
Automatic Verification of Application-Tailored OSEK Kernels

Hans-Peter Deifel, Merlin Göttlinger,
Stefan Milius and Lutz Schröder

Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg
Email: {hans-peter.deifel, merlin.goettlinger,

stefan.milius, lutz.schroeder}@fau.de

Christian Dietrich and Daniel Lohmann
Leibniz Universität Hannover

Email: {dietrich, lohmann}@sra.uni-hannover.de

Abstract—The OSEK industrial standard governs the design
of embedded real-time operating systems in the automotive
domain. We report on efforts to develop verification methods
for OSEK-conformant compilers, specifically of a code gen-
erator that weaves system calls and application code using
a static configuration file, producing a stand-alone applica-
tion that incorporates the relevant parts of the kernel. Our
methodology involves two verification steps: On the one hand,
we extract an OS–application interaction graph during the
compilation phase and verify that it conforms to the standard,
in particular regarding prioritized scheduling and interrupt
handling. To this end, we generate from the configuration
file a temporal specification of standard-conformant behaviour
and model check the arising formulas on a labelled transition
system extracted from the interaction graph. On the other
hand, we verify that the actual generated code conforms to the
interaction graph; this is done by graph isomorphism checking
of the interaction graph against a dynamically-explored state-
transition graph of the generated system.

1. Introduction

Embedded real-time control systems are special-purpose
systems dedicated to specific, predefined tasks [1], [2].
Already now, a typical (in particular, non-autonomous) car
contains up to a hundred such systems. Hence, both the
hardware and the system software of each embedded control
system need to be tailored to its specific needs in order to
keep per-unit hardware costs as low as possible [3]. The
OSEK-OS standard [4] fulfils these demands for tailorabil-
ity and has been (together with its superset AUTOSAR-
OS [5]) the dominant industry standard for event-triggered
automotive real-time operating systems (RTOSs) for the last
decades. What sets OSEK apart from the common POSIX-
like operating systems is that it is completely statically
configured. For a specific automotive application, all system
objects (tasks, interrupt-service routines, resources, etc.) and
their configurations have to be declared at compile-time
in a domain-specific language, the OSEK Implementation
Language (OIL) [6]. From this specification, an application-
specific, highly optimized RTOS instance is derived by means
of a generator.

In
pu

ts
ys

te
m

S
ystem

im
age

System generator

System description
(formal; OIL)

Application code
(formal; C)

Application code
(machine code)

Interaction model
(SSTG)

Kernel Binary
(machine code)

OSEK Specification
(informal)

Regular compiler

desired verification

vertical horizontal

syscalls at run time

Application specific OSEK specific Verification Generation flow

Figure 1: System generation and verification. We use the
static state-transition graph (SSTG), a byproduct of the
OSEK system generator, as an intermediate representation
for our desired kernel verification.

However, with the advent of autonomous driving fea-
tures, the industry is facing new challenges with respect
to functional safety; the highest safety level ISO 26262
ASIL D demands the employment of a certified RTOS, such
as RTA-OS (ETAS), MICROSAR OS (Vector), or tresos Safety
OS (EB) (vendors named in parentheses). These certified
operating systems offer significantly less tailorability and
thus induce higher per-unit costs. The certification of the
development process of the RTOS kernel is already extremely
expensive, so vendors shy away from the even higher costs
of certifying a kernel generator.

Taking a step back, we argue that application developers
do not need a kernel that behaves correctly in all imaginable
situations. However, they are very interested in a kernel that
always behaves correctly for their specific application and
all of their kernel-usage patterns. Therefore, we replace the
isolated certification of the generator with a per-instance
verification of the resulting kernel binary and thus formulate
our verification goal: For a given application, the generated
kernel binary must expose the specified behavior when
executed together with our application. This bypass of the
generator in the verification process allows all kinds of highly
specialized system optimizations.

We achieve the desired verification (see Figure 1) by
introducing an kernel–application interaction model: Our
toolchain considers not only the OIL-specified system object
instances but also how these system objects actually interact
with each other via the syscall interface according to the

1

TASK(Low) {
if (test()) {

ActivateTask(High);
}
TerminateTask();

}

TASK(Med) {
TerminateTask();

}

TASK(High) {
TerminateTask();

}

void ISR() {
ActivateTask(Med);

}

Figure 2: Example System – Source Code

OSEK semantics [7]. We enumerate the application-specific
kernel’s state space, the static state-transition graph (SSTG),
which is calculated and used by the system generator.
The SSTG acts as an intermediate representation of kernel
behavior and is the central data structure for our strategy.
First, we statically verify (vertically, according to Figure 1)
that the SSTG actually conforms to the OSEK standard. To
this end, we formalize key aspects of the standard in CTL
and model check the SSTG against this specification; this
is feasible because the SSTG is of moderate size thanks to
tailoring. Second, we dynamically verify the system against
the SSTG (horizontally, according to Figure 1). To this end,
we probe the system to explore a dynamic state-transition
graph (DSTG) and check that it is isomorphic to the SSTG.
We report on experiments with this methodology, both on
systems from a standard test suite and on the control software
of a quadrotor copter.

