
Parameterized Verification of Deadlock Freedom in
Symmetric Cache Coherence Protocols

Brad Bingham and Mark Greenstreet
Department of Computer Science, University of British Columia

201-2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4
{binghamb, mrg}@cs.ubc.ca

Jesse Bingham
Intel, Oregon, U.S.A.

jesse.d.bingham@intel.com

Abstract—An important problem in the verification of hard-
ware protocols is that of proving deadlock freedom. We view
deadlock freedom as the property that for all reachable states,
there exists some path to a quiescent state, i.e. one wherein
all resources of interest are free and thus all prior requests
have been resolved. We establish a framework for showing
this property in a class of symmetric parameterized systems.
Our approach is based on a mixed abstraction system than
includes both an over-approximate and an under-approximate
transition relation. Model checking is employed to compute
all states reachable through overapproximate transitions, and
from each of these states finds a path of underapproximate
transitions to a quiescent state. When this fails because the under-
approximation is too strong, we provide techniques to suggest
additional transitions that can be introduced to soundly weaken
the under-approximation. This approach can be viewed as an
extension of the well-known approach of guard strengthening for
verifying state invariants of parameterized systems. We present
proof of deadlock freedom of the German and FLASH cache-
coherence protocols as case studies using a semi-automated
heuristic tool that mitigates the human effort.

I. INTRODUCTION

Designing distributed protocols is known to be among the
trickiest aspects of modern hardware design. A well-known
problem that can arise in such systems is deadlock, which
occurs when a state is reached that involves an unbreakable
cyclic dependency between resources [1]. Here a resource
might be an entry in a transaction table, a slot in a network, etc.
We assume that one can easily characterize the quiescent states
by a state predicate Q; the quiescent states are those wherein
all resources are free and there are no in-flight transactions.
A deadlock state, then, is simply a state from which there is
no path to a quiescent state. Hence we can express deadlock
freedom in Computation Tree Logic (CTL) by AGEFQ (i.e.
for all reachable states there exists a path to a Q-state).

Model checking [2] is a popular method for verifying
that a system adheres to some specification. Classical model
checking assumes that the system under consideration is finite-
state. However, many researchers have explored techniques
to generalize model checking to verify various classes of
parameterized systems. For the purposes of this paper, a
parameterized system P is a function that yields a finite-
state system P(n) for all naturals n ≥ 1. Here n indicates
the number of values involved in some type P (called the
parametric type) used by the system, for examples client IDs

or addresses. A parameterized model checking problem asks if
P(n) satisfies some given specification for all n1. Unless one
puts severe restrictions on the class of systems, parameterized
model checking is undecidable [3].

A promising approach to parameterized model checking is
based on abstraction and compositional reasoning [4], [5],
[6], [7], [8], [9], [10], [11] and is typically used to verify
universally-quantified (over P) state assertions roughly as
follows. An initial abstraction A0 is created from the syntax
of P . By construction, the transitions of A0 over-approximate
those of P(n) for arbitrary n > k (for some typically small
k). If the state assertion holds of A0, then we can soundly
conclude it holds too for P(n). However, often we are not
so lucky and we must strengthen the transitions of P0 using
a conjectured state invariant ϕ1, yielding a tighter abstraction
A1. This process iterates until we obtain a Aj wherein the
original state assertion along with all of ϕ1, . . . , ϕj hold. At
this point our parametric verification goal has been achieved.

Our work extends this approach to handle deadlock free-
dom, i.e. properties of the form AGEFQ for a state predicate
Q. The key idea is to not only construct abstract transi-
tion relations that over-approximate those of P(n), but also
transition relations that under-approximate P(n). The result-
ing verification framework is formalized in terms of mixed-
abstractions [12] – systems with two transition relations O
and U , which are respectively over-approximative and under-
approximative. As in the traditional approaches, O is used
to explore the reachable abstract states, which represent an
over-approximation of the reachable states of P(n). However,
during this exploration, we explore paths of U to check that
the existential CTL formula EFQ holds for each reachable
abstract state. If so, it is safe to conclude deadlock freedom
of P(n); because the existence of a path in U implies
that of a corresponding path in P(n). Initially, U can be
constructed by checking syntactic properties of transitions of
O. Then, analogous to how O might be too weak, the initial
U might be too strong. A key contribution we present are
a set of heuristic methods that allow the user to soundly
weaken U in these cases. Another contribution is a theorem

1Many approaches, including ours, only verify P(n) for all n ≥ n0, where
n0 is a small constant. This is not a shortcoming since the P(n) where
n < n0 are either “uninteresting” or can be dispatched by finite-state model
checking.

that supports deadlock freedom verification for Q involving
universal quantification over the parametric type.

Ideally, one would seek to establish Linear Time Logic
(LTL) response properties [13] of the form G (req→F resp),
where req and resp respectively mean a some request is sent
and the corresponding response is received. However, response
properties are difficult to model check for parameterized
systems and require both computationally and conceptually
complex approaches (we review some in Sect. II). We see our
deadlock freedom verification as a lighter-weight alternative
that is also practically relevant. Indeed, experience working
with real hardware protocols in industry indicates that response
failures are almost always caused by deadlocks (i.e. violations
of AGEFQ) rather than more subtle “live-lock” style failures.

II. RELATED WORK

There have been many previous efforts to extend composi-
tional techniques to parameterized safety property verification
[4], [5], [6], [7], [8], [9], [10], [11]. As for liveness-like
properties, there are several notable works.

McMillan’s work on using compositional methods for LTL
liveness properties [14] was applied to parametric liveness
verification of the FLASH coherence protocol [5]. Although
this paper focuses on a proof of safety, the same framework
was used to show that whenever the directory is in the pending
state, it is eventually not pending [15]. This proof relies on
a handful of lemmas and fairness assumptions, designed and
proven within SMV.

Fang et al. proposed an interesting technique called invisible
ranking [16] which attempts to automatically guess ranking
functions to prove response properties. The associated proof
obligations (from [13]) are decided using some small-model
theorems and BDDs. The authors have previously used counter
abstraction for parameterized liveness verification [17].

Baukus et al. employ WS1S (a decidable second-order logic)
to perform liveness verification of parameterized systems [18],
and verify response properties for the German protocol as a
case study [19]. Like our approach, human effort is required, to
select both abstract predicates and ranking predicates needed
to create an appropriate abstraction. The complexity of de-
ciding WS1S is well-known to be super-exponential, hence
scalability of this approach seems unlikely.

The earliest example we could find where both over-
approximative and under-approximative abstractions of a tran-
sition system are employed for verification is the work of
Larsen and Thomsen [20]. They distinguish between necessary
and admissible transitions; for a process to refine another it
must over-approximate the former and under-approximate the
latter. Of course our interests are in abstraction rather than
refinement, which are in a sense inverses of each other. Later
the work of Dams et al. [12] and independently Cleaveland
et al. [21] used mixed transition systems which are defined
with two transition relations to formulate abstractions that
preserve both universal and existential properties of the modal
µ-calculus; our mixed-abstractions are very similar.

