Formal Verification of Division and Square Root Implementations, an Oracle Report

David L. Rager, Jo Ebergen, Dmitry Nadezhin, Austin Lee, Cuong Kim Chau, Ben Selfridge

October 6, 2016
Goal

• Verify data-path for new implementations of:
 – 32/64-bit floating-point division and square root
 • fdivd
 • fdivs
 • fsqrtd
 • fsqrts
 – 32/64-bit integer divide
 • udivx
 • sdivx
 • udiv
 • sdiv
The Problem and Key Result

ACL2 Spec

ACL2 Model

Verilog

Abstraction
Tools

• ACL2
 – Programming language written in subset of Lisp
 – Theorem prover written in ACL2
 • Proof engine used at AMD, IBM, Centaur, Motorola, Intel
 • 2005 ACM Software System Award
 – Maintained at Univ. of Texas with help from community

• ACL2 Books (~5500)
 – A “book” is a library of functions and lemmas
 • Arithmetic, RTL, security, proof and definition utilities
 – Includes a Verilog parser and hardware symbolic simulator

• Support Tools: SAT solvers, waveform viewer
Related Work

• Symbolic trajectory evaluation (Intel)

• Floating-point verification

• Hardware verification and tools
Outline

- Intro
- Algorithm extraction
- Algorithm verification
- Reflections and challenges

Goal: raise level of abstraction from low-level bit operations to higher-level operations like *, +, and ~ of m-bit operands
Breaking Up Is Hard To Do

- Decompose circuit into appropriately-sized blocks
- Choose modules of interest
 - For example:
 - Tree of carry-save adders (CSAs)
 - Nest of Booth encoders
Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks
• (1) Black-box chosen modules
 – Write specification for those modules in ACL2
 – Automatically verify the validity of those specifications using GL
 • GL uses BDDs and SAT solvers “under the hood”
Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks
• (2) Create ACL2 version of the interconnect
 – For example:
 • The wires that connect the CSAs are connected in a particular way
 – ACL2 version of interconnect is unverified at this point
Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (3) Prove a higher-level specification
 – Define a higher-level specification for the connected modules
 – Prove specification’s validity using Boyer-Moore rewriting
 – For example:
 • $\text{sum+carry} \times 2 = a + b + c + d + e + f + g + h$

(1) GL (BDDs + SAT) (2) (3) Boyer-Moore-style Rewriting
Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks
• (4) Black-box your larger piece of circuitry
 – Prove that the ACL2 interconnect is the same as the Verilog interconnect
 • I.E., that the Verilog wires really do connect the CSA’s that way!
Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks
• (4) Black-box your larger piece of circuitry
 – Black-boxing doesn’t scale using Esim and GL
 – Use SV (successor to Esim) in our latest work
 • Scales better but we still have problems too large
Outline

- Intro
- Algorithm extraction
- Algorithm verification
- Reflections and challenges

- Goal: show that the Goldschmidt algorithm (consisting of operations like *, +, and ~ of \(m\)-bit operands), rounding, and exceptions implement IEEE 754
IEEE754 Specification in ACL2

- IEEE754 Standard on Floating-Point Arithmetic
 - 80-page document written in English
- Our IEEE 754 specification in ACL2 includes
 - Div, sqrt, add, mul, and fused mul-add
 - All special values (+/- 0, +/-Infinity, NaNs)
 - All exception flags
 - Denormals
 - Four rounding modes
 - Customization for NaN values
- Validated our spec against millions of test vectors from Oracle’s test suite
Goldschmidt Algorithm for Division

• Idea: choose T, r_i such that

\[
\frac{A}{B} \times \frac{T}{T} \times \frac{r_0}{r_0} \times \frac{r_1}{r_1} \times \frac{r_2}{r_2} \times \frac{r_3}{r_3} \ldots \rightarrow \frac{Q}{1}
\]

• Precision doubles with each iteration

• Algorithm:

\[
T = \text{table_lookup}(B);
\]
\[
d_0 = B \times T; \quad n_0 = A \times T;
\]
\[
r_0 = 2 - d_0;
\]
\[
\text{for (i=0; i < MAX; ++i) }
\]
\[
\quad d_{i+1} = d_i \times r_i; \quad n_{i+1} = n_i \times r_i;
\]
\[
\quad r_{i+1} = 2 - d_{i+1};
\]
\[
\text{for (i=0; i < MAX; ++i) }
\]
\[
\quad d_{i+1} = d_i \times r_i; \quad n_{i+1} = n_i \times r_i;
\]
\[
\quad r_{i+1} = 2 - d_{i+1};
\]
\[
\text{final_approx} = n_{\text{MAX}} + \text{inc}
\]
Main Proof Obligation

Each step introduces an error
- Lookup: \(T \sim 1/B \). Define relative error \(u \) by \(T = 1/B - u/B \)
- Each multiplication, except last, is truncated from \(2M \) to \(M \) bits. Error \(\epsilon_i \) is in \([0, 2^{-M})\)
- \(2 - d_{i+1} \) is implemented by taking one’s complement of \(d_{i+1} \). This introduces fixed error \(2^{-M} \)

Golden question: Is error in final approximation small enough to yield an IEEE754 answer after rounding is applied?
Error Analysis

- Express \(\text{final}_\text{approx} - \frac{A}{B} \) as a multivariate polynomial in \(u \) (lookup error) and \(\text{eps}_i \) (truncation error)
- This polynomial can be generated symbolically from the algorithm
- Given the interval for each variable, compute interval for \(\text{final}_\text{approx} - \frac{A}{B} \) using methods from interval arithmetic
- Example: If lookup error \(u \) was only error, then final error for, e.g., \(\text{final}_\text{approx} = n_2 \) can be expressed as

\[
\text{final}_\text{approx} - \frac{A}{B} = A^\ast T^\ast (-u^4 - u^5 - u^6 \ldots) + \text{inc}
\]

with \(u \) in \([-2^{-k}, 2^{-k}]\) and \(A^\ast T < 2 \).
Results of Error Analysis

• Proved main obligation using interval arithmetic

 \[-\text{max_error} < \text{final_approx} - A/B < \text{max_error}\]

• We first implemented interval arithmetic in Java™ and later verified computations in ACL2

• We then experimented with reduced lookup tables to see if main obligation still holds.

• This approach reduced the lookup table
 – for division by 50%
 – for square root by 75%
Reflections and Challenges

• Approach is very similar to Symbolic Trajectory Evaluation (STE)
 – Works very well for data-path verification
 – Technical challenges involving Step 4 of Extraction (recomposition)

• Invariant-based methods
 – More thorough but more time-consuming
 – Necessary for verifying control logic
 – Can community make invariant-based frameworks and methodologies more efficient for users?
 • Currently too time-consuming for industry to use on major products with deadlines

• A dream: automatically infer higher-level specifications for Verilog implementations
Interval Arithmetic Intermezzo

• Function of single input variable
 – For each input interval, compute output interval

• Computing the output interval for multivariate polynomials is similar to computing the output interval for univariate polynomials