mathbf{R}_{1,m'}(\bar{v}) \wedge \cdots \wedge \mathbf{R}_{n,m'}(\bar{v}) \rightarrow false
```

Weaken

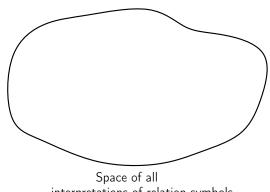
- ullet Conjoin fresh relation symbols $oldsymbol{R}_i^*$ to the bodies of Horn clauses
- Weaker system is satisfiable, may have undesirable solutions
- Any of the new relation symbols can be false
 - (effectively removing the clause)

Weaken

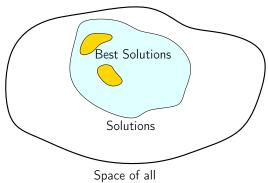
- ullet Conjoin fresh relation symbols $oldsymbol{R}_i^*$ to the bodies of Horn clauses
- Weaker system is satisfiable, may have undesirable solutions
- Any of the new relation symbols can be false
 - (effectively removing the clause)

Strengthen

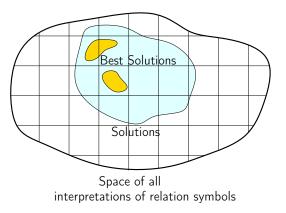
- Add more constraints to rule out undesirable solutions
- ullet User can select the "best" repairs (e.g. reject false solutions, if possible)

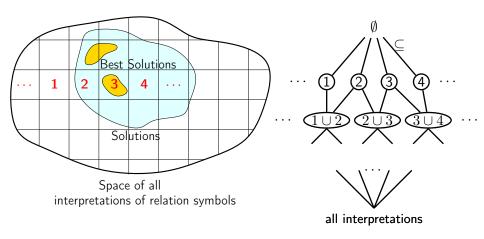


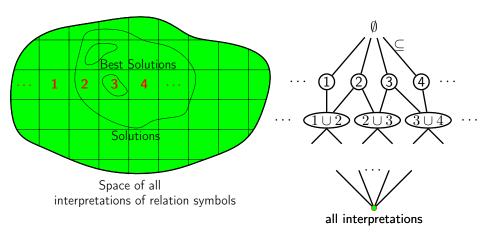
interpretations of relation symbols

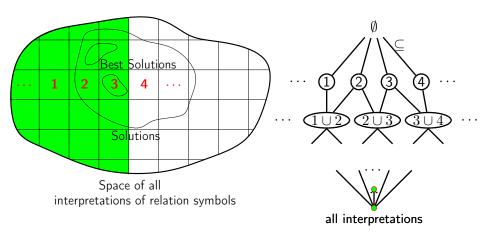


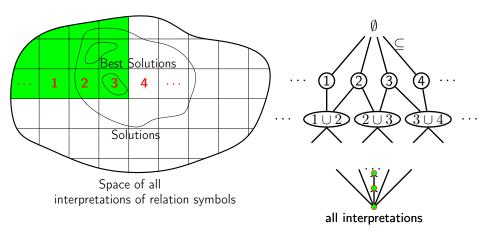
Space of all interpretations of relation symbols





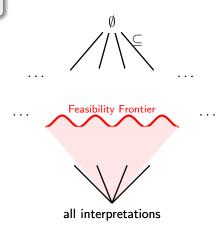






Objective function:

Rank nodes of lattice monotonically

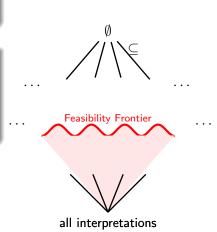


Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

- inside the feasibility cone
- has maximum ranking

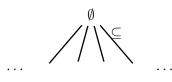


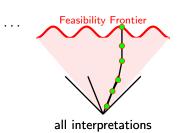
Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

- inside the feasibility cone
- has maximum ranking
- Pick a feasible node and walk until reach frontier



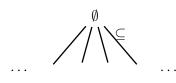


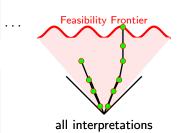
Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

- inside the feasibility cone
- has maximum ranking
- Pick a feasible node and walk until reach frontier
- Pick a lower rank incomparable node and walk again



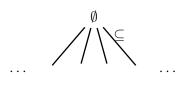


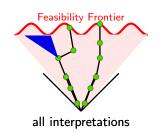
Objective function:

Rank nodes of lattice monotonically

Search Algorithm:

- inside the feasibility cone
- has maximum ranking