2. Background and Context

We give a brief overview of the single-core OSEK real-time
operating system standard. Moreover, we describe the static
state-transition graph (SSTG), which the dOSEK generator
(dOSEK = dependable OSEK, our implementation of the
OSEK standard) uses as an intermediate representation to
model all possible interactions between application and
kernel.
2.1. OSEK in a Nutshell. The tailored embedded systems
that we are concerned with here are woven from application
code and a tailored kernel instance. Kernel and application
interact at runtime, typically subject to requirements on
real-time performance. Depending on the current OS state,
the kernel selects a control flow that is currently ready
and dispatches it for execution. The application’s control
flows, as the kernel’s counterpart, manipulate the OS state by
invoking system services that influence the system behaviour
(Table 1 gives a short overview). OSEK offers two main
control flow abstractions: interrupt-service routines (ISRs)
and tasks (i.e. threads). ISRs are activated by the hardware
and fall into two classes: category-1 ISRs, which are not
allowed to call system services; and category-2 ISRs, which
are synchronized with the kernel. Tasks have a statically
assigned priority, are allowed to use all system services, and
are invoked according to a strict fixed-priority preemptive
scheduling policy. On each new activation, tasks start from
the very beginning and run until (self-)termination. Each task
is configured to be either nonpreemptive (enforcing run-to-

completion semantics) or fully preemptive. Preemption points
can be either synchronous, for example caused by an explicit
activation of a higher priority task (ActivateTask), or
asynchronous, if a higher priority task is activated inside an
ISR. Periodically or aperiodically recurring task activations
can be triggered by means of statically configured alarms,
which are driven by a hardware timer.

Inter-task synchronization is realized by resource objects.
Based on a stack-based priority-ceiling protocol, OSEK re-
sources ensure mutual exclusion while preventing deadlocks
and priority inversion. Through the acquisition of a resource,
a task raises its dynamic priority to the ceiling priority of
the resource – the highest static priority of all tasks that can
obtain the resource, according to the OIL file.

Figure 2 shows a small example system that consists of
three tasks and one ISR. These coordinate their execution
with the help of the OS, which is activated through system
service invocations (syscalls). Figure 3a depicts the same
system as read in by the dOSEK generator.

2.2. Generating a System. A dOSEK kernel instance is
generated from two inputs (see also Figure 1): The appli-
cation’s OIL file specifies the employed RTOS objects (i.e.,
the tasks Low, Med, High and the ISR ISR in our example).
The application’s source code (Figure 2) specifies how these
system objects interact according to the OSEK semantics.

Internally, we structure the application code into a set
of control-flow graphs (CFGs) consisting of atomic basic
blocks (ABBs) (Figure 3a). An ABB [7], [8] is a control-flow
superstructure that subsumes one or more traditional basic
blocks (BBs) forming a single-entry single-exit region; it has
exactly one distinguished entry BB and one exit BB. The
construction (see [7] for a detailed description) results in
one ABB-graph for each task within the application code.
By construction, every ABB either contains a single syscall
or only computation code that does not interact with the
OS (no syscalls). From the kernel’s point of view, an ABB
executes atomically, but can be interrupted by ISRs.

At build time, the dOSEK generator computes a state
transition graph (STG) from the ABB graphs of the individ-
ual tasks and the system configuration (OIL). (We formally
define STGs in Section 2.3.) This STG is the static state-
transition graph (SSTG) already mentioned in the introduc-
tion. Starting with an initial global system state, derived from
the OIL file, the generator enumerates all reachable system
states explicitly (Figure 3b). Every state carries the currently
running task, a block that is executed in this state (e.g.
state A executes ABB1), and other relevant scheduling data,
like the list of activated tasks. A state transition is caused
by either a computation block, a system call block, or an
interrupt request. For the associated post-state, the currently
running task and the currently executed block are calculated
according to the OSEK scheduling semantics. The SSTG
subsumes the interwoven application–kernel behaviour and
includes all possible scheduling sequences an OSEK kernel
exposes for the given application. Since computation blocks
do not perform syscalls, their execution does not influence
future scheduling decisions, and is therefore represented

2

th
re

ad
M

ed

th
re

ad
Lo

w

th
re

ad
H

ig
h

IS
R ABB1

E
ABB2

ABB3 ABB4
E

ABB5

ABB6

α
β

γ δ

ω

activates

ac
tiv

at
es

(a) The application is structured into three tasks with high, medium,
and low priority, respectively, and one interrupt service routine. The
application code is partitioned into atomic basic blocks (ABBs).
In ABB2, the low-priority task activates the high-priority task via
ActivateTask. The ISR activates the medium-priority task. (To
simplify the example, the IRQ may happen only in ABB1 and
ABB4, and the tasks issue TerminateTask() implicitly.)

A B C

D

F

G H J

K L

S
ta

rt
O

S

ABB1 /ε ABB2

ABB3

A
B

B
1

/ε

E

ABB5

ABB 6

E

ABB 5

ABB4ABB6

ABB4

E
ABB5

task local / ε
reschedule

E IRQ activation
System State

(b) This static state-transition graph (SSTG) captures all possible
state transitions from the start to the termination of the low-priority
task according to the OSEK semantics. Every state carries and
executes exactly one ABB.