III. PRELIMINARIES

This section presents the formal framework that we use
to verify quiescence properties of parameterized systems.
Section III-A introduces mixed abstractions that have two
transition relations: one that under-approximates the behaviors
of the concrete systems and another that provides an over-
approximation. Section III-B presents the idea of insufficiency
– a mixed-abstraction may have an under-approximation that
is too strong to verify the desired quiescence property or an
over-approximation that is too weak. Section III-C describes
parameterized systems.

A. Systems and Mixed Abstractions
A system S is a tuple (S, I, T) where S is a set of states,

I ⊆ S is the set of the initial states, and T ⊆ S × S is
the transition relation. We write s1 ÃT s2 to denote that
(s1, s2) ∈ T ∗. A state s is said to be S-reachable (or simply
reachable if S is understood) if s0 ÃT s for some s0 ∈ I . A
state predicate p is simply a subset of S; if s ∈ p we call s
a p-state. Following standard CTL syntax, for state predicates
p and q, we write: S ² AGp if all reachable states are p-
states; AG (p → EF q), if for all reachable p-states s there
exists a q-state s′ such that s ÃT s′; and AGEF q to mean
AG (true → EF q).

To show that AG (p→ EF q) can be inferred for a concrete
system, S , by establishing properties of an abstraction, A, we
employ Lynch and Vaandrager’s notion of forward simula-
tion [22]. Let S1 = (S1, I1, T1) and S2 = (S2, I2, T2) be two
systems and θ ∈ S1 × S2 be an abstraction relation. We say
that T2 forward simulates (or “simulates” for short) T1 if for
every (s1, s′1) ∈ T1 and for all s2 such that (s1, s2) ∈ θ, there
is a s′2 ∈ S2 such that s2 ÃT2 s′2 and (s′1, s

′
2) ∈ θ. This

allows system S2 to take multiple steps that may be invisible
in S1 including possibly steps that have no “explanation” in
S1. This general sense of simulation is motivated by our goal
of showing the existence of trajectories. Now let s1, . . . , s`

be a T1-path, and suppose T2 simulates T1 with respect to θ.
By induction on `, there exists an T2-path s′1, . . . , s

′
k and a

non-decreasing surjection f : {1, . . . , `} → {1, . . . , k} such
that (si, s

′
f(i)) ∈ θ for all 1 ≤ i ≤ `. In this case we say that

s′1, . . . , s
′
k is a θ-simulation of s1, . . . , s`.

To show AG (p→ EF q) using abstraction, the abstract sys-
tem must, for soundness, over-approximate the set of reachable
p-states, and under-approximate the set of paths from p-states
to q-states. Thus we introduce a mixed abstraction as defined
below.

Definition 1: Let S = (S, I, T) be a system and let Reach
be the S-reachable states. A mixed abstraction of S (relative
to θ : S → SA) is a quadruple A = (SA, IA, U,O) such that
• SA is a set of abstract states,
• IA ⊆ SA are the initial abstract states and satisfy θ(I) ⊆
IA,

• O ⊆ SA×SA simulates T with respect to θ ∩ (Reach ×
SA), and

• T simulates U ⊆ SA×SA with respect to (θ∩ (Reach×
SA))−1.

Note that we require θ to be a function. Here U and O are
respectively called the under-approximative (UA) and over-
approximative (OA) transition relations of the mixed abstrac-
tion. When discussing mixed-abstractions, we will often refer
to S = (S, I, T) as the concrete system, to S as the concrete
states, etc.

The following serves as the basis for our approach to prov-
ing deadlock freedom for a class of parameterized systems.
Let p and q be state predicates over SA, and suppose for all
(SA, IA, O)-reachable p-states s there exists a q-state r such
that s ÃU r. We assert this by writing

A ² AG (p→ EF q) (1)

Hence, (1) holds of a mixed abstraction if for all p-states
reachable using the over-approximative transition relation,
there exists a path through the under-approximative transition
relation to a q state.

Lemma 1: Let A be a mixed abstraction of S relative to θ
and let p and q be state predicates on SA. If A ² AG (p →
EF q) then S ² AG (θ−1(p) → EF θ−1(q)).

Proof: Let Reach be the set of S-reachable states. Let w
be any θ−1(p)-state in Reach . Because O simulates T with
respect to θ ∩ (Reach × SA), θ(w) is (SA, IA, O)-reachable,
and furthermore θ(w) is clearly a p-state. Let a0, . . . , am be a
U -path from θ(w) = a0 to a q-state am. Because T simulates
U with respect to (θ ∩ (Reach × SA))−1, for all 0 ≤ i < m
and all wi ∈ θ−1(ai) there exists wi+1 ∈ θ−1(ai+1) such
that wi ÃT wi+1. Therefore, taking w0 = w, there is a path
w ÃT wm where wm ∈ θ−1(q).
Note that the definition of mixed-abstraction explicitly men-
tions the reachable states of S (in the involved simulation
relations), this is just our means of formalizing the minimal
requirements a mixed-abstraction must satisfy in order to prove
Lemma 1. In other words, any methodology that aims to
construct mixed-abstractions must guarantee at least these
simulations. We emphasize that this is different than asking the
user of such a methodology to precisely characterize Reach
(indeed our methodology does not make such a demand).

When performing reasoning that allows us to add (or
remove) transitions from U and O in a mixed abstraction,
we often will employ the following sufficient conditions. We
conclude this section by stating a connection between S and
the transitions of U and O.

Lemma 2: Suppose S = (S, I, T), SA, IA, and θ : S → SA
are as in Def. 1. If U,O ⊆ A×A satisfy

1) for all (w,w′) ∈ T such that w is S-reachable we have
(θ(w), θ(w′)) ∈ O, and

2) (s, s′) ∈ U implies for all S-reachable w ∈ θ−1(s) there
exists w′ ∈ θ−1(s′) such that w ÃT w′.

then (SA, IA, O, U) is a mixed-abstraction for S .
Proof: Follows trivially from Def. 1.

B. Insufficiency

Lemma 1 allows us to infer S ² AG (θ−1(p) → EF θ−1(q))
if model checking (or any other means) verifies A ² AG (p→
EF q). However, the converse of the lemma does not hold in

general (or even in common cases). Let us call the mixed-
abstraction A insufficient if S ² AG (θ−1(p) → EF θ−1(q))
holds but A 6² AG (p → EF q). If A is insufficient, it follows
that there exists a p-state ap such that a0 ÃO ap for some
a0 ∈ IA but there is no q-state aq such that ap ÃU aq . There
are two common causes for insufficiency:
• OA insufficiency. There is no (S, I, T)-reachable sp ∈ S

such that (sp, ap) ∈ θ. Hence ap does not abstract any
reachable state of S . This is often caused by O being too
weak, i.e. there exists a proper subset O′ ⊂ O such that
(SA, IA, O′, U) is a mixed abstraction of S wherein ap

becomes unreachable.
• UA insufficiency. There is (S, I, T)-reachable s ∈ S

such that (s, a) ∈ θ, however none of the T -paths
s = s0, . . . , s` where s` ∈ θ−1(q) (at least one such
T -path must exist), are simulations of any U -paths. This
is often caused by U being too strong, i.e. there exists
a proper superset U ′ ⊃ U such that (SA, IA, O, U ′) is a
mixed abstraction of S . Here the transitions introduced
in U ′ would be sufficient to ensure the existence of a
U ′-path that s0, . . . , s` is a simulation of.

