
Appli
ations of the DE2 LanguageWarren A. Hunt, Jr. and Erik ReeberMar
h 22, 2006Abstra
tWe have developed a formal veri�
ation approa
h that permits theme
hani
al veri�
ation of 
ir
uit generators and hardware optimiza-tion pro
edures, as well as existing hardware designs. Our approa
his based on deeply embedding the DE2 HDL into the ACL2 logi
 [3℄;we use the ACL2 theorem-proving system to verify the 
ir
uit gen-erators. During 
ir
uit generation, a 
ir
uit generator may generate
ir
uits based on variety of non-fun
tional 
riteria. For example, a
ir
uit generator may produ
e di�erent stru
tural 
ir
uit des
riptionsdepending on wire lengths, 
ir
uit primitives, target te
hnology, and
ir
uit topology.In this paper, we show how we have applied the DE2 system to asimple 
ir
uit generator|the n-bit ripple-
arry adder. We then showhow we have applied theDE2 system to the veri�
ation of 
omponentsof the TRIPS mi
ropro
essor design.1 Introdu
tionWe have developed a hardware des
ription language, DE2, whi
h has a num-ber of features that make it suitable for the veri�
ation of modern hardwaredesigns. DE2 has a simple semanti
s and in
ludes 
apabilities for spe
ify-ing and verifying non-fun
tional properties, 
ir
uit generators, and hardwareoptimization programs.Our veri�
ation system is based on the deep embedding of DE2 withinthe ACL2 logi
 and theorem prover. Furthermore, we have built a fullyautomati
 SAT-based proof engine that 
an verify invariants of ma
hines1



designed in DE2. This SAT-based proof engine involves an extension to theACL2 theorem-proving system so that it 
an use external SAT solvers.In this paper, we dis
uss related work in Se
tion 2. We provide someba
kground on the ACL2 theorem prover, the DE2 language, and our veri-�
ation system, in Se
tion 3. Next, in Se
tion 4, we show how to apply oursystem to the veri�
ation of a ripple-
arry adder. In Se
tion 5, we show howwe apply our system to the veri�
ation of a 
ommuni
ation proto
ol used inthe TRIPS pro
essor.2 Related WorkThis work builds on our previous work with the DE2 language [3℄, as wellas our previous work with the veri�
ation of the FM9001 mi
ropro
essor[8℄. In our earlier work, we only employed theorem-proving te
hniques, butour 
urrent e�ort also permits the use of SAT and BDD based te
hniques.In addition, our 
urrent approa
h to verifying 
ir
uit generators permits a
ir
uit generator to make 
hoi
es based on non-fun
tional 
riteria. For exam-ple, a 
ir
uit generator may produ
e di�erent stru
tural 
ir
uit des
riptionsdepending on wire lengths, 
ir
uit primitives, target te
hnology, and 
ir
uittopology.This work is similar in spirit to work by the fun
tional language 
ommu-nity to generate regular 
ir
uits using fun
tional programs. For instan
e, theWIRED language has been used to improve performan
e of multipliers byin
orporating layout information into the design of 
ir
uit generators [1℄.Many model-
he
kers, and other automated veri�
ation tools, verify FSMproperties automati
ally. UCLID, for example, uses SAT solvers to verifyhigh-level FSMs with uninterpreted fun
tion symbols [5℄. Another exampleis the FORTE tool, whi
h has been used at Intel to verify 
omponents ofpro
essor designs [2℄.3 Ba
kground3.1 The ACL2 Theorem ProverACL2 stands for A Computation Logi
 for Appli
ative Common Lisp. TheACL2 language is a fun
tional subset of Common Lisp. For a thoroughdes
ription of ACL2 see Kaufmann, Manolios, and Moore's book [4℄.



(defun 
on
atn (n a b)(if (zp n)b(
ons (
ar a)(
on
atn (- n 1) (
dr a) b))))(defun uandn (n a)(if (zp n)t(if (
ar a)(uandn (- n 1) (
dr a))nil)))(defun bequiv (a b)(if a b (not b)))(defthm example-thm(implies (and (not (zp x))(not (zp y)))(bequiv (uandn (+ x y) (
on
atn x a b))(and (uandn x a) (uandn y b)))))Figure 1: ACL2 De�nitions and a Bit-Ve
tor Con
atenation Theorem



Figure 1 illustrates several ACL2 de�nitions. Here, fun
tion 
on
atn
on
atenates two bit ve
tors, uandn returns the 
onjun
tion of the bits in abit ve
tor. The ACL2 fun
tion bequiv determines whether two ACL2 valuesrepresent the same Boolean value. We also make use of the built-in ACL2fun
tion (zp n), whi
h returns nil if n is a positive integer and t otherwise.The fun
tions uandn and 
on
atn are de�ned re
ursively. In order forsu
h de�nitional axioms to be added to the ACL2 theory, one must �rst provethat the de�nition terminates for all inputs. In this 
ase, the proof followsfrom the fa
t that the fun
tion argument n de
reases on every re
ursive 
all.Figure 1 also illustrates an ACL2 theorem. This theorem states thatthe unary-and of the 
on
atenation of two bit ve
tors is equivalent to the
onjun
tion of the unary-and of ea
h individual bit ve
tor.3.2 The DE2 EvaluatorThe semanti
 evaluation of a DE2 design pro
eeds by binding a
tual (eval-uated) parameters (both the inputs and the 
urrent state) to the formalparameters of the module to be evaluated; this in turn 
auses the evaluationof ea
h submodule. This evaluation pro
ess is re
ursively repeated until aprimitive module is en
ountered. This re
ursive-des
ent/as
ent part of theevaluation 
an be thought of as performing all of the \wiring"; values are\routed" to appropriate modules and results are 
olle
ted and passed alongto other modules or