Figure 3: Example system

TABLE 1: Excerpt of system services provided by the OSEK-OS API.

System Service Arguments Brief Description

ActivateTask TaskID Task TaskID is activated. If the current task is preemptible, immediate rescheduling takes place.
TerminateTask – The current task terminates itself and immediate rescheduling takes place.
GetResource ResID Acquires the resource identified by ResID.
ReleaseResource ResID Leaves the critical region associated with the resource ResID. The dynamic priority of the calling task

is changed and a reschedule takes place for preemptible tasks.

by ε-transitions. For instance, ABB1 is computational and,
therefore, the transition between states A and D becomes an
ε-transition.

Thus computed, the SSTG has node identities represent-
ing the current global system state, while the edges of the
SSTG are either ε-transitions or labelled with the system calls
triggering the respective state transitions. System call labels
can be either system calls in the proper sense, interrupts
(which are triggered by the hardware outside the system),
interrupt returns (irets), or the idle system call. The idle
system call is executed from an idle state when no other task
is ready for execution. This ensures that all maximal paths
in the SSTG are infinite. The latter three types of system
call labels are artificially added by the generator and only
model the implicit state transitions of an OSEK system; they
are not explicitly named in the OSEK specification.

From the SSTG information, the dOSEK system genera-
tor (Figure 1) produces a kernel binary that is optimized for
the actual application usage patterns. Optimizations include,
for example, the avoidance of scheduler invocations for
system call sites that have a known scheduling outcome.

2.3. State Transition Graphs. Our verification method is
concerned with properties of and relations between STGs,
which in process-theoretic parlance are essentially determin-
istic labelled transition systems. That is, given a set A of
labels a state transition graph consists of a set S of states
and a set T ⊆ S ×A× S of labelled transitions. We write
s
a−→ t for (s, a, t) ∈ T . The transition relation is required to

be deterministic (but may be, and typically is, partial), that

is, whenever s a−→ t and s a−→ t′ then t = t′. We occasionally
consider state transition graphs with ε-transitions; these
additionally admit transitions of the form s

ε−→ t where ε is a
special label not contained in A. For ε-transitions, we do not
require determinism. For example, the graph from Figure 3b
is nondeterministic at state A w.r.t. ABB1-transitions, which
are replaced by ε-transitions as explained in Section 2.2.

To STGs with ε-transitions, we apply the usual process
of ε-elimination, i.e. we insert an a-transition from state s
to state t whenever t is reachable from s by first performing
any number of ε-transitions (possibly none) and then an
a-transition. We then remove all unlabelled transitions, and
all states that become unreachable as a result. In general,
this will produce a nondeterministic STG; we will explain
in Section 3.2 why the particular STGs that appear in
our verification framework do remain deterministic after
ε-elimination.

3. The Formal Verification Method

Our formal verification methodology comprises a vertical and
a horizontal verification process (cf. Figure 1). The central
data structure for our verification is the SSTG (Section 2.2).
In the vertical verification, we check that the SSTG adheres
to key aspects of the behaviour specified by the OSEK
standard, in particular regarding prioritized scheduling and
interrupt handling. To this end, we formalize the correspond-
ing parts of the OSEK standard in CTL and model check the
SSTG against the arising temporal specification (Section 3.1).
In the horizontal verification, we then ensure that the actual

3

generated code conforms to the originally projected system-
wide control flow; this is achieved by graph isomorphism
checking of the SSTG against a judicious abstraction of the
code, viz. another STG called the dynamic state-transition
graph (DSTG) (Section 3.2).

3.1. Vertical Verification. We next describe how we for-
mally verify that the static state transition graph (SSTG)
complies with the OSEK specification. To this end, we
generate a NuSMV-model and CTL formulas that formalize
(parts of) the OSEK specification. Our formalization currently
covers the standard roughly up to conformance class ECC1,
with the exception of alarms and resource management. As
input for our generator we use the (ε-eliminated) SSTG and
the OIL specification, which specifies all tasks and interrupts
with their respective priorities, as well as all events and
resources of the system.

The SSTG already resembles a NuSMV-model, except
that NuSMV-models do not have edge labels. Thus, we need
to convert the edge labels into state labels, and our generator
does that by pushing labels along the arrows into the next
state. This leads to a multiplication of states by the number of
different labels of incoming edges. Of course, this conversion
produces a nondeterministic model, however with a unique
edge between two states as every syscall has a unique effect
on the current state. In more detail, our NuSMV-model has
as global state variables (a) the variable syscall that contains
the name of the system call (i.e. the label of the edge) that
took the system into the current state, (b) a variable state
carrying the current state in form of the node id from the
SSTG, and (c) variables for all other parts of the global
system state. Note that the values of the latter variables are
already determined uniquely by the node id; we included
them merely to make the CTL formulas and counterexample
traces more readable.

All OS objects, i.e. tasks, ISRs, events, and resources are
realized by means of NuSMV-modules, which are instantiated
as specified in the OIL specification of the system. They
do not carry internal state but are merely used to group
related variables for readability in formulas and error traces.
For example, the state and (dynamic) priority of a task t
are referred to by t.state and t.priority. The actual state is
fed into the instances through global variables that form
parameters of the modules. The next value of state at any
state is chosen nondeterministically as one of the successor
nodes of the current SSTG node (given by the current value
of state). The next(syscall) is then uniquely determined by
the current value of state and the value of next(state).