For the mixed abstractions we use to verify our parameter-
ized systems, we will observe that OA insufficiency is solved
in the previous literature, however UA insufficiency is not. Our
basic approach is to identify UA insufficiency from a counter-
example trace. In practice, the transitions from O that are
needed in U are apparent from this counter-example. The basic
idea is to show that for each such transition of O, there is a
corresponding path in the concrete system. Sections IV and V
present how this can be done by syntactic pattern matching and
model checking of the abstract system for properties with the
form shown by formula (1).

There is also a third flavor of insufficiency,
• Abstract quiescence insufficiency. Note that in

Lemma 1, the quiescent predicate actually verified is of
the form θ−1(q), where q is a predicate on the abstract
states. Suppose, however that there does not exist a q
such that θ−1(q) characterizes the desired set of quiescent
concrete states. We experience this for our case studies;
the desired quiescence predicate involves a universal
quantification over the parametric type that the underlying
simulation relation cannot precisely characterize. That is,
if the concrete quiescent states are characterized by a
predicate of the form ∀i. φ(i), then there is no abstract
predicate q such that θ−1(q) = ∀i. φ(i). We deal with
this form of insufficiency via Theorem 1.

C. Parameterized Systems

For the purposes of this paper, a parameterized system P
is a function mapping natural numbers to systems. We write
P(n) = (S(n), I(n), T (n)) to denote the components of P(n)
for an arbitrary n. The states S(n) are the type-consistent
assignments to a set of state variables. For a state w of a
parameterized system and a state variable v, we write w.v
to denote the value w assigns to v. We allow four types of
variables:

• finite types that are independent of n, such as booleans
and enumerations; for simplicity, we denote all such types
as B

• a type which has cardinality n, denoted Pn

• arrays indexed by Pn with elements in B, denoted
array [Pn] of B

• arrays indexed by Pn with elements in Pn, denoted
array [Pn] of Pn

In this paper we identify the set Pn with the numbers
{1, . . . , n} called nodes; the only operations supported on
nodes are equality comparison, assignment, and nondeter-
ministic choice.2 This ensures that for all n, P(n) is fully
symmetric [23] in Pn; here we give a brief review of this
notion. Let us write λi.e to denote the array a indexed by
Pn where a[i] = e and e is an expression of the appropriate
type. Let π be a permutation on Pn. We overload π to act on
w ∈ S(n) by defining π(w) ∈ S(n) to be the state such that
for each state variable v, π(w).v is equal to:
• w.v, if v has type B
• π(w.v), if v has type Pn

• λi.(w.v)[π−1(i)], if v has type array [Pn] of B
• λi.π((w.v)[π−1(i)]), if v has type array [Pn] of Pn

Then (S(n), I(n), T (n)) is called fully symmetric if for all
w,w′ ∈ S(n) and all permutations π on Pn we have both
that w ∈ I(n) iff π(w) ∈ I(n), and (w,w′) ∈ T (n) iff
(π(w), π(w′)) ∈ T (n). The following lemma has a simple
inductive proof using the latter.

Lemma 3 (Path Symmetry): For w,w′ ∈ S(n) we have
s ÃT (n) w

′ if and only if π(w) ÃT (n) π(w′).
In Section IV-A, we impose restrictions on parameterized

systems in order to be admissible for our method.

IV. SYNTACTICAL ABSTRACTION

We assume that the parameterized system is modeled by
Murϕ [24] or a similar guarded-command notation. Given a
program P to describe the parameterized system, we use well-
established techniques [4], [5], [6], [7], [8], [9], [10], [11]
to obtain an abstraction of P . Our formulation is inspired
by the Krstic’s “syntactic” approach [7]; Section IV-A states
restrictions that we assume on the form of P , and Section IV-B
summarizes the abstraction technique. In Section V, we show
how the abstraction can be generalized to produce an under-
approximate transition relation, U , and how U can be soundly
weakened to prove quiescence properties.

A. Syntax and Restrictions

We assume that the guarded-command program that models
the parameterized system satisfies certain syntactic restrictions
described in this section. These restrictions ease the syntactical
abstraction process and simplify reasoning about the program
because many useful properties are guaranteed by construc-
tion. From the case studies reported in Section VI, we’ve found
that these restrictions are not problematic in practice.

2If i and j are nodes, a parameterized system is not allowed to perform a
comparison like i < j or perform an incrementation i := i+ 1.

We say that such a program is admissible, and we write AP
as a shorthand for an admissible program. An AP has set of
variables of the types indicated in Table I. A state of the AP is a
type-consistent assignment of values to these variables. If e is a
term, we write s(e) to denote the value of e in state s. In Murϕ,
a guarded command is called a rule and has the form: guard
_ action, where the guard is a boolean-valued expression,
and the action is a sequence of one or more assignments. We
write r : ρ_ a to denote rule r with guard ρ and action a.

The denotation JrK of r is the set of tuples (s, s′) ∈ S2 such
that s(ρ), and s′ is the state reached by performing action a
from state s. Murϕ has rulesets of the form:

ruleset i in Pn do r(i) end;
where r(i) is a rule (or a ruleset, as they may be nested).
Here, i ∈ Pn is called the ruleset parameter. If rs is the
ruleset indicated above, then

JrsK = {(s, s′) | ∃i ∈ Pn. (s, s′) ∈ Jr(i)K} (2)

A local boolean predicate L is a propositional formula over
the variables of type array [Pn] of B. For node i, we say L[i]
holds of a state if L evaluates to true when its variables are
assigned according to the ith array entries of the state. An
admissible program (AP) must satisfy the following syntactic
restrictions. Rulesets have guards that are a conjunct of:
• Boolean terms, composed of variables of type B or

array [Pn] of B indexed by a ruleset parameter, and the
logical connectives AND, OR and NOT.

• At most one forall condition, of the form ∀i ∈ Pn. C[i]
where C is a local boolean predicate.

• Any number of P-comparisons, of the form v1 = v2 or
v1 6= v2, where v1 and v2 are variables of type P or
array [P] of P indexed by a ruleset parameter, or a ruleset
parameter. Without loss of generality, we restrict each
ruleset parameter to appear in at most one P-comparison
of equality.

The initial states and ruleset commands given by a sequence
assignments of the following forms:
• Assignments of the form b1 := b2, a1

B[i] := b2, a1
B[i] :=

a2
B[i], where b1 and b2 are variables of type B, a1

B and a2
B

are variables of type array [Pn] of B, and i is a ruleset
parameter. RHS values may also be the constants true
and false.

• Assignments of the form p1 := p2, a1
P[i] := p2, a1

P[i] :=
a2

P[i], where p1 and p2 are variables of type Pn, a1
P and

a2
P are variables of type array [Pn] of Pn, and i is a ruleset

parameter.
• Forall updates of the form ∀i ∈ Pn. aB[i] := `(i), where
` is a boolean function depending on variables of type B,
Pn and on the ith index of array variables.

A BNF grammar for this restriction of Murϕ is given in the
Appendix.