- Pick a feasible node and walk until reach frontier
- Pick a lower rank incomparable node and walk again
 - Use feasibility bounds as heuristic to prune search



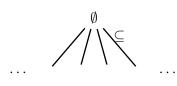


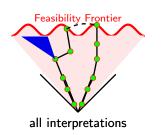
Objective function:

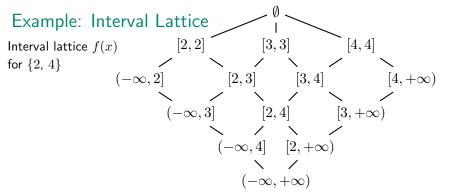
Rank nodes of lattice monotonically

Search Algorithm:

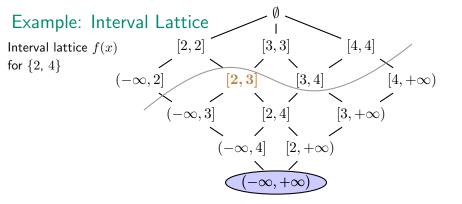
- inside the feasibility cone
- has maximum ranking
- Pick a feasible node and walk until reach frontier
- Pick a lower rank incomparable node and walk again
- Use feasibility bounds as heuristic to prune search





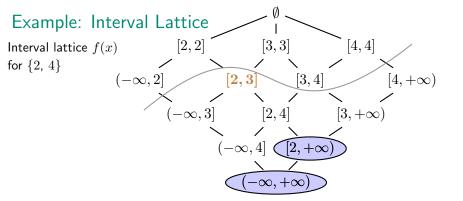


Interval lattices are useful to filter out a range of packets



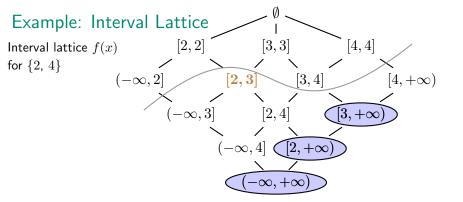
- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$



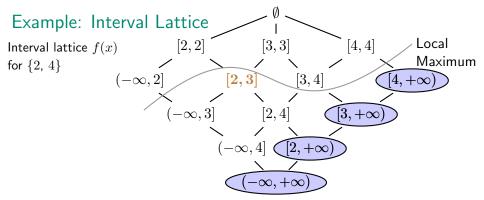
- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$



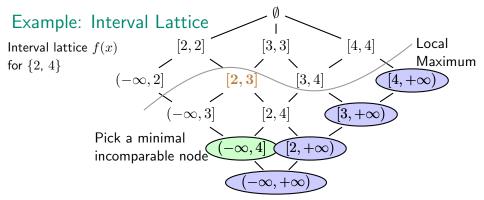
- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$



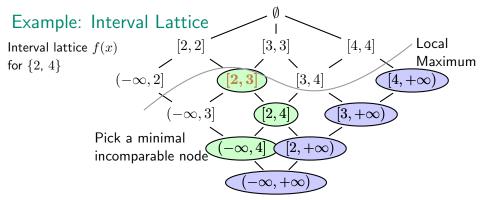
- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$



- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

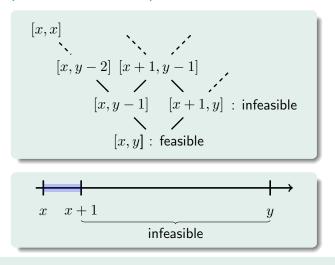
$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$



- Interval lattices are useful to filter out a range of packets
- Example: TTL scoping (for network details see paper)

$$obj(I) = \begin{cases} 1 & \text{if } I = [x,y] \text{ or } I = (-\infty,y] \\ -\infty & \text{if } I = [x,\infty) \text{ or } I = (-\infty,\infty) \\ \infty & \text{if } I = \emptyset \end{cases}$$

Heuristic (Feasibility Bound)



- \bullet Every feasible interval I above [x,y] must be below (or equal to) [x,x]
 - Feasibility is anti-monotonic

Correctness

• Search algorithm is guaranteed to terminate on finite lattices

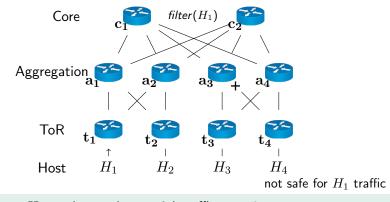
Theorem

- Optimization algorithm is sound and complete
 - Always finds the global optimum

Proof

- Induction on lattice structure
 - use monotonicity of feasibility and objective function

Horn Clauses for Network



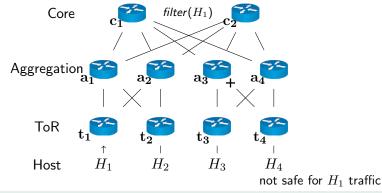
Ingress.