Some variables, for example the resource priorities, are
not explicitly contained in the OIL file and thus have to be
calculated according to the OSEK specification. The latter
demands that resource priorities are at least the maximum
priority of all tasks using the resource but are lower than
the priority of every task not using the resource but having
higher priority than the ones using the resource. To avoid
priority collisions between tasks due to resource occupation,
we scale all priorities by a factor of two and calculate the
resource priorities as the maximum of all the priorities of

MODULE main()
VAR
...
syscall : { Start, ..., TerminateTask, ...,

ActivateTask_High, ..., interrupt_37, ... };
running : { Idle, Low, Med, High, ISR };
state : { ABB_67_0, ..., ABB_4_0, ..., ABB_23_0, ABB_24_0,

ABB_25_0, ..., ABB_63_0, ... };
...

ASSIGN
init(syscall) := Start;
next(syscall) := case
((state = ABB_67_0) & next((state = ABB_4_0))) :

ActivateTask_High;
((state = ABB_67_0) & next((state = ABB_23_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_24_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_25_0))) :

interrupt_37;
((state = ABB_67_0) & next((state = ABB_63_0))) :

TerminateTask;
...
next(TRUE) : syscall;

esac;
init(running) := Low;
next(running) := case
next((... | (state = ABB_4_0))) : High;
next((... | (state = ABB_23_0) | (state = ABB_24_0) |

(state = ABB_25_0) | ...)) : ISR;
next((state = ABB_63_0)) : Idle;
...
next(TRUE) : running;

esac;
init(state) := ABB_67_0;
next(state) := case
...
(state = ABB_67_0) : {ABB_4_0, ABB_23_0, ABB_24_0,

ABB_25_0, ABB_63_0};
...

esac;
...

CTLSPEC ...

Figure 4: Slice of the NuSMV-model for the graph in Fig. 3

the tasks using the resource plus one. This does not affect
the scheduling behaviour and ensures that there can never
be a situation where multiple tasks of the same dynamic
priority are ready to run at the same time.

Figure 4 shows a slice of the NuSMV-model generated
from the SSTG for the example system from Figure 2
(depicted in simplified form in Figure 3(b)). We include
only the variables state, syscall and running and
only the transitions from the starting state ABB_67_0,
which corresponds to state A. The transition to ABB_4_0
corresponds to the transition A

ε−→ B
ABB 2−−−→ C and the one to

ABB_63_0 corresponds to the transition to the final state
with label ABB3. The remaining three transitions essentially
correspond to A → K but take into account that in reality
an interrupt in the program of Figure 2 may happen before
test() is executed or at the two points after the branch
(i.e. just before ActivateTask(High) or just before
TerminateTask()).

We verify that the SSTG adheres to the OSEK spec-
ification by model checking the NuSMV-model generated
from the SSTG against the CTL formulas generated from
the OIL file according to the OSEK specification. The latter
arise by instantiating formula patterns that are parametric in
the OIL configuration. Figure 5 shows an example formula,

4

to be discussed shortly. Additional formulas specify that
transitions of event states, resource states and interrupt states
are correct, that ISRs may only perform their allowed system
calls etc.; see the full version [9] for details. We frequently
need to quantify over finite sets that are obtained from
the OIL specification or are specified by OSEK (Table 2);
such quantifiers are just expanded into finite conjunctions or
disjunctions.

The formula in Figure 5 expresses that the scheduling
for a task t is correct, i.e. each transition made in the SSTG
is legal, and every transition required by the specification
is in fact made by the system. Note that the transitions
from Waiting and Suspended directly to Running are not
technically legal according the OSEK specification; but
the required intermediate state where the task in question
would be Ready is not observable to the application, and
we therefore opt to allow the direct transitions. The formula
is instantiated for every task, and, in a slightly modified
version, for every ISR, as interrupt scheduling is to some
extent left up to the implementation. The formula is structured
into four subformulas ψ1, . . . , ψ4, each handling the allowed
state transitions from one of the four possible starting states.
To make this rather large formula readable we employ the
following abbreviations for subformulas and properties:

– t.isHighestPriority specifies that control flow t wants to
run, e.g. has state Ready or Running, and has higher
priority than every other control flow that currently wants
to run.

– t.isWaitingFor(e) states that the task t is waiting for the
event e to occur.

– allOthersPreemptible(t) states that all tasks currently
ready, other than t, are preemptible. Note that this formula
needs to be used together with t.isHighestPriority to
ensure that no interrupt is currently running and is needed
altogether because when checking the starting transition
of a non-preemptible task t, knowing t.isHighestPriority
alone is not enough. For example, before the transition,
t.isHighestPriority would always be false, since t was
suspended, and after the transition, t would have already
received the ceiling priority of the internal scheduler
resource due to being non-preemptible.

– othersWillPreempt(t) denotes that task t will be pre-
empted by another control flow due to witnessing a
scheduling system call. This happens only if another
control flow s currently has the highest priority, and if s
is not an ISR, then t also has to be preemptible.