These restrictions ensure that guards in APs do not contain
disjunctions of comparisons between variables of type P and
have no existentially quantified terms; updates in APs do not
contain if-then-else clauses. These constructs can be handled

concrete type abstract type abstraction ψ
B B ψ(s).v = s.v

Pn
bPk ψ(s).v = bψk(s.v)

array [Pn] of B array [Pk] of B ∀i ∈ Pk : ψ(s).v[i] = s.v[i]

array [Pn] of Pn array [Pk] of bPk ∀i ∈ Pk : ψ(s).v[i] = bψk(s.v[i])

TABLE I

The abstract state space SA and the abstraction function ψ :
S(n) → SA. For a system variable v and s ∈ S(n), the leftmost
column gives the type of v in the concrete domain, the second
column gives the type of v in SA, and the third column specifies
the value v is assigned by ψ(s) in terms of s.v.

by a straightforward splitting into multiple rulesets. The Murϕ
systems for German and FLASH are admissible, and from
this experience, we believe that the systems for many other
symmetric protocols will be admissible or easily modified to
produce an admissible equivalent.

B. Abstraction

Let P(n) = (S(n), I(n), T (n)) be a the denotation of
an AP, P . We want to construct a mixed-abstraction, A =
(SA, IA, O, U). In this section, we show how SA, IA, and O
can be readily by syntactic transformations of the source-code
of P . Section V extends this approach to the construction of
U . To create these abstractions, we introduce a new type to
represent type Pn from the concrete system; this type requires
the user to choose a constant k. It is assumed throughout that
k is at least the greatest number of ruleset parameters for
any ruleset in P (typically, k ≤ 3). Let P̂k = Pk ∪ {Other},
and given x ∈ Pn, let ψ̂k(x) = x if x ≤ k; otherwise,
ψ̂k(x) = Other . Table I specifies how each variable of P
is typed in A and how the abstraction function ψ acts on v.
Intuitively, ψ(s) preserves B variable values, replaces values
of type Pn greater than k with Other , and restricts arrays
to the indices Pk (hence all array entries v[i] for i > k
are deleted by ψ). Although ψ is a function, we will treat
it as a relation, ψ ⊆ S(n) × SA, and freely employ its
inverse ψ−1 ⊆ SA × S(n). We call elements of Pk non-
abstracted and elements of Pn\Pk abstracted. For every ruleset
parameter i interpreted as abstracted, all updates with aB[i] or
aP[i] appearing on the LHS are deleted. All instances aB[i]
or comparisons depending on aP[i] appearing positively in
the guard that depend replaced with true; those appearing
negatively are replaced with false. Instances of i appearing
on the RHS of assignments are replaced with Other . Finally,
equality comparisons with i appearing positively in the guard
are replaced with true. The state variables of A have the same
names as those of P , with the types changed as shown in
Table I.

We now overload ψ to map rules of P system to rules that
generate the state transitions of O. Rules of P that are not in
rulesets are copied without change of syntax (therefore, with
the implied change of types), to O. If ruleset r : ρ _ a
depends on m ruleset parameters, consider the set of rule
instantiations, obtained from assigning each ruleset parameter

a value in Pn. This set is partitioned as R1, ..., R2m , where all
rule instantiations of Rj have the same partitioning of ruleset
parameters into F and NF , where i ∈ F ⇔ i ∈ Pk and
i ∈ NF ⇔ i ∈ Pn \ Pk (since there are m ruleset parameters,
there are 2m possible partitions). Each set Rj abstracts to
an abstract ruleset r̂j according to the described syntactic
transformation. We denote the set of corresponding abstract
rulesets to concrete ruleset r by ψ(r) = {r̂1, ..., r̂2m}. Let
r̂v : ρ̂v _ âv denote the unique element of ψ(r) such that
all ruleset parameters are non-abstracted. Note that although
the set of rule instantiations differ depending on the value of
n, the set ψ(r) does not, for any n > k, hence we can fix
n = k + 1 to perform this abstraction.

Example: Consider the concrete rule from German
SendGntE.
ruleset i : NODE do rule "SendGntE"
CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>
Chan2[i].Cmd := GntE; ShrSet[i] := true;
ExGntd := true; CurCmd := Empty;

The abstraction contains two corresponding rulesets, one
where i is non-abstracted and one where i is abstracted, with
the former corresponding to r̂v:
ruleset i : NODE do rule "ABS_SendGntE1"
CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>
Chan2[i].Cmd := GntE; ShrSet[i] := true;
ExGntd := true; CurCmd := Empty;

rule "ABS_SendGntE2"
CurCmd = ReqE ∧ CurPtr = Other ∧ ¬ExGntd
∧ forall j : NODE do ¬ShrSet[j] end ==>
ExGntd := true; CurCmd := Empty;

V. VERIFYING UNIVERSAL QUIESCENCE

We want to verify properties of the form

P(n) |= AGEFQn , (3)

where P(n) is a parameterized system and

Qn = G ∧∧
i∈Pn

L[i] (4)

is the quiescence property to be verified. Here, G is a
boolean predicate, meaning G only depends on variables of
type B, while L is a local boolean predicate (defined in
Sect. IV-A). To verify (3), we construct a mixed abstraction,
A = (SA, IA, O, U), and that for all O-reachable states, there
exists a U -path to a state that satisfies Qn. To do so, we
must address two key issues. First, Qn cannot be established
directly from A, as Qn refers to variables of the concrete
system that do not appear in the abstraction. This is the
“abstract quiescence insufficiency” defined in Section III-B,
and Section V-A shows how it can be addressed. Second,
U may omit transitions that are required to reach states that
satisfy Qn. This is the UA insufficiency from Section III-B,
and we address it in Sections V-B and V-C.

A. Universally Quantified Quiescence

To show (3), we need to show that L[i] holds for all i, not
just non-abstracted i. Intuitively, we show that A can reach
a state where L[i] holds for all non-abstracted i, then use

Lemma 3 to exchange any abstracted j for which L[j] might
not hold with a non-abstracted i, find a path that establishes
L[i], and we can establish (3) by induction. For this approach
to work, we must show that if G holds, then for each non-
abstracted node i, there is a U -path to a state that satisfies
L[i] whose concretization in P(n) does not falsify L[j] for
any abstracted node j. To do this, we introduce the notion of
L-preserving transitions.

For local boolean predicate L, abstract transition (s, s′) is
L-preserving if

∀w ∈ ψ−1(s). ∃w′ ∈ ψ−1(s′). w ÃT w′

∧ ∀i ∈ Pn \ Pk. w ∈ L[i] ⇒ w′ ∈ L[i] .

Abstract ruleset r̂ is L-preserving if all transitions in Jr̂K are
L-preserving. A mixed abstraction is called L-preserving if its
UA transitions contain only L-preserving rules.

We can now state our main theorem for showing universally
quantified quiescence; for the proof of Theorem 1 see the
appendix.

Theorem 1 (Universally Quantified Quiescence): Let G
denote a boolean predicate, L a local boolean predicate, and
let A and B be mixed abstractions of P(n), and assume that
B is L-preserving. If

1) A |= AGEF (G), and
2) B |= AG (G→ EF (G ∧∧

i∈Pk
L[i]))

then P(n) |= AGEF (G ∧∧
i∈Pn

L[i]).