$$H_1$$
 sends out the special traffic type 0
$$(typ = 0 \land dst \in \{2,3,4\}) \quad \rightarrow \quad \mathbf{t_1}(dst,typ)$$

$$(typ > 0 \land typ < 8 \land dst \in \{1,3,4\}) \quad \rightarrow \quad \mathbf{t_2}(dst,typ)$$

$$(typ > 0 \land typ < 8 \land dst \in \{1,2,4\}) \quad \rightarrow \quad \mathbf{t_3}(dst,typ)$$

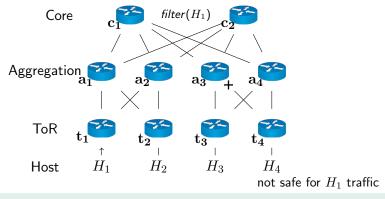
$$(typ > 0 \land typ < 8 \land dst \in \{1,2,3\}) \quad \rightarrow \quad \mathbf{t_4}(dst,typ)$$

Horn Clauses for Network



We use a special relation symbol
$$\mathbf{D}$$
 for dropping a packet
$$\mathbf{t_1}(dst,typ) \wedge (dst \neq 1) \quad \rightarrow \quad \mathbf{a_1}(dst,typ) \\ \mathbf{t_1}(dst,typ) \wedge (dst \neq 1) \quad \rightarrow \quad \mathbf{a_2}(dst,typ) \\ \mathbf{t_1}(dst,typ) \wedge \neg \big((dst \geq 1) \wedge \\ (dst \leq 4) \wedge (typ \geq 0) \wedge (typ \leq 7) \big) \quad \rightarrow \quad \mathbf{D}(dst,typ)$$

Horn Clauses for Network

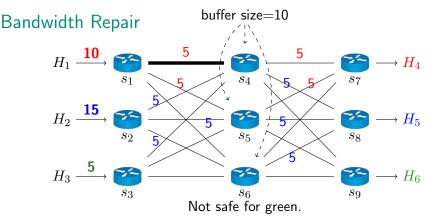


Properties. Flow 0 should not reach destination 4 or the drop state

$$\mathbf{t_4}(dst, typ) \wedge (typ = 0) \rightarrow false$$

 $\mathbf{D}(dst, typ) \wedge (typ = 0) \rightarrow false$

LΟ



• We use **tokens** to represent the sizes of the flows
$$\mathbf{C}(r_1,b_2,g_3,r_4,b_4,g_4,r_5,b_5,g_5,r_6,b_6,g_6,q_7,q_8,q_9) \\ \wedge (r'_1>0) \wedge (r_1\geq r'_1) \\ \wedge (r_1-r'_1=r'_4-r_4) \wedge (r'_4+b_4+g_4\leq 10) \rightarrow \\ \mathbf{C}(r'_1,b_2,g_3,r'_4,b_4,g_4,r_5,b_5,g_5,r_6,b_6,g_6,q_7,q_8,q_9)$$

Implementation and Experiments

- We use Internet Topology Zoo real world topologies
- Randomly generate forwarding tables to connect hosts
- Make a set of nodes unsafe for certain types of traffics
- Repair the buggy network with updating a minimal number of switches

Implementation and Experiments

Benchmarks	#No	des#Links	#Rels.	#Lattice	#Eld	Time(s)
Cesnet200304	29	33	3	2.22×10^{10}	145	4.98
Arpanet19706	9	10	3	2.22×10^{10}	91	2.98
Oxford	20	26	8	3.89×10^{27}	664	16.70
Garr200902	54	71	6	4.92×10^{20}	3045	107.62
Getnet	7	8	2	7.90×10^{6}	61	1.45
Surfnet	50	73	3	2.22×10^{10}	101	3.49
Itnet	11	10	1	2.81×10^{3}	17	0.18
Garr199904	23	25	1	2.81×10^{3}	19	0.33
Darkstrand	28	31	5	1.75×10^{17}	425	14.81
Carnet	44	43	2	7.90×10^6	37	0.49
Atmnet	21	22	1	2.81×10^{3}	15	0.67
HiberniaCanada	13	14	11	8.63×10^{37}	1795	84.56
Evolink	37	45	1	2.81×10^{3}	14	0.20
Ernet	30	32	4	6.23×10^{13}	140	4.94
Bren	37	38	6	4.92×10^{20}	974	25.14

Related Work

- Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko:
 - "Horn clause solvers for program verification", 2015.
- Shambwaditya Saha, M. Prabhu, P. Madhusudan:
 "NETGEN: Synthesizing Data-plane configurations for Network Policies", SOSR 2015.
- Aws Albarghouthi, Yi Li, Arie Gurfinkel, Marsha Chechik:
 "UFO: A Framework for Abstraction- and Interpolation-Based Software Verification", CAV 2012.
- Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, Andrey Rybalchenko:
 - "Synthesizing Software Verifiers from Proof Rules", PLDI 2012.
- Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki and Edmund M.
 Clarke:
 - "Automated Abstraction in SMT-Based Unbounded Software Model Checking", CAV 2013

Summary

Conservative repair procedure:

- Does not add new clauses
- Does not change the structure of the relation symbols
- Can only add constraints to the bodies of clauses

Pros:

- Relation symbols have normally a specific interpretation in the problem domain
- Translation of the repair solution back to the domain is easy
- There are many applications
 - e.g. in software defined networking