– waitSc(t) formalizes that task t is waiting for at least one
event that is not set.

Note that the parameter e in t.isWaitingFor(e) is realized
in our NuSMV-model as follows: For every task, an array
containing the states of all its events is generated. The
parameter e then simply is an index into this array.

Formula ψ1 handles the case where t was previously
suspended. Here, the only way for t to start up again is by
a system call from the set Act (with a transition to Ready
or Running depending on what else is currently running). In
the case where t was previously Running, ψ2 captures the

TABLE 2: Finite sets used in the OSEK formalization.

Set Name/Description

SC Scheduling calls, i.e. system calls that lead to a
(re-)scheduling of tasks

Act(r) System calls that activate the control flow (i.e. task or
ISR) r

E(t) Events of task t
TSC(r) Terminating system calls, i.e. system calls that would

lead to the termination of r
NPTasks Non-preemptible tasks, i.e. tasks that cannot be pre-

empted by higher priority tasks
RPreempt(r) Control flows that could preempt r

possible transitions:
(1) There is another control flow that will preempt t

(othersWillPreempt(t)) due to a system call that causes
rescheduling, and t will become Ready.

(2) t issues a system call from the set TCS(s) signalling its
termination, and becomes Suspended.

(3) t waits for one of its events. If the event is not set, t
becomes Waiting.

In the case where t was previously Ready, ψ3 formulates
that t will either remain Ready, or become Running if it
has the highest priority. Finally, in the case where t was
previously Waiting, ψ4 expresses that t keeps Waiting until
one of the events it was waiting for is set and then becomes
either Ready or Running, depending on whether it currently
has the highest priority.
3.2. Horizontal Verification. To increase trust in the cor-
rectness of the actual generated code, we complement
the verification that the SSTG complies with the OSEK
specification (Section 3.1) with a verification procedure
ensuring that the the generated code agrees with the SSTG.
To this end, we extract a normalized STG, the dynamic state
transition graph (DSTG), from the actual binary. Interestingly,
while one might expect the notion of agreement of the DSTG
with the SSTG to be based on classical process-algebraic
notions of equivalence such as bisimilarity [10], it turns out
that the normalization process in fact guarantees agreement
of the two STGs up to isomorphism. We therefore base our
verification procedure on isomorphism checking, not only
because we thus obtain stronger correctness guarantees but
also because isomorphism checking of deterministic systems
is computationally cheap, and in fact can be performed on-
the-fly.

In more detail, we extract the DSTG by executing and
probing the generated system binary with all possible syscall
sequences that can originate from the given application. In
order to facilitate exploration of the state space, we transform
the tasks’ ABB graphs (see Section 2.2) into a mock-up, a C-
program that omits the processing logic of the application and
retains only the control flow, and then run an external search
procedure on the mock-up that traverses the state space depth-
first. We generate the mock-up (see Figure 6 for a partial
mock-up of the running example) in two steps: (1) We use
tools from the dOSEK framework to generate function-local
ABB graphs from the generated LLVM code. (2) From these
ABB graphs, we generate C-code that emulates the control

5

AG((t.state = Suspended→ ψ1) ∧ (t.state = Running→ ψ2) ∧ (t.state = Ready→ ψ3) ∧ (t.state = Waiting→ ψ4)), where

ψ1 ≡ (allOthersPreemptible(t)→ AX (syscall ∈ Act(t)→ (t.state = Running↔ t.isHighestPriority)))

∧ (¬allOthersPreemptible→ AX (syscall ∈ Act(t)↔ t.state = Ready))

∧ AX((t.state = Suspended→ ¬syscall ∈ Act(t))

∧ AX((t.state = Ready ∨ t.state = Running)→ syscall ∈ Act(t)))

ψ2 ≡AX((t.state = Ready↔ othersWillPreempt(t)) ∧ (t.state = Suspended↔ syscall ∈ TSC(t)) ∧ (t.state = Waiting↔ waitSc(t)))

ψ3 ≡ (allOthersPreemptible(t)→ AX (syscall ∈ SC→ (t.state = Running↔ t.isHighestPriority))) ∧ AX (t.state = Running ∨ t.state = Ready)

ψ4 ≡
∧

e∈E(t)

(
t.isWaitingFor(e)→ ((allOthersPreemptible(t)→ AX (e.set→ (t.state = Running↔ t.isHighestPriority)))

∧ (¬allOthersPreemptible(t)→ AX (e.set→ t.state = Ready))

∧ AX ((t.state = Waiting ∧ ¬e.set) ∨ t.state = Running ∨ t.state = Ready))
)

allOthersPreemptible(t) ≡
∧

ot∈NPTasks\{t} ot.state 6= Running

othersWillPreempt(t) ≡ syscall ∈ SC \ (TSC(t) ∪WaitCalls) ∧
∨

or∈RPreempt(t)\{t} or.isHighestPriority

waitSc(t) ≡
∨

e∈E(t) ¬e.set ∧ t.isWaitingFor(e)

Figure 5: Example CTL formula

TASK(Low) {
print_state_hash(at: ABB1, next: interrupt);
trigger_interrupt();
if (read_decision(0)) {

print_state_hash(at: ABB2, next: ActivateTask);
ActivateTask(High);