B. Abstract Rule Tags

Given a program P , we use the syntactical abstraction
technique to produce an abstract program P̂ . In the remainder
of this paper, we use the term “ruleset” to refer to Murϕ-
style rulesets with any degree of ruleset nesting including no
such quantification – i.e. a “ruleset” could be a simple rule.
We want to identify which rulesets of P̂ have denotations that
are UA, and which are L-preserving, for a given local boolean
predicate L. Throughout the rest of the paper we use r : ρ_ a
and r̂v as defined in Section IV-B, and use r̂j to denote an
arbitrary element of ψ(r).

We will tag abstract rulesets tags from the following set
{AUG,AEG,AUC,AEC}; the first two elements are called
guard tags, and the last two are called command tags. These
indicate reasons (in the guard and command, respectively) why
the abstract ruleset is not trivially UA or L-preserving. An
abstract ruleset can be tagged with any of the 16 subsets of
these tags. AUG and AUC indicate that a universal quantifier
has been abstracted; similarly AEG and AEC indicate that
existential information has been abstracted.3

We call ρ and ρ̂j syntactically equivalent (SE) if they
are expressed with identical syntax, and ρ contains no forall
conditions. In this case, we attach no guard tags to r̂j .
Likewise, if a and âj have identical syntax and contain no
forall updates, then we attach no command tags. If a ruleset
r has no guard or command tags, then it is simple to show

3 Note that AEG and AEC don’t indicate explicit existential quantifiers in
the concrete system syntax; existential refers to the quantifier in the ruleset
denotation, which ranges over the ruleset parameter.

Tag \Property UA L-preserving
AEG Heuristic 1 Heuristic 2
AUG Heuristic 3 Heuristic 4
AEC None Heuristic 2
AUC None Heuristic 4

TABLE II
Obligations associated with each ruleset tag and property pair.
“None” means there is no obligation to show. A ruleset with no
tags is L-preserving, while one with no guard tags is UA.

that r is both UA and L-preserving for any local predicate L.
Typically, the set of all such rulesets is insufficient to establish
the desired quiescence property.

The elements of ψ(r)\ r̂v may not have SE guards because
some ruleset parameter i is abstracted, so the abstraction will
syntactically change the guard (except for degenerate cases).
These rulesets have guards that optimistically abstract away
references to abstracted i; this is safe when constructing the
OA but not the UA. Such rulesets are tagged with AEG
(abstract existential in guard).3 When ρ contains a forall
condition, it is necessarily weakened in every rule of ψ(r).
In this case, every ruleset of ψ(r) including r̂v is tagged with
AUG (abstract universal in guard).

Similarly, existential or universal updates may be missing
from the command of an abstract ruleset, relative to the
concrete version. If local update ab[i] := eb appears in a
for ruleset parameter i, then any ruleset of ψ(r) where i is
abstracted (that is, where the update ab[i] := eb vanishes),
is tagged with AEC (abstract existential command).3 If a
contains a forall update, then every ruleset of ψ(r) is tagged
with AUC (abstract universal command).

Example: Referring to the example in Section IV-B, ab-
stract ruleset ABS_SendGntE1 is tagged with AUG and
no command tags, and abstract ruleset ABS_SendGntE2 is
tagged with AUG, AEG and AEC.

C. Heuristics

Each tag assigned to a ruleset corresponds to a set of proof
obligations for showing it is UA or L-preserving (for some
local boolean predicate L). For either of these properties, each
tag must be separately discharged through the corresponding
heuristic according to Table II. Once a tag is discharged we
may safely ignore it as a potential reason why the desired
property does not hold. Each of the heuristics involves model
checking a mixed abstraction. In this Section, the various
heuristics are stated; see the supplementary material [25] for
proofs.

An abstract ruleset is called local to i (as a special case
of having no tags) when the guard only depends on variables
of type B, P, and the ith index array variables aB, and the
command only updates the local state of non-abstracted i.
Here, given an abstract or concrete state, the local state of
i is simply the values of all array variables at index i. The
transitions that compose such rules are called local transitions.
A mixed abstraction with UA set U composed only of rulesets
local to i is denoted A`(i). Assuming ruleset r̂ is UA, we write

A`(i) |=br AG (A → EFB) when every O-reachable A-state
has a path to some B-state consisting of transitions of rules
local to i and necessarily a single transition of ruleset r̂.

When showing rulesets are UA (Heuristics 1 and 3), note
that the tags AEG or AUG indicate guards that are OA because
they have abstracted away information about abstracted nodes.
Our heuristics compute O-reachable states and exploit the
path symmetry of Lemma 3 to find the possible local state
of abstracted nodes under some boolean predicate. Then, if
the local state of node i does not have a required property, we
find “hidden paths” composed entirely of rulesets local to i
that reach a state that does have the property. This assures that
although some states in the concretization of abstract guard ρ̂j

do not satisfy the corresponding concrete guard ρ, there is a
guaranteed path that is not observable in the abstract system
from every ψ−1(ρ̂j) to a ρ-state. For simplicity, we present
our heuristics for rulesets with at most one abstracted ruleset
parameter, however generalizing is straightforward.

When showing rulesets are L-preserving it must be checked
that aspects of the guard and update that have been abstracted
away do not affect L-preservation in the abstracted nodes;
Heuristics 2 and 4 pertain to this check. The obligations
for these heuristics require that a certain transition must fire
on each path that justifies the deadlock freedom property.
Intuitively, when the heuristic obligation holds, the concrete
paths that justify the tagged ruleset in question r̂ to be UA
must have a certain form. For abstracted node i, each path is

• a (possibly empty) path composed of transitions of rules
local to i, followed by

• a transition of concrete rule r (possibly changing non-
local variables), followed by

• a (possibly empty) path composed of transitions of rules
local to i.

Furthermore, we only seek a path when the starting state is
an L[i]-state, and the final state must also be a L[i]-state. For
which i this is shown depends on the heuristic. Heuristic 2
reasons about those abstracted nodes that are abstracted ruleset
parameters in r̂. Heuristic 4 reasons about those abstracted
nodes that are not abstracted ruleset parameters in r̂. Note that
we assume a ruleset has been proven UA before it is proven
L-preserving.

A few definitions are needed for the heuristic statements.
If r̂ is an abstract ruleset with ruleset parameter i, let r̂|i=1 :
ρ̂|i=1 → â|i=1 be the ruleset where all instances of i are
replaced with the constant value 1. Also, let relax (i, r̂) be
the rule r̂ but with the values of variables aB[i] and aP[i]
unconstrained in the guard. If A ⊆ SA, let Γ(A) denote the
strongest boolean predicate implied by A.

Heuristic 1: For ruleset r̂j tagged with AEG and with
abstracted ruleset parameter i, suppose that r̂v is UA. If
A`(1) |= AG (relax (ρ̂v, i)|i=1 → EF (ρ̂v|i=1)) then tag AEG
is discharged for showing r̂j to be UA.

