
IC3: Where Monolithic and Incremental Meet
Fabio Somenzi

Dept. of Electrical, Computer, and Energy Engineering
University of Colorado at Boulder

Email: fabio@colorado.edu

Aaron R. Bradley
Summit Charter Middle School
Email: arbrad@cs.stanford.edu

Abstract—IC3 is an approach to the verification of safety
properties based on relative induction. It is incremental in the
sense that instead of focusing on proving one assertion, it builds
a sequence of small, relatively easy lemmas. These lemmas are
in the form of clauses that are derived from counterexamples
to induction and that are inductive relative to reachability
assumptions. At the same time, IC3 progressively refines ap-
proximations of the states reachable in given numbers of steps.
These approximations, also made up of clauses, are among the
assumptions used to support the inductive reasoning, whiletheir
strengthening relies on the inductive clauses themselves.This
interplay of the incremental and monolithic approaches lends
IC3 efficiency and flexibility and produces high-quality property-
driven abstractions. In contrast to other SAT-based approaches,
IC3 performs very many, very inexpensive queries. This is
another consequence of the incrementality of the algorithmand
is a key to its ability to be implemented in highly parallel fashion.

I. I NTRODUCTION

This paper discusses the IC3 technique for model checking
safety properties. It is meant as a companion to [13]. Sec-
tion II illustrates the approach on examples, while the rest
of this introduction and Section III put the algorithm in its
historical and ideological context by showing its relationto
other methods for finite-state verification.

A. Induction

Induction is fundamental to the verification of safety prop-
erties [1], [2]. The only question is how it should be applied.

Consider a finite state system,S : (i, x, I(x), T (i, x, x′)),
consisting of primary inputsi, state variablesx, a proposi-
tional formulaI(x) describing the initial configurations of the
system, and a propositional formulaT (i, x, x′) describing the
transition relation. Primed state variablesx′ represent the next
state.

Suppose that one wants to prove that every reachable state
satisfies state assertionP (x). Beginner’s luck might allow one
to proceed as follows:

• Show that the initial configuration of the system satisfies
P : I(x) ⇒ P (x), where⇒ corresponds to implication.
That is, all states that satisfy the initial conditionI also
satisfyP .

• Show that aP -state can only be followed by anotherP -
state:P (x) ∧ T (i, x, x′) ⇒ P (x′).

These two steps—sometimes calledinitiation andconsecution,
respectively—comprise induction overS.

B. Monolithic and Incremental Methods

Outside of a classroom, such a direct application of in-
duction is bound to fail. The development of safety model
checking has essentially been the study of what one should
do when, as usual, it does fail. InTemporal Verification of
Reactive Systems: Safety[3], Manna and Pnueli write,

We present two solutions to this problem, which can
be summarized by the following strategies:

1) Use a stronger assertion, or
2) Conduct an incremental proof, using previously

establishedP -invariants.
They go on to endorse the latter approach when engaging in
manual or computer-aided verification:

We strongly recommend [an incremental proof]
whenever applicable. Its main advantage is that of
modularity.

The former approach, however, is the one that has been most
pursued from an algorithmic point of view in the context of
hardware model checking. The formal basis for this approach
is the following. If

• I(x) ⇒ F (x)
• F (x) ∧ T (i, x, x′) ⇒ F (x′)
• F (x) ⇒ P (x)

thenP is an invariant ofS. In words, if F is inductive over
S and impliesP , then bothF andP are invariants.

Traditional model checkers, based on BDDs [4] or SAT [5],
explicitly compute post-conditions to compute the strongest
possible strengthening ofP , namely the reachable set of
states, or pre-conditions to compute the weakest possible
strengthening ofP , namely all states except those that can
lead to a violation ofP . Bounded model checkers (BMC)
exploit the finiteness of the state graph to enable a complete
approach based on unrollingT and searching, with a SAT
solver, for a counterexample trace [6]. An alternative to relying
on a property of the state graph is to strengthen consecution
simply by considering multiple time steps at once:k-induction
assumes thatP holds over multiple time steps to increase the
likelihood thatP holds in the next time step [7]. BDD-based
algorithms that compute backward reachability can also be
interpreted as computing increasingly strong consecutions: the
number of iterations required for the fixpoint computation to
converge to the weakest possible invariant that impliesP gives
the number of time steps to be considered to turnP into an
inductive assertion.