}
print_state_hash(at: ABB3, next: TerminateTask);
TerminateTask();

}

Figure 6: Example system – generated mockup for task Low

flow, i.e. performs function and system calls as specified.
Additionally, the mock-up:
• outputs node identifiers containing the identifier of the

current ABB, as well as a hash of the actual current
operating system state, where the latter includes the
program counter;

• outputs identifiers for system calls containing the name
of the system routine as well as the call site;

• optionally triggers any enabled interrupts;
• reads decisions on branching (including whether to trigger

an interrupt) from standard input.
The mock-up is linked with the specialized kernel produced
for the actual application by the dOSEK generator. It is
then used by the Dynamic State Explorer (DSE), a search
procedure that generates the space of reachable states depth-
first, steering the mock-up through the state space by feeding
input to it in order to determine branching. The result of the
search procedure is an STG. More precisely, some transitions
in the STG are labelled with system calls as indicated above,
and some are unlabelled, i.e. the STG includes ε-transitions;
the latter correspond to internal transitions between compu-
tational ABBs. The ε-transitions are nondeterministic, since
we omit the processing logic in the mock-up, so any form
of conditional branching in the original application turns
into nondeterminism; also, we cannot foresee external input.
This STG is then subjected to ε-elimination as described in
Section 2.3. We thus generate an STG with only labelled
transitions; it is this STG that we refer to as the dynamic
state transition graph (DSTG). The DSTG, as well as the
SSTG, is deterministic, since every non-ε label is a tuple
(call site, syscall type) and as such deterministically changes

the system state. The same holds for interrupts, even though
these are nondeterministic with regard to the activation time:
Every interrupt transition label contains the interrupt number
and, therefore, exactly describes its influence on the OS state,
just like every other syscall-induced transition.

We check the DSTG for isomorphism with the SSTG.
This is computationally unproblematic: since both LTS are
deterministic after ε-elimination, we only need to check
that both sides allow for the same transition labels, and
then propagate this property to the states reached by the
corresponding transitions. The reason that both graphs are
isomorphic is that the states of the DSTG are identified by
the hash value over the OS state, which is also reflected in
the fields of every SSTG node.

4. Experiments

4.1. Positive Tests. To evaluate our verification method, we
have run experiments on a number of OSEK systems. These
systems stem from a test suite originally designed for the
dOSEK implementation. In total, we have fully verified 58
test systems. We have selected eight systems that highlight
key properties targeted in the verification (Table 3). The test
cases “copter” and “copter-small” are the control software
of a quadrotor copter and a simplified version thereof that
arises by removing one asynchronous signal. For each of
the systems, we list the number of system objects of the
relevant types, i.e. interrupts, tasks (including the idle task),
events, and resources specified in the OIL file.

Table 3 shows key parameters and the performance of
the model checking tool on those systems. To qualify the
generated NuSMV-model, we give the number of reachable
states as well as its diameter (i.e. the length of the longest
loop-free path). On a 2.4 GHz Intel Core i7-5500U machine
with 8 GB of memory, the smaller experiments were com-
pleted within a fraction of a second. Only the verification of
the two copter examples took longer, but finished in under
three minutes.

For the horizontal verification, we probed the same
58 OSEK systems in two generator configurations (with
and without system call site specialization) and established

6

TABLE 3: Performance of vertical verification.

Name ISRs/Tasks/
Events/Res

Reachable
states

Diameter User time
(sec)

Memory
(MB)

bcc1-resource1j 0/6/0/4 26 16 0.10 27
bcc1-sse1c 0/6/0/4 24 14 0.08 28
ecc1-bt1g 0/6/2/2 10 10 0.05 24
ecc1-event1e 0/4/4/2 13 13 0.11 29
bcc1-isr2d 1/4/0/2 21 10 0.07 23
timing-abcomp 1/3/2/2 77 13 0.14 27
copter-small 3/11/0/3 1366 29 19.44 250
copter 4/12/0/3 4458 32 147.15 829

isomorphism with the respective SSTG in all cases. For most
systems, the horizontal verification took less than 1 second.
Only for the copter, the probing took 2.13s (0.81s for copter-
small) and the isomorphism checking 0.17s (0.04s). When
developing the hash function, we have probed examples with
over 400.000 states in under 4 minutes.
4.2. Negative Tests and Fault Injection. For the vertical
verification, we have performed negative tests by introducing
faults into systems to check that these are correctly identified
by our verification tool chain. To this end we have imple-
mented a modified dOSEK generator that injects various
types of faults into the input for our verification method.
One can select between (a) mutations in the SSTG and (b)
mutations in the input OIL specification. For (a), there is a
random choice of either adding an edge or merging two states,
and for (b), there is a random choice of either exchanging
the priorities of two tasks or toggling the preemptability or
the auto-start flag.

It should be noted here that not all faults introduced in this
random way will necessarily lead to actual errors, e.g. when
the change to the configuration does not influence the actual
interaction between application and OS, or when additional
transitions are actually valid. In our experiments, additional
edges mostly did lead to errors and were detected by the
formal verification; in some cases, additional edges produced
legal transitions or violated parts of the specification not
currently reflected in our formalization, e.g. that a task is
not allowed to release resources it has not currently reserved.
Merging graph nodes almost always produced errors caught
by the verification, except in cases where the net effect would
have been produced by ε-elimination anyway.