Heuristic 2: For ruleset r̂j tagged with AEG and/or AEC
with abstracted ruleset parameter i, suppose that r̂v is UA.
If A`(1) |=brv

AG ((relax (ρ̂v, i)|i=1 ∧ L[1]) → EF (L[1]))

then AEG and AEC are discharged for showing r̂j to be L-
preserving.

Heuristic 3: For ruleset r̂j tagged with AUG, and let ∀i ∈
Pn. C[i] be the forall condition of ρ. If A`(1) |= AG (Γ(ρ̂j) →
EF (C[1])), then tag AUG is discharged for showing r̂j to be
UA.

Heuristic 4: For ruleset r̂j tagged with AUG and/or AUC,
let r̂∗ ∈ ψ(r) be the abstract ruleset where all ruleset
parameters of r are abstracted. If A`(1) |=br∗ AG ((Γ(ρ̂j) ∧
L[1]) → EF (L[1])), then tags AUG and AUC are discharged
for showing r̂j to be L-preserving.

We apply each of these heuristics by performing model
checking using a mixed abstraction that uses only local rules
for U . As local rules are identified entirely by syntax, they
are known a priori; therefore, we could take a brute force
approach that attempts to use our heuristics to prove every
abstract rule is UA and L-preserving. However, we prefer
to take a counter-example driven approach, as there are two
distinct situations in which our heuristics may not suffice
that arose in our case studies. Firstly, additional auxiliary
variables may be needed to capture the system state with a
slightly finer-grained abstraction. Secondly, if the ruleset is
not underapproximate, manual guard strengthening or splitting
into multiple rulesets may help. These are illustrated with
examples in Section VI.

VI. CASE STUDIES

Mixed abstractions are expressed as Murϕ models. The OA
rulesets are borrowed from Chou et al. [6] and the (initial)
UA transitions are derived manually according to tags – those
rules with no guard tags. Thus, the UA rulesets are maintained
as a subset of the OA rulesets. Rulesets with no tags at all are
identified as L-preserving, and the relevant subset of these are
identified as local.

We use a distributed explicit state model checker for Murϕ
called PREACH [26] for the mixed abstraction checks. Initially
designed to check state-invariants, we have added a feature to
check CTL properties of the form AG (p→ EF q). The search
algorithm is simple: for every (p ∧ ¬q)-state s visited during
the forward reachability computation, choose an enabled rule
of U and fire it to reach a new state. Firing rules of U continues
until one of the following occurs. 1) a q-state is found, 2) a
U -dead-end state is found, or 3) a cycle is detected. In the first
case, a path from s to a q-state exists and we proceed with
the forward reachability computation. In the second case, there
may not exist such a path (although we believe that in practice
this is strong evidence that no path exists). If a cycle is found,
this is usually an indication that U contains rules that do not
help us reach q-states, so we might as well exclude them and
try again4. For example, there are several easily identifiable
rules in both German and FLASH that initiate requests by
injecting messages, and are not useful transitions in finding a
quiescent state where all messages are consumed. Notice that
deadlock freedom properties can be verified by a CTL model

4Removing transitions from U trivially preserves mixed-abstractions.

checker, but for our case studies we chose PREACH because
it was straightforward to implement the notion of UA rulesets
and counterexample generation.

Due to space constraints, this section contains a brief
overview of the case studies. For a more detailed report, the
reader may refer to supplementary material [25] including the
Murϕ sources.

A. Automatic Deadlock Freedom Predicates
As mentioned above, it is common when checking an-

tecedent 1 of Theorem 1 to reach a U -dead-end state š where
no further progress can be made toward the goal. When this
occurs, the model checker reports a failure and prints the rules
of O that are enabled in š, as a guide to the user of which
rules could be useful to prove UA and add to U . These enabled
rulesets necessarily have tags AEG or AUG or both. We have
written a simple tool that, given a particular rule/ruleset name,
will determine the tags and generate the model checking
obligation to prove it is UA through Heuristics 1 and 3.

Example: Suppose we seek to show ruleset r̂2 =
ABS_SendGntE2 is UA, and suppose it is already known
by Heuristic 3 that associated r̂1 = r̂v = ABS_SendGntE1
is UA. Ruleset ABS_SendGntE2 is tagged with AEG because
ruleset parameter i is abstracted. Then, relax (ρ̂v)|i=1 is
CurCmd = ReqE ∧ CurPtr = 1 ∧ ¬ExGntd
∧ forall j : NODE do ¬ShrSet[j] end

and ρ̂v|i=1 is
CurCmd = ReqE ∧ CurPtr = 1 ∧ Chan2[1].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end

As implemented, our tool does not support automatic gen-
eration of the properties to check for Heuristics 2 and 4.
However, this is generally straightforward to do by hand,
and could be automated as well. In cases when the deadlock
freedom property for some Heuristic when applied to ruleset
r̂j fails to verify, the user may use the counterexample trace as
a guide for strengthening ρ̂j manually. Any ruleset of O may
be duplicated and strengthened with some predicate, which
is trivially sound because the O transitions are not changed.
The resulting strengthened ruleset might satisfy the Heuristic
deadlock freedom property and be proven UA or L-preserving.
Such manual strengthening is required in the verification of
both German and FLASH.

B. The German Protocol
The system used for O is the abstract Murϕ model for Ger-

man of Chou et al., instantiated with a single non-abstracted
node (k = 1). The initial set of UA transitions U0 includes all
rulesets with no guard tags and the local subset of these are
also identified.

The property we verify is (4), where G states that
that the directory is not currently processing a transaction
(CurCmd = Empty) and L[i] states that all communication
channels associated with the ith cache are empty:
Chan1[i].Cmd = Empty ∧ Chan2[i].Cmd = Empty
∧ Chan3[i].Cmd = Empty.

Antecedent 1 of Theorem 1 requires A |= AGEF (G) for
a mixed-abstraction A. Checking this property, the model-
checker gets stuck at a U -dead-end state where the rule

ABS_SendGntE1 is enabled (see Section IV-B). Our tool
recognizes this as a AUG-tagged rule and generates the obli-
gations to according to Heuristic 1 so the rule can be soundly
added to U . The model checker discharges the obligation, and
ABS_SendGntE1 is added to U .

Checking Antecedent 1 is repeated with the weak-
ened U and gets stuck three more times: once where
ABS_SendGntE2 is enabled (tagged with AEG and AUG),
and twice where other AEG-tagged rulesets are enabled. The
Heuristic 3 obligation for ABS_SendGntE2 is identical to
the one previously shown for ABS_SendGntE1, so there
is no need to repeat its verification. The tool generates the
Heuristic 1 obligation and it is discharged by model checking.
In the other two, AEG cases, the corresponding rulesets r̂v
are already known to be in U , so we proceed directly with
the tool and obligations for Heuristic 1 are generated. One is
discharged automatically; the other requires human guidance
because the generated deadlock freedom property fails to ver-
ify. An examination of the counterexample reveals that when
exclusive access has been granted to an abstracted node, there
is no pointer indicating which node has been granted (only
a flag to indicate that it has indeed been granted, ExGntd).
Without this pointer, the permutation of Heuristic 1 is not
applied to the proper abstract node actually holding exclusive
access. Although manual, the solution is straightforward: add
a new system variable EPtr of type P that points to the
node holding exclusive access, and strengthening the guard
of the ruleset. This is done in a sound manner where only the
ruleset version we prove is UA is strengthened in this way;
the original ruleset belonging to O is not modified. After this
modification, the relevant property is verified.