Finally, one can abstract the post-condition in order to
ease the computation, as in abstract interpretation [8]. Even
better, one can abstract it with respect to the property, as in
interpolation-based model checking, in which interpolants are
derived from failed BMC queries [9].

We refer to these methods asmonolithicbecause they spend
all of their resources in computing one inductive assertion.
Furthermore, their success is fundamentally tied to the rea-
soning engines—either the BDD package or the SAT solver.
The representation of states reachable from the initial ones or
states that can reach the target ones often entails prohibitively
large BDDs. BMC,k-induction, and interpolant-based model
checking fail when the SAT solver is overwhelmed by the
number of unrollings ofT .

One must then wonder whether anincrementalapproach,
which is so successful for humans, might not be a bad idea
as the basis for an algorithm. An incremental approach would
compute many inductive assertions that all together strengthen
P . It would thus have the modularity that Manna and Pnueli
highlight—each assertion need only refer to an aspect ofS—
as well as the potential of not taxing the reasoning engines
quite so much. Moreover, the incremental approach would
be property directed, like the interpolant-based method: each
intermediate assertion would arise to eliminate some hypoth-
esized error.

The formal basis for an incremental approach is the follow-
ing. Consider a sequenceϕ1(x), . . . , ϕn(x) of assertions such
that

• every assertion is satisfied by the initial states: for each
j, I(x) ⇒ ϕj(x),

• each assertion obeys consecution under the assumption
that its predecessors hold: for eachj,

∧

1≤k≤j

ϕk(x) ∧ T (i, x, x′) ⇒ ϕj(x
′) ,

• and all together they implyP :
∧

1≤j≤n

ϕj(x) ⇒ P (x) .

If P also satisfies initiation, then it is an invariant ofS. In this
version of consecution (the second condition), we say thatϕj

is inductiverelative toϕ1, . . . , ϕj−1.
In the incremental approach, one might as well assumeP .

If

• P is satisfied by the initial states:I(x) ⇒ P (i),
• every assertion is satisfied by the initial states: for each

j, I(x) ⇒ ϕj(x),
• each assertion obeys consecution under the assumption

that its predecessors andP hold: for eachj,
∧

1≤k≤j

ϕk(x) ∧ P (x) ∧ T (i, x, x′) ⇒ ϕj(x
′) ,

• andP is inductive relative to the assertions,
∧

1≤j≤n

ϕj(x) ∧ P (x) ∧ T (i, x, x′) ⇒ P (x′) ,

thenP is an invariant ofS.
Bradley and Manna proposed the first incremental safety

model checking algorithm [10], [11]. It discovers inductive
subclauses of the negation of states that lead, not necessarily
directly, to violations ofP . Such clauses eliminate the states
from which they are derived while generalizing to eliminate
many other states as well. Each clause is an assertionϕj that is
indeed typically inductive only relative to prior assertions but
not on its own. As expected, deriving the clauses is relatively
easy: the employed SAT solver solves many, often hundreds or
thousands, of queries per second, in stark contrast to BMC,k-
induction, and the interpolant method. An unexpected benefit
is that this instance of the incremental approach is effectively
parallelizable—and easily so. This characteristic has carried
through in subsequent work.

Besides modularity and reduced labor, the incremental ap-
proach has one more benefit: induction-based generalization
is a powerful mechanism for property-directed abstraction.
Induction tends to find semantic relationships among states
rather than simply adjacency, or structural, relationships, as
in traditional model checking. The clause that eliminates
a states may well eliminate states that are far, or even
disconnected, froms in the state graph. When induction is
applied throughout the analysis rather than being the goal of a
monolithic propagation, it abstracts the system in a property-
directed fashion.

Unfortunately, this algorithm suffers from a common pitfall
of incremental methods. Manna and Pnueli write:

There are cases in which the conjunctionϕ1 ∧ϕ2 is
inductive, but it is not the case thatϕ1 is inductive
andϕ2 is inductive relative toϕ1.