For the vertical verification, we injected 188 different
faults into the test cases; this did not change the performance
of the formal verification significantly compared to the
unmodified test cases (Table 3). 177 faults lead to errors
and were detected by the vertical verification. The other 11
faults were manually verified to be benign in the given usage
pattern (a more detailed discussion can be found in the full
version [9]). For the horizontal verification, we inserted 81
OIL-level faults: 61 lead to detected errors, while the other
faults were manually checked to be benign.
4.3. Lessons Learned. Summing up the experience gained,
it seems possible to achieve a fair degree of coverage in
the verification of key aspects of the OSEK specification
in tailored systems. (Unbounded) CTL model checking is
feasible as the reachable part of the abstracted state space

that we use remains within tractable range even for fairly
large systems such as the quadrotor copter controller (with
fewer than 4.5k states after abstraction); as stated above
we attribute this fact to OS tailoring. Without wishing to
get involved in the long-lasting linear-vs-branching-time
war (e.g. [11]), we note that at the scale of our examples,
LTL model checking does appear to reach the frontier of
feasibility. For example, while in CTL, the copter-small
example (Table 3) was discharged in under twenty seconds
using less than 300 MB of memory, on the LTL correspondent
of essentially the same specification we stopped the model
checker after 30 minutes at 3.5 GB of allocated memory. This
may be due to the higher formula complexity of LTL model
checking (PSPACE instead of PTIME). A clear disadvantage
of CTL, on the other hand, is that counterexamples are
less informative, and typically stop at the first nested path
quantifier.

Another somewhat surprising aspect is the fact that the
notion of correspondence between the SSTG and the DSTG
has turned out to be isomorphism of STGs. Actually getting
this insight to work in full has required a somewhat laborious
tuning process regarding the hashing of the OS state in
the exploration of the DSTG, and in fact maintaining the
tool chain in the future might be easier if one replaces
isomorphism with strong bisimilarity.

5. Related Work

Our work is set in the highly active area of software
model checking; see [12] for an (admittedly dated) overview.
Our method exploits the high degree of predictability of
scheduling afforded by OSEK, and in particular avoids the
state space explosion caused by thread interleaving [13].
The static generation of state transition graphs from code
in a somewhat similar style as featured in our approach has
been used, in combination with LTL model checking, in the
verification of event-condition-action systems [14].

The OSEK standard has been the subject of formal veri-
fication efforts to some degree. Waszniowski [15] modelled
OSEK using timed automata within the UPPAAL model
checker, and performed schedulability analyses. Huang et
al. [16] modelled OSEK in CSP to verify various properties
such as deadlock freedom. In this model, the internal applica-
tion structure is not considered, and interrupts are excluded
entirely. Vu et al. [17], [18] formalize the OSEK standard
in Event-B and then verify designs of full OSs against
the formalization. Where applications are considered [19],
[20], these are verified in connection with an OS model
rather than the actual OS implementation. In contrast, our
approach avoids the verification gap between OS model and
OS implementation by verifying the entire system composed
of application and OS. This is made possible by focusing
on the part of the OS behaviour actually relevant for the
application at hand, instead of attempting to verify the full
OS. We are thus able to a) work on the actual implementation,
and b) fully model check the entire application/OS system
including interrupts (expressly not covered in cited work on
verifying OSEK applications).

7

Zhang et al. [21] formalize the OSEK standard in the
K framework, along with the OIL and the programming
language for applications. This is then used for test case
generation and to verify applications by symbolic execution
within the model. Interrupts are not considered.

Tigori et al. [22] use reachability checking of extended
finite automata to remove dead code in tailored OSEK sys-
tems; the automata models involved are produced manually,
while we generate STGs during code generation and from
the actual code, respectively. Also, verification of OSEK
adherence in [22] is by standardized testing, while we model-
check the formalized standard.

On an entirely different scale, Klein et al. [23] formally
verified the seL4 microkernel for functional correctness, in
a project of 25 person years, and Sewell et al. [24] extended
this verification from the C-Code level to the binary.

6. Conclusions

We have presented a framework for the fully automatic
lightweight verification of tailored embedded systems fol-
lowing the OSEK industrial standard. Specifically, we have
introduced a vertical verification process whereby the stat-
ically generated control flow of the tailored system is
checked for conformance with the standard, and a horizontal
verification method that ensures agreement between the static
control and the actual generated code. Initial experiments
run on a benchmark suite and on the control software of
a quadrotor copter show promising results regarding the
feasibility of full verification of key aspects of task interaction
in OSEK systems, and in particular show that even substantial
examples generate moderate-sized control flow graphs that
allow fully-fledged model checking. The key to keeping
state spaces small was to exploit OS tailoring as well as the
particularities of scheduling in the OSEK standard. While
our experiments indicate that dynamic exploration of control
flow graphs scales up well, static methods that reconstruct
the control flow from the compiled binary [24] may serve
as a complementary approach in the future.

