
Version Space Learning for Verification on Temporal Differentials

Mark Santolucito
Ennan Zhai, Ruzica Piskac

Yale University

Motivation

Misconfiguration examples

Solution Attempt #1

Solution Attempt #2

 Software or service failure are very expensive.
 Software misconfiguration problems are the most common root-cause (31%),

e.g., Amazon EC2 outage Apr 2011.

 general_log = /var/log/mysql/mysql.log

Problem Type: Value type error

Description: The parameter “general_log” should be an integer, rather than
path (string). In MySQL, there is another parameter “general_log_file” used
to point the log path.

Impact: MySQL log cannot be correctly written.

 extension = mysql.so
 … ...
 extension = recode.so

Problem Type: Ordering error

Description: When using PHP in Apache, the extension “mysql.so”
depends on “recode.so”. Thus, the order between them matters. The user
configured the order in a wrong way.

Impact: Apache cannot start due to segment fault

“recode.so” must be put before
“mysql.so”

Error Type Relations Passing
Tests

False Positives

Missing Entry X in same
files as Y

5/5 1, 0, 0, 0, 4

Type Error X : Int 5/5 0, 0, 0, 0, 0

Keyword
Ordering

X before Y 5/5 0, 2, 1, 0, 6

Value
Relations

X > Y, X=Y 4/5 0, 0, 0, 1, 0

 ConfigC is an instance of version space
learning. But it only builds the specific
boundary (Necessary set) – the strongest
conditions for a correct file.

 We extend ConfigC to also
build the general boundary –
the set of weakest condition
for a correct file.

 Instead of building a concrete
relation set from the learning
files, we build an SMT formula
in the theory of sets.

File F
A=1
B=2
C=3

Relations (F) =
{ A<B, B<C, A<C,
 (A,B), (B,C), (A,C),
 A:Int, B:Int, C:Int, …}

 This is guaranteed to detect
all incorrect files, but also
generates many false
positives – errors that are
not true errors.

Greatest Boundary = Breaking : {Relations}
Specific Boundary = Necessary : {Relations}

Status(F) = Pass r Relations (F), r Breaking⇒∀ ∈ ∉
Status(F) = Err r Relations (F), r Breaking⇒ ∃ ∈ ∈

 The formula can be extended
with extra observations - for
example using temporal
structures in the learning set.

Status(F1) = Pass Status(F2) = Err ∧ ⇒
∃r Relations (F1) `setDif` Relations (F2), r Necessary ∈ ∈ ⋁
∃r Relations (F2) `setDif` Relations (F1), r Breaking∈ ∈

Proposed Application

 Travis Continuous Integration[2] service for testing

 ~30% of large projects on Github use TravisCI
 15-20% of failed TravisCI builds are due to ”errors”
 Since the start of 2014, approximately 88,000 hours of

server time was used on TravisCI projects that resulted
in an error status.

 Because commits are incremental, set diferences are
small, which lets the SMT solver run relatively quickly.

 Relations (F1) `setDif` Relations (F2) << Relations (F2)

[1] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated language learning for configuration files,” in CAV, 2016,
pp. 80–87.

[2] Z. A. Beller M, Gousios G, “Oops, my tests broke the build: An analysis of travis ci builds with github,” PREPRINT, 2016.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.1984v1

This work was funded in part by NSF grant #1302327

 In our previous work, ConfigC[1] can learn a language model from a
learning set of configuration files by building a set of necessary
relations over a learning set of correct files.

	Slide 1