In the context of the algorithm, a states can be encountered
such that¬s does not contain a subclause that is inductive
relative to known information. In such situations, the algorithm
falls back on state enumeration until sufficient information is
acquired to resume inductive clause construction. Yet when
such a situation does not occur, the algorithm is extremely
effective [11].

This weakness of the incremental method is not an issue
for manual or computer-assisted verification, as the human can
provide an insight. But in an algorithmic context, one typically
limits the form of assertions in order to control computational
costs [8]. Is an algorithmic incremental method thus doomed
from the start?

C. IC3: A Monolithic-Incremental Hybrid

While an incremental method may be limited in the form of
its assertions, Bradley eventually realized that the constructed
clauses need not be truly inductive. The machinery of induc-
tion can be applied just as well when stronger information
is assumed—information that is not necessarily valid for
the entire state space. In particular, stepwise assumptions—
assertions that hold for some number of timesteps rather than
for all time—could be combined with relative inductive clause
generation to yield a hybrid monolithic-incremental method in



which relatively inductive clauses are guaranteed to existif
P is invariant. IC3 is the result of this insight [12], [13].

IC3 is incremental in that it finds inductive subclauses of the
negations of states, just as the first approach does—except that
these clauses are now inductive relative to certain assumptions.
Its use of SAT solvers is thus similar: hundreds to thousands
of queries are solved per second. Additionally, the clausesare
the right compromise between effort and information content,
so that they can be traded effectively among parallel processes.

IC3 is monolithic in that it computes over-approximations
to the sets of states reachable in one step, two steps, etc.,
until it converges upon an inductive strengthening assertion.
Each major iteration propagates the clauses that comprise the
timestep approximations forward in time as much as possible.
These over-approximations are the information relative to
which new clauses are generated.

Hence, IC3 alternates between an incremental mode, in
which it uses states that lead, not necessarily directly, to
violations ofP to discover new relatively inductive clauses,
and a monolithic mode, in which it propagates clauses forward
across time steps. Models on which the original method [10]
devolves into enumerating states cause IC3 to go through
more major iterations, yielding long sequences of stepwise
over-approximations. Models on which the original method
succeeds are just as easy, and often easier, for IC3, and result
in short sequences of stepwise over-approximations beforethe
final inductive strengthenings are formed. And many other
models cause IC3 to adapt either a more monolithic or a more
incremental strategy at various stages. The power of IC3 is that
it can quickly deduce lemmas for certain aspects of a model
while working harder—and, at times, more monolithically—
for other lemmas that require more clauses.

II. EXAMPLES

This section presents IC3 by way of two examples. The
objective is to show the nature of the algorithm. Certain
optimizations omitted from this exposition are essential in
practice for good performance.

A. A Passing Property

Figure 1 shows the state transition graph of a systemS with
no primary inputs and state variablesx = {x1, x2} such that

I(x) = ¬x1 ∧ ¬x2

T (x, x′) = (x1 ∨ ¬x2 ∨ x′
2) ∧ (x1 ∨ x2 ∨ ¬x′

1)

∧ (¬x1 ∨ x′
1) ∧ (¬x1 ∨ ¬x′

2) ∧ (x2 ∨ ¬x′
2)

P (x) = ¬x1 ∨ x2 .

Each state in the figure is annotated with its encoding. The
incoming arrow designatesq0 as initial, while the shaded state
(q3) violates P . Inspection of Fig. 1 reveals that the only
reachable state ofS is q0 and thatS |= P . This example is
not meant to highlight the efficiency of IC3. On the contrary,
it provides the opportunity for a rather extensive tour of the
algorithm in spite of its simplicity. (The reader is however
cautioned that interesting aspects of IC3, like its abilityto

00 01 11 10

q0 q1 q2 q3

Fig. 1. The state transition graph of a simple system.

quickly compute long counterexamples, or to find large sets
of mutually inductive clauses, are better understood via the
algorithm’s fundamental intentions. This section only provides
a stepping stone in that direction.)