Having added these four rules to U of mixed abstraction A,
Antecedent 1 of Theorem 1 is established by model checking.
We now describe the procedure to show of Antecedent 2.
Initially, every ruleset with no tags are known to be L-
preserving are added to U for mixed abstraction B. Model
checking then reveals that two additional rules are needed
to establish the Antecedent: ABS_SendGntE1 (tagged AUG)
and ABS_RecvInvAck2 (tagged AEG and AEC). These tags
are discharged by automatically generating and checking the
obligations of Heuristics 4 and 2, respectively. Adding these
two rules to U for mixed abstraction B allows Antecedent 2
to hold and completes the verification of the German protocol.

C. The FLASH Protocol

The quiescence property verified of FLASH is of the same
form as (4), and states that all channels are clear, and the
directory is not waiting to perform a write-back5. Antecedent 1
of Theorem 1 holds immediately using the initial set of UA
rulesets having no guard tags.

5Although the Murϕ system for the mixed abstraction of FLASH contains
rules where two index variables have been instantiated as Other , none of
these must be shown UA/L-preserving to prove our example property. Some
such rules are needed to be shown UA if the conjunct ¬Pending is added to
the quiescent property. We omit these from this paper for ease of presentation,
but note that similar reasoning to Heuristic 1, which assumes only one such
index variable, is sufficient.

To show Antecedent 2 of Theorem 1, we start with the
set U of L-preserving states provided by tag examination
and use model checking as with the German protocol. Four
rules, each tagged with AEG and AEC, must be shown L-
preserving. We first show that they are UA, by applying
Heuristic 1. For two of these rulesets, model checking the
obligations for Heuristic 1 succeeds. For the other two, model
checking fails upon reaching a dead-end state š′ where no
local rules to 1 are enabled. The manual strengthening needed
in for these two ruleset is identical; without loss of gener-
ality let the ruleset be r̂j . Inspecting the counter example
reveals that the state s ∈ relax (r̂v, i)|i=1 that led to š′ has
different values for some B-type variables that those in š, the
original dead-end state revealed when checking Antecedent 2,
where r̂j is enabled. This indicates that the guard r̂j is too
weak and must be strengthened with a predicate on these
variables. We duplicated the ruleset for the aforementioned
reasons of soundness, and strengthened the guard with a
predicate requiring these variables to match their value in š.
Then, the automated procedure completed successfully and
the four rules are established as UA. To show they are L-
preserving, Heuristic 2 is applied to each ruleset and the
obligations are discharged automatically; this establishes the
quiescence property by Theorem 1. With regard to the manual
strengthening step, we note that in principle the model checker
could classify the reachable states of relax (r̂v, i)|i=1 for which
a path to r̂v|i=1 is found versus those where no such path is
found. Thus, the strengthening predicate could be generated
automatically.

VII. DISCUSSION AND FUTURE WORK

We presented a practical method for proving deadlock
freedom in parameterized cache coherence protocols. Our ap-
proach uses a mixed abstraction of over (OA) and under (UA)
approximate transitions to parametrically verify properties of
the form P(n) |= AGEFG ∧ ∧

i∈Pn
L[i], where n is the

number of cache nodes, G is a predicate depending on boolean
variables, and L is a predicate depending on boolean variables
local to each node i. We infer this parameterized property
by model checking a pair of antecedent deadlock freedom
properties in an automatically generated mixed abstraction.

First, the model checker explores all states s reachable
through OA transitions, and for each s a UA-path to some
G-state s′ constructed via a forward search. When no such s′

is found, the user determines if s is only reachable due to the
overapproximation of OA, or if s′ is unreachable from s due to
UA being too strong. For the former, we use existing methods
to strengthen OA. For the latter, we have presented heuristic
methods to soundly weaken the UA transitions by proving
some transitions of OA are in fact UA. These heuristics involve
checking specific deadlock freedom properties in the mixed
abstraction. Second, it is verified that all G-states reachable
through OA transitions have an L-preserving UA-path to a
state where G holds and L[i] holds for all k nodes maintained
by the abstraction. Abstract transitions that are L-preserving
have the property that the set of corresponding paths in the

concrete system will preserve L[i] for all nodes i that are
abstracted away. Once again, we provide heuristic methods
for showing that OA transitions are in fact L-preserving
UA transitions. With each of these antecedents established,
a simple induction proof is used to show the parameterized
deadlock freedom property holds.

For the German and FLASH protocols, the strengthening
of OA that was required to prove safety [6] was sufficient
to establish liveness as well. Furthermore, most weakenings
needed for UA were identified and verified without need for
human insight. The only places where human reasoning was
needed was to identify one auxiliary variable needed in the
German model, and three guard strengthenings for FLASH.
We believe that these steps are candidates for automation as
well. Such automation may be desirable when these techniques
are applied to more complicated protocols.

We described an enhancement to the PREACH model
checker [26] to support the “EF ” part of our model checking
obligations using a forward search to find the existential paths.
Though the reachable state computation is fully distributed,
the EF searches currently are not; one area of future work
is to distribute this aspect of the model checking. However,
our current implementation running with a single thread was
sufficient to handle all the obligations for our two case studies.
The largest model was an abstraction of FLASH that has about
2.4 M reachable states and, for the properties of our case study,
each was checked on a modern desktop machine in less than
10 minutes.

As another direction of future work, we are in the process
of writing a Murϕ model of the L2 cache controller in the
OpenSPARC multiprocessor design. Here the parameter of
interest is memory addresses, rather than cache IDs. This is
interesting since different addresses share resources in non-
trivial ways that can lead to deadlock in our experience with
real designs. Investigating parameterized deadlock freedom of
this cache controller will test the applicability of our approach
of a vastly different parameterized verification problem.

ACKNOWLEDGMENT

We thank John O’Leary for providing an Ocaml Murϕ
front-end that is the basis for our tag/heuristics tool, and
anonymous reviewers for constructive feedback. This research
was funded in part by NSERC RGPIN 138501-07, NSERC
graduate fellowships, and a grant by Oracle Corporation.

REFERENCES

[1] R. C. Holt, “Some deadlock properties of computer systems,” ACM
Computing Surveys, vol. 4, no. 3, pp. 179–196, 1972.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[3] K. Apt and D. Kozen, “Limits for automatic verification of finite-state
concurrent systems,” Information Processing Letters, vol. 15, pp. 307–
309, 1986.

[4] K. L. Mcmillan, “Verification of infinite state systems by compositional
model checking,” in in CHARME. Springer, 1999, pp. 219–233.

[5] K. L. McMillan, “Parameterized verification of the FLASH cache coher-
ence protocol by compositional model checking,” in Correct Hardware
Design and Verification Methods (CHARME), 2001, pp. 179–195.

[6] C.-T. Chou, P. K. Mannava, and S. Park, “A simple method for
parameterized verification of cache coherence protocols,” in FMCAD,
2004, pp. 382–398.

