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Goal

* Verify data-path for new implementations of:

— 32/64-bit floating-point division and square root
 fdivd
* fdivs
« fsqrtd
« fsqrts
— 32/64-bit integer divide
* udivx
* sdivx
* udiv
* sdiv
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The Problem and Key Result

ACL2 Spec —— IEEE754 / IDiv —— Abstraction

Goldschmidt algorithm,
ACL2 Model rounding, exceptions
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Tools

- ACL2

— Programming language written in subset of Lisp
— Theorem prover written in ACL2

* Proof engine used at AMD, IBM, Centaur, Motorola, Intel
« 2005 ACM Software System Award

— Maintained at Univ. of Texas with help from community

- ACL2 Books (~5500)

— A "book” is a library of functions and lemmas
« Arithmetic, RTL, security, proof and definition utilities
— Includes a Verilog parser and hardware symbolic simulator

» Support Tools: SAT solvers, waveform viewer
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Related Work

« Symbolic trajectory evaluation (Intel)

— C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of partially-
ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2, pp. 147-189, Mar.
1995.

* Floating-point verification

— D. Russinoff, “A mechanically checked proof of IEEE compliance of the floating-point
multiplication, division, and square root algorithms of the AMD-K7-.processor,” London
Mathematics Society Journal of Computation and Mathematics, no. 1, pp. 148-200, 1998.

— J. O'Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying IEEE compliance of
floating-point hardware,” Intel Technology Journal, vol. 3, no. 1, pp. 1-14, 1999.

« Hardware verification and tools

— A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A flexible formal verification framework
for industrial scale validation,” in Formal Methods and Models for Codesign (MEMOCODE),
2011 9th IEEE/ACM International Conference on, July 2011, pp. 89-97.
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Outline

Intro ACL2 Spec —— IEEE754 / IDiv —— Abstraction
Algorithm extraction 3 A\
Algorithm verification ACL2 Model —— Soinding sromstions
Reflections and challenges 49
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Goal: raise level of abstraction from low-level bit operations to higher-level
operations like *, +, and ~ of m-bit operands
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Breaking Up Is Hard To Do

» Decompose circuit into appropriately-sized blocks

* Choose modules of interest

— For example:
* Tree of carry-save adders (CSAs)
* Nest of Booth encoders
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Breaking Up Is Hard To Do

» Decompose circuit into appropriately-sized blocks

* (1) Black-box chosen modules
— Write specification for those modules in ACL2

— Automatically verify the validity of those specifications using GL
* GL uses BDDs and SAT solvers “under the hood”

TEfm.

(1) GL (BDDs + SAT
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Breaking Up Is Hard To Do

Decompose circuit into appropriately-sized blocks
(2) Create ACL2 version of the interconnect

For example:
The wires that connect the CSAs are connected in a particular way

ACL2 version of interconnect is unverified at this point
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Breaking Up Is Hard To Do

Decompose circuit into appropriately-sized blocks

(3) Prove a higher-level specification
Define a higher-level specification for the connected modules
Prove specification’s validity using Boyer-Moore rewriting

For example:
sum+carry*2 = a+b+c+d+e+f+g+h
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(1) GL (BDDs + SAT) 2l @ @ (3) Boyer-Moore-style Rewriting
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Breaking Up Is Hard To Do

Decompose circuit into appropriately-sized blocks

(4) Black-box your larger piece of circuitry

Prove that the ACL2 interconnect is the same as the Verilog interconnect
|.E., that the Verilog wires really do connect the CSA’s that way!

:

(1) GL (BDDs + SAT) 2] @ @ (3) Boyer-Moore-style Rewriting i4) Rewriting + GL (BDDs + SAT)
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Breaking Up Is Hard To Do

Decompose circuit into appropriately-sized blocks

(4) Black-box your larger piece of circuitry
Black-boxing doesn’t scale using Esim and GL

Use SV (successor to Esim) in our latest work
Scales better but we still have problems too large
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Outline
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Goal: show that the Goldschmidt algorithm (consisting of operations like *, +,
and ~ of m-bit operands), rounding, and exceptions implement IEEE 754
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IEEE754 Specification in ACL2

» [IEEE754 Standard on Floating-Point Arithmetic

— 80-page document written in English

* Our IEEE 754 specification in ACL2 includes

— Div, sqgrt, add, mul, and fused mul-add

— All special values (+/- 0, +/-Infinity, NaNs)
— All exception flags

— Denormals

— Four rounding modes

— Customization for NaN values

» Validated our spec against millions of test vectors from Oracle’s test suite
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Goldschmidt Algorithm for Division

ldea: choose T, r; such that

A T 1o 1 1o

— % — % — % — %
B T r, ri

Precision doubles with each iteration
Algorithm:

T = table lookup (B) ;

d, = B*T; n, = A*T;

for (i=0; i < MAX,; ++i) {
diy; = d;*r;; n;y = n*rg;

\ Yipp = 2 - djg7

final approx = ny,, + inc
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Main Proof Obligation

first final
approximation approximation
: v
v
—1 lookup m, m, comp,, m, my |-----memmeemeemeees M.t round |

-max_error < final_approx - A/B < max_error '?

» Each step introduces an error
— Lookup: T ~ 1/B. Define relative erroruby T=1/B- u/lB
— Each multiplication, except last, is truncated from 2M to M bits. Error eps; is in [0, 2-V)
— 2 -d.,, is implemented by taking one’s complement of d,,. This introduces fixed error 2-V

» Golden question: Is error in final approximation small enough to yield an
IEEE 754 answer after rounding is applied?
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Error Analysis

* Express (final_approx - A/B) as a multivariate polynomial in u (lookup error) and
eps; (truncation error)

 This polynomial can be generated symbolically from the algorithm

» Given the interval for each variable, compute interval for (final _approx - A/B)
using methods from interval arithmetic

- Example: If lookup error u was only error, then final error for, e.g., final_approx =
n, can be expressed as

final_approx - A/B = A*T*(-u* -u> -u® ...) + inc

with uin [-2% 2% and A*T < 2.
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Results of Error Analysis

* Proved main obligation using interval arithmetic

-max_error < final_approx - A/B < max_error

- We first implemented interval arithmetic in Java™ and later verified
computations in ACL2

* We then experimented with reduced lookup tables to see if main obligation still
holds.

» This approach reduced the lookup table
— for division by 50%
— for square root by 75%
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Reflections and Challenges

« Approach is very similar to Symbolic Trajectory Evaluation (STE)
— Works very well for data-path verification
— Technical challenges involving Step 4 of Extraction (recomposition)

* |Invariant-based methods
— More thorough but more time-consuming
— Necessary for verifying control logic

— Can community make invariant-based frameworks and methodologies more efficient for
users?

* Currently too time-consuming for industry to use on major products with deadlines
- A dream: automatically infer higher-level specifications for Verilog implementations
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Interval Arithmetic Intermezzo

* Function of single input variable
— For each input interval, compute output interval

E
01

00

- Computing the output interval for multivariate polynomials is similar to computing
the output interval for univariate polynomials
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