The initial check performed by IC3 establishes that there
are no counterexamples of length 0 or 1. Therefore, the over-
approximations (or stepwise assumptions)

F0 = I = ¬x1 ∧ ¬x2

F1 = P = ¬x1 ∨ x2

satisfy the fundamental IC3 invariants fork = 1:

I ⇒ F0

Fi ⇒ Fi+1 0 ≤ i < k

Fi ⇒ P 0 ≤ i ≤ k

Fi ∧ T ⇒ F ′
i+1 0 ≤ i < k .

Together, these invariants assert the “reasonableness” ofthe
stepwise assumptions. In particular, since no counterexample
of length up tok exists, all states reachable in at mostk steps
are P -states. TakingFk to be P is therefore a valid over-
approximation. If IC3 eventually increasesk to 2, it is because
it has established that there are no counterexamples of length
up to 2. In general, if IC3 increasesk from n to n + 1, it is
because it has established that there are no counterexamples
of length up ton+ 1. It does so by proving that there are no
counterexamples-to-induction (CTI) states that are reachable
in at mostn steps from some initial state. For that, it checks
whetherFn ∧ T ⇒ P ′ can be violated.

The checkF1∧T ⇒ P ′ producess = x1∧x2 as CTI. (Note
that this check is equivalent toP ∧ T ⇒ P ′, the inductive
step of a simple inductive proof.) IfS |= P , a CTI must be
unreachable from the initial states. If¬s ∧ F1 ∧ T ⇒ ¬s′,
unreachability is proved. If, however, the implication does not
hold, the CTI may still be unreachable (as in this case) and IC3
tries to learn something useful about it: specifically, it tries to
bound the length of a counterexample that goes through the
CTI. Hence,¬s = ¬x1 ∨ ¬x2 is checked for inductiveness
relative to the variousFi’s. It is not inductive relative toF1

because of the transition betweenq1 and q2. It is, however,
inductive relative toF0. (Otherwise,P would not hold.)

The inductiveness check has established that the CTI is
not reachable in one step. Therefore, it would be possible to
remove it fromF1 by adding the clause¬s to it. However,
removing one CTI at a time is not practical for all but the
simplest systems. Instead, IC3 looks for more states, be they
CTIs or not, that, like the one at hand, are not reachable in



one step and such that they are all described by a subclause
of ¬s. That is, IC3 tries to generalize¬s.

Generalization of¬s is thus attempted at level0. The
algorithm may find either¬x1 or ¬x2 as subclauses of¬s,
because both satisfy both initiation and consecution. In fact,
the conjunction of either clause withF0 yieldsF0 itself, from
which no state violating either¬x1 or ¬x2 may be reached.
For the execution of the algorithm, however, which clause is
the result of generalization makes a difference. Suppose¬x2

is found. Then the update ofF1 produces

F1 = (¬x1 ∨ x2) ∧ ¬x2 ,

which is equivalent toF0. While this observation suffices to
prove termination, IC3 first checks whetherF1∧T ⇒ P ′; that
is, it checks whether the strengthening ofF1 has gotten rid
of the CTI. Since the answer is positive, it increasesk to 2,
instantiatesF2 = ¬x1 ∨ x2, and then propagates¬x2 from
F1. That is, it adds¬x2 to F2 becauseF1 ∧ T ⇒ ¬x′

2. The
addition causesF1 andF2 to be identical and terminates the
proof becauseF1 = (¬x1 ∨ x2) ∧ ¬x2 has been shown to be
inductive (I ⇒ F1 andF1 ∧ T ⇒ F ′

1) and is known to imply
P . (F1 is initially P and can only get stronger through the
run of IC3.)

If, instead of¬x2, the generalization of¬x1∨¬x2 produces
¬x1, the update of the reachability over-approximations results
in

F1 = (¬x1 ∨ x2) ∧ ¬x1 ,

which is equivalent to¬x1. ThisF1 is not as strong as in the
previous case, and in particular does not excludeq1, but it is
still sufficient to satisfyF1 ∧ T ⇒ P ′. Therefore, IC3 setsk
to 2, instantiatesF2 = ¬x1 ∨ x2 and tries to strengthen it by
propagating clause¬x1 from F1. However,

F1 ∧ T 6⇒ ¬x′
1 ,

because of the transition fromq1 to q2; hence, no strengthening
takes place. States = x1 ∧ x2 is found once again as a CTI.
The difference from the previous iteration is that it is now
known that no counterexample of length less than3 may go
through it. IC3 then tries to prove that no counterexample of
length3 exists. The next step is therefore findingi such that

(¬x1 ∨ ¬x2) ∧ Fi ∧ T ⇒ (¬x′
1 ∨ ¬x′

2) .