[7] S. Krstic, “Parameterized system verification with guard strengthening
and parameter abstraction.” in Automated Verification of Infinite-State
Systems, 2005.

[8] Y. Lv, H. Lin, and H. Pan, “Computing invariants for parameter
abstraction,” in MEMOCODE ’07: Proceedings of the 5th IEEE/ACM
International Conference on Formal Methods and Models for Codesign,
2007, pp. 29–38.

[9] J. Bingham, “Automatic non-interference lemmas for parameterized
model checking,” in Formal Methods in Computer Aided Design (FM-
CAD), 2008.

[10] Y. Li, “Mechanized proofs for the parameter abstraction and guard
strengthening principle in parameterized verification of cache coherence
protocols,” in Proceedings of the 2007 ACM symposium on Applied
computing, 2007, pp. 1534–1535.

[11] J. O’Leary, M. Talupur, and M. R. Tuttle, “Parameterized verification
using message flows: An industrial experience,” in International Confer-
ence on Formal Methods in Computer Aided Design (FMCAD), 2009.

[12] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive
systems,” ACM Trans. Program. Lang. Syst., vol. 19, no. 2, pp. 253–291,
1997.

[13] Z. Manna and A. Pneuli, “Completing the temporal picture,” Theoretical
Computer Science, vol. 83, no. 1, pp. 97–130, 1991.

[14] K. L. McMillan, “Circular compositional reasoning about liveness,” in
Correct Hardware Design and Verification Methods (CHARME), 1999,
pp. 342–345, an extended version appeared as a Cadence technical
report.

[15] K. McMillan, “Personal correspondence,” 2011.
[16] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with invisible

ranking,” Int. J. Software Tools for Technology Transfer, vol. 8, no. 3,
pp. 261–279, June 2006.

[17] A. Pnueli, J. Xu, and L. D. Zuck, “Liveness with (0, 1, infinity)-counter
abstraction,” in Proceedings of the 14th International Conference on
Computer Aided Verification (CAV), 2002, pp. 107–122.

[18] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl, “Abstracting WS1S
systems to verify parameterized networks,” in International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), 2000, pp. 188–203.

[19] K. Baukus, Y. Lakhnech, and K. Stahl, “Parameterized verification of a
cache coherence protocol: Safety and liveness,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI), 2002, pp. 317–330.

[20] K. G. Larsen and B. Thomsen, “A modal process logic,” in Third Annual
Symposium on Logic in Computer Science (LICS), 1988, pp. 203–210.

[21] R. Cleaveland, S. P. Iyer, and D. Yankelevich, “Abstractions for pre-
serving all CTL* formulae,” Tech. Rep., 1994, tech. Rep. 9403, Dept.
of Comp. Sc., North Carolina State University, Raleigh, NC.

[22] N. Lynch and F. Vaandrager, “Forward and backward simulations – part
I: Untimed systems,” Information and Computation, vol. 121, no. 2, pp.
214–233, 1995.

[23] C. N. Ip and D. L. Dill, “Better verification through symmetry,” in
11th IFIP WG10.2 International Conference on Computer Hardware
Description Languages and their Applications, 1993, pp. 97–111.

[24] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol
verification as a hardware design aid,” in IEEE International Conference
on Computer Design: VLSI in Computers and Processors, 1992, pp.
522–525.

[25] B. Bingham, J. Bingham, and M. Greenstreet, “Supplementary material,”
http://www.cs.ubc.ca/˜binghamb/fmcad2011.html,
2011.

[26] B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh,
and M. Reitblatt, “Industrial strength distributed explicit state model
checking,” in Parallel and Distributed Model Checking, 2010.

APPENDIX

BNF for Admissible Parameterized Systems
AdmissibleSystem : r | ps ‘;’ ar ;
r : rule | ruleset ;
rule : guard ‘==>’ action ;
guard : ‘(’ gTerm ‘)’ | guard ‘AND’ ‘(’ gTerm ‘)’ ;
gTerm : ‘(’ bTerm ‘)’ | ‘(’ eTerm ‘)’ | ‘(’ fTerm ‘)’ ;
bTerm : bConst | bVar | bArray ‘[’ pVar ‘]’ | bTerm ‘AND’ bTerm

| bTerm ‘OR’ bTerm | | ‘NOT’ bTerm | ‘(’ bTerm ‘)’ ;
pComp : pTerm ‘=’ pTerm ;
pTerm : pVar | pArray ‘[’ pVar ‘]’ ;
action : assignment | action ‘;’ assignment ;
assignment : simpleAssignment | forAllAssign ;
simpleAssignment : bVar ‘:=’ bTerm | bArray ‘[’ pVar ‘]’ ‘:=’ bTerm

| pVar ‘:=’ pTerm | pArray ‘[’ pVar ‘]’ ‘:=’ pTerm ;
forAllAssign : ‘forall’ pVar ‘:’ pType ‘do’ assignment ‘end’ ;
ruleset : ‘ruleset’ pVar ‘:’ pType ‘do’ r ‘end’ ;

Where bVar is an identifier for a boolean-scalar variable,
bArray is an identifier for a boolean-array variable, pVar is
an identifier for a scalar variable of the parameter type, and
pArray is an identifier for an array variable of the parameter
type.
Restrictions: Any pVar declared as a ruleset index may
appear in at most one pComp conjunct of any guard.

Proof of Theorem 1

Let us fix a mixed-abstraction A = (SA, IA, U,O) for
P(n), where n > k. We also use L to denote a local
boolean predicate, and B = (SA, IA, UB, O) to denote a mixed
abstraction with only L-preserving transitions for UB. For
i, j ∈ Pn, define Pj

i ⊆ Pn as {` : i ≤ ` ≤ j}.
Let permutation πj↔h map elements of Pn according to

πj↔h(i) =

j for i = h,
h for i = j,
i otherwise.

Let T be shorthand for T (n) and let Reach denote the
reachable states of S(n).

Theorem 1 (Universally Quantified Quiescence): Let G be
a boolean predicate. If

1) A |= AGEF (G), and
2) B |= AG (G→ EF (G ∧∧

i∈Pk
L[i]))

then P(n) |= AGEF (G ∧∧
i∈Pn

L[i]).
Proof: For 1 ≤ h ≤ n, let Jh denote the property

∀w ∈ G ∧ Reach. ∃w′ ∈ (G ∧∧
i∈Ph

L[i]) where w ÃT w′,
and ∀i ∈ Pn

k+1. w ∈ L[i] → w′ ∈ L[i].
By definition, Antecedent 2 implies Jk. Assume Jh holds for
k ≤ h < n. Applying permutation π1↔h+1 to Jk gives
∀w ∈ G ∧ Reach. ∃w′ ∈ (G ∧ ∧

i∈Ph+1
2

L[i]) where w ÃT

w′, and ∀i ∈ Pn
k+1. w ∈ L[i] → w′ ∈ L[i]. This property

with Antecedent 2 implies Jh+1 by transitivity. Thus, property
Jn follows by induction. The paths implied by Antecedent 1
composed with those of Jn complete the proof by transitivity.