In further work, we plan to build more comprehensive
coverage of the OSEK standard and to develop methods
for validating our formalization of the standard against the
informal specification, possibly building on previous work
in this direction [17]. Also, we will apply our approach
of model checking compiler-generated control flow graphs
to application-specific verification goals beyond standard
conformance.
Acknowledgments and Data. The authors thank the anony-
mous reviewers for their feedback. This work has been sup-
ported by the German Research Foundation (DFG) under the
grants no. LO 1719/3-1, LO 1719/4-1, and SCHR 1118/5-3.

Source code and data are available at
https://gitlab.cs.fau.de/dosek-verification

References

[1] P. Marwedel, Embedded System Design. Springer, 2006.

[2] J. Cooling, Software Engineering for Real-Time Systems. Addison-
Wesley, 2003.

[3] M. Broy, “Challenges in automotive software engineering,” in Proc.
ICSE’06. ACM Press, 2006, pp. 33–42.

[4] OSEK/VDX Group, “Operating system specification 2.2.3,” Tech.
Rep., Feb. 2005.

[5] AUTOSAR, “Specification of operating system (version 5.1.0),” Au-
tomotive Open System Architecture GbR, Tech. Rep., Feb. 2013.

[6] OSEK/VDX Group, “OSEK implementation language specification
2.5,” Tech. Rep., 2004.

[7] C. Dietrich, M. Hoffmann, and D. Lohmann, “Global optimization of
fixed-priority real-time systems by RTOS-aware control-flow analysis,”
ACM Trans. Embed. Comp. Sys., vol. 16, pp. 35:1–35:25, 2017.

[8] F. Scheler and W. Schröder-Preikschat, “The RTSC: Leveraging
the migration from event-triggered to time-triggered systems,” in
Proc. ISORC’10. IEEE Computer Society Press, 2010, pp. 34–41.

[9] H.-P. Deifel, C. Dietrich, M. Göttlinger, D. Lohmann, S. Milius, and
L. Schröder, “Automatic verification of application-tailored OSEK
kernels,” full version; available at https://doi.org/10.15488/1761.

[10] R. Milner, A Calculus of Communicating Systems. Springer, 1980.

[11] M. Vardi, “Branching vs. linear time: Final showdown,” in Proc.
TACAS 2001, ser. LNCS, vol. 2031. Springer, 2001, pp. 1–22.

[12] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, pp. 21:1–21:54, 2009.

[13] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
SMT-based context-bounded model checking,” in Proc. ICSE’11.
ACM Press, 2011, pp. 331–340.

[14] M. Schordan and A. Prantl, “Combining static analysis and state
transition graphs for verification of event-condition-action systems in
the RERS 2012 and 2013 challenges,” STTT, vol. 16, pp. 493–505,
2014.

[15] L. Waszniowski and Z. Hanzálek, “Formal verification of multitasking
applications based on timed automata model,” Real-Time Systems,
vol. 38, no. 1, pp. 39–65, Jan. 2008.

[16] Y. Huang, Y. Zhao, L. Zhu, Q. Li, H. Zhu, and J. Shi, “Modeling and
verifying the code-level OSEK/VDX operating system with CSP,” in
Proc. TASE’11. IEEE Computer Society Press, 2011, pp. 142–149.

[17] D. Vu and T. Aoki, “Faithfully formalizing OSEK/VDX operating
system specification,” in Proc. SoICT’12. ACM, 2012, pp. 13–20.

[18] D. Vu, Y. Chiba, K. Yatake, and T. Aoki, “Verifying OSEK/VDX
OS design using its formal specification,” in Proc. TASE’16. IEEE
Computer Society, 2016, pp. 81–88.

[19] H. Zhang, T. Aoki, and Y. Chiba, “Verifying OSEK/VDX applica-
tions: A sequentialization-based model checking approach,” IEICE
Transactions, vol. 98-D, no. 10, pp. 1765–1776, 2015.

[20] H. Zhang, T. Aoki, H. Lin, M. Zhang, Y. Chiba, and K. Yatake,
“SMT-based bounded model checking for OSEK/VDX applications,”
in Proc. APSEC’13. IEEE Computer Society, 2013, pp. 307–314.

[21] M. Zhang, Y. Choi, and K. Ogata, “A formal semantics of the
OSEK/VDX standard in K framework and its applications,” in
Proc. WRLA’14. Springer, 2014, pp. 280–296.

[22] K. Tigori, J.-L. Béchennec, S. Faucou, and O. Roux, “Formal model-
based synthesis of application-specific static RTOS,” ACM Trans.
Embed. Comp. Sys., vol. 16, pp. 97:1–97:25, 2017.

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: formal verification of an OS kernel,”
in Proc. SOSP’09. ACM, 2009, pp. 207–220.

[24] T. Sewell, M. Myreen, and G. Klein, “Translation validation for a
verified OS kernel,” in Proc. PLDI’13. ACM, 2013, pp. 471–482.

8

https://gitlab.cs.fau.de/dosek-verification
https://doi.org/10.15488/1761

	Introduction
	Background and Context
	OSEK in a Nutshell
	Generating a System
	State Transition Graphs

	The Formal Verification Method
	Vertical Verification
	Horizontal Verification

	Experiments
	Positive Tests
	Negative Tests and Fault Injection
	Lessons Learned

	Related Work
	Conclusions
	References