SinceF2 = P andF0 has not changed, the answers fori = 2
and i = 0 are already known. It remains to ascertain whether
F1 is strong enough to support¬s. Once again, the transition
betweenq1 andq2 causes the answer to be negative. Therefore,
¬s is inductive at level0, but not at level1. Generalization of
this clause also proceeds as in the previous iteration and may
result in either literal being dropped. If¬x2 is found, then its
addition toF1 makes it inductive, so that both¬x1 and¬x2

are propagated toF2 causing termination.
If, on the other hand,¬x1∨¬x2 is generalized to¬x1, then

no changes toF1 result and no clause propagation ensues.
SinceF2 has not changed, the CTI has not been removed. To
guarantee termination, IC3 identifies a predecessor ofs = q2

that is anF1 state, but not anF0 state. The only choice is
t = ¬x1 ∧ x2. If this state is proved unreachable, progress is
made. More generally, if all predecessors ofs in F1 are shown
to be unreachable in at most one step, thens is not reachable
in at most two steps and hence there is no counterexample of
length up to3 through it.

IC3 therefore recurs ont to find which is the leasti (if any)
such that

¬t ∧ Fi ∧ T ⇒ ¬t′ .

Since ¬t is itself inductive (q1 in Fig. 1 has no incoming
transitions from other states)i = 2. Sincex1 does not satisfy
initiation, the only generalization of¬t is ¬x2. The addition
of this clause to bothF1 and F2 makes them identical and
causes termination.

In this case,F1 is exact at termination. That is,F1 describes
exactly the states reachable in at most one step from the
initial states. Oftentimes, though, the ability to prove properties
quickly stems from the ability to keep the over-approximations
loose. This is one reason why IC3 does not decompose the
initial condition into a set of strong clauses that can be
propagated.1

In contrast to IC3, the approach of [10] focuses on removing
each CTI by generalizing its negation to an inductive clause.
For the system of Fig. 1, this entails generalizings = ¬x1 ∨
¬x2 by checking whether it contains a subclaused such that

d ∧ P ∧ T ⇒ d′ .

The solution is in this cased = ¬x2. Once this clause is
discovered, it is possible to prove that¬x2 ∧ P ∧ T ⇒ P ′,
which in turn provesS |= P . However, if the encoding of the
states is changed so thatq2 = x1 ∧ ¬x2 and q3 = x1 ∧ x2,
then the negation of the CTI¬s = ¬x1 ∨ x2 has no inductive
generalization and the approach of [10] falls back on removing
the CTI alone from further consideration. While this is hardly
a disadvantage when there are only four states, it is the main
weakness of that method. IC3 is also affected by the change
of encoding, in that¬s = ¬x1 ∨ x2 can only be generalized
to ¬x1, but relatively inductive clauses can always be found.

B. A Failing Property

Figure 2 shows the transition graph of a systemU with no
primary inputs and state variablesx = {x1, x2, x3} defined
by

I(x) = ¬x1 ∧ ¬x2 ∧ ¬x3

T (x, x′) = (x1 ∨ ¬x′
2) ∧ (¬x1 ∨ x′

2)

(x2 ∨ ¬x′
3) ∧ (¬x2 ∨ x′

3)

P (x) = ¬x1 ∨ ¬x2 ∨ ¬x3 .

Stateqi has codei. For example,q3 is ¬x1 ∧ x2 ∧ x3. As in
Fig. 1, the shaded state violates propertyP .

1Implementations rely on pre-analysis of the model that easily discovers
most state variables that can only take one value. Using any remaining
literals from the initial condition typically lengthens the analysis because it
overconstrains the early over-approximations.



q0

q1

q4

q5

q6

q7

q3

q2

Fig. 2. Transition graph for a system with a failing property.

Having checked that there are no counterexamples of length
up to 1, IC3 setsk = 1 and chooses

F0 = I = ¬x1 ∧ ¬x2 ∧ ¬x3

F1 = P = ¬x1 ∨ ¬x2 ∨ ¬x3

as stepwise assumptions. Checking whetherF1 ∧ T ⇒ P ′

yields s = ¬x1 ∧ x2 ∧ x3 as CTI. Inductiveness of¬s is
established at level0 and the generalization of¬s is ¬x2.
After the strengthening ofF1,

F1 = P ∧ ¬x2 ,

F1 ∧ T ⇒ P ′. Therefore,k increases to2 and F2 = P is
instantiated. No clause is propagated fromF1 toF2. Therefore,
the same CTI as before is found whenF2 ∧T ⇒ P ′ is tested.
Since¬s∧F1∧T 6⇒ ¬s′, inductiveness is again established at
level 0 and the generalization is again¬x2. Nothing changes
in the stepwise assumptions, and the CTI remains anF2 state.
IC3 therefore looks for a predecessor ofs that is inF1. The
choice is between¬x1 ∧ ¬x2 ∧ x3 andx1 ∧ ¬x2 ∧ ¬x3. The
former is immediately shown to be a successor of the initial
state because its negation is not inductive even at level0.
Therefore the minimum-length counterexampleq0, q1, q3, q7
is found.

If, instead of¬x1 ∧¬x2 ∧ x3, IC3 choosest = x1 ∧¬x2 ∧
¬x3 as F1 predecessor of the CTI,¬t is proved inductive
at level 1 because the two predecessors oft are not inF1.
Generalization of¬t produces¬x1, which is added to both
F1 andF2 eliminatingx1 ∧¬x2 ∧¬x3 from both. This forces
the choice of¬x1 ∧ ¬x2 ∧ x3 asF1 predecessor of the CTI
and leads to the same counterexample as before. It should be
noted how the refinement of the stepwise assumptions acted
as guidance in the search for the counterexample.

IC3 does not guarantee counterexamples of minimum
length. Whilek cannot increase beyond the length of a shortest
counterexample, IC3 may find a counterexample well beforek

matches its length. This ability proves an important advantage
when the transition relation is such that refining the stepwise
assumptions beyond a certain point becomes difficult. This
may be the case when the CTIs and the states that should be
removed from one of theFi’s to get out of an impasse have
codes that are different enough that the generalized inductive
clauses do not cover the “problem” states.

When refinement of the stepwise assumptions proves diffi-
cult, IC3 often finds that the negation of the target state (CTI
or one of its predecessors) is inductive at the level immediately
preceding that of the target state. It then chooses a predecessor

at the same level, producing a path with several states for one
Fi until either the path eventually crosses intoFi−1 or new
clauses are generated that cause a refinement of the stepwise
assumptions. Under these circumstances IC3 may still discover
a deep counterexample even thoughk is small.

III. D ISCUSSION

A. What Problem is IC3 Trying to Solve?

Interpolation andk-induction address the practical incom-
pleteness of BMC. The latter combines BMC with a consecu-
tion check:

P ∧

k−1∧

i=0

(T (i) ∧ P (i)) ⇒ P (k) .

When that check fails,k is increased, corresponding to a
further unrolling ofT . In practice,k can be prohibitively large.

The interpolant method goes further: it suggests forming
over-approximate stepwise reachability setsFi using a fixed
unrolling. It addresses the failure of the following implication
by increasingk:

Fi ∧
k−1∧

i=0

(T (i) ∧ P (i)) ⇒ P (k) .

Because the implication does not hold, no interpolant exists
that lies between thei-step over-approximationFi and the
k-step unrolling leading to a violation ofP . The interpolant
method thus increasesk for the next round, yielding better
over-approximationsFi.

Hence, neitherk-induction nor the interpolant method drop
the regime of unrolling that BMC introduced. While they
attempt to reduce the number of necessary unrollings, their
completeness—both practically and theoretically—is still fun-
damentally tied to unrolling.

IC3 entirely sidesteps the need for unrolling and thus sets
out on a new trail than that blazed by BMC. When confronted
with a problem similar to the one in interpolation (though
lacking any unrolling), that is, the failure of the implication

Fi ∧ T ⇒ P ′ ,

it refines thei-step over-approximationFi itself—and typically
earlier stepwise over-approximations—in order to make the
refined implication come closer to holding. It accomplishes
this refinement by incrementally generating stepwise-relative
inductive clauses in reaction to the CTI that the implication’s
failure reveals. In the end, the sequence of over-approximate
stepwise assertionsFi can be seen as a possible outcome of
the interpolant method—though derived in a fundamentally
different manner.

B. The Incremental Method: Beyond IC3

The purely incremental method fails when the space of
assertions is too poor to provide lemmas for all possible
situations. In the case of safety model checking, clauses are
too weak to be the basis of a robust algorithm. IC3 provides a
stronger framework in which to use a weak, but expressively



complete, assertion domain. However, a pure incremental
approach can work on its own in other settings.

In this conference, we present an incremental approach
to model checking LTL properties of systems [14]. The
fundamental insight is thatSCC-closed regionsof the state
graph, which are a fundamental characterization used in BDD-
based techniques [15], can be discovered through induction.
Hence, inductive assertions, as discovered by IC3, are the
intermediate lemmas of this approach. Unlike the relationship
between error states and clauses in safety model checking,
every hypothesized error—which we call askeleton—that does
not correspond to an actual error has a corresponding inductive
proof. Thus, the algorithm is purely incremental, and it enjoys
the usual benefits: modular reasoning, natural abstraction, and
opportunities for parallelization.

Acknowledgments.This material is based on work supported
in part by the National Science Foundation under grant No.
0952617 and by the Semiconductor Research Corporation
under contract GRC 1859. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] R. W. Floyd, “Assigning meanings to programs,” inSymposia in Applied
Mathematics, vol. 19. American Mathematical Society, 1967, pp. 19–
32.

[2] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, October
1969.

[3] Z. Manna and A. Pnueli,Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J. Hwang,
“Symbolic model checking:1020 states and beyond,”Information and
Computation, vol. 98, no. 2, pp. 142–170, 1992.

[5] K. L. McMillan, “Applying SAT methods in unbounded symbolic model
checking.” inCAV, ser. LNCS, vol. 2404. Springer-Verlag, 2002, pp.
250–264.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model check-
ing without BDDs,” in Fifth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’99),
Amsterdam, The Netherlands, Mar. 1999, pp. 193–207, lNCS 1579.

[7] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” inFormal Methods in Computer
Aided Design, W. A. Hunt, Jr. and S. D. Johnson, Eds. Springer-Verlag,
Nov. 2000, pp. 108–125, lNCS 1954.

[8] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM Press, 1977, pp. 238–252.

[9] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Fifteenth Conference on Computer Aided Verification (CAV’03), W. A.
Hunt, Jr. and F. Somenzi, Eds. Berlin: Springer-Verlag, Jul. 2003, pp.
1–13, lNCS 2725.

[10] A. R. Bradley and Z. Manna, “Checking safety by inductive generaliza-
tion of counterexamples to induction,” inFormal Methods in Computer
Aided Design (FMCAD’07), Austin, TX, 2007, pp. 173–180.

[11] A. R. Bradley, “Safety analysis of systems,” Ph.D. dissertation, Stanford
University, May 2007.

[12] ——, “k-step relative inductive generalization,” CU Boulder, Tech. Rep.,
March 2010, http://arxiv.org/abs/1003.3649.

[13] ——, “SAT-based model checking without unrolling,” inVerification,
Model Checking, and Abstract Interpretation (VMCAI’11), Austin, TX,
2011, pp. 70–87, lNCS 6538.

[14] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An incremental
approach to model checking progress properties,” inFormal Methods in
Computer Aided Design (FMCAD’11), Austin, TX, 2011.

[15] R. Bloem, H. N. Gabow, and F. Somenzi, “An algorithm for strongly
connected component analysis inn logn symbolic steps,” inFormal
Methods in Computer Aided Design, W. A. Hunt, Jr. and S. D. Johnson,
Eds. Springer-Verlag, Nov. 2000, pp. 37–54, lNCS 1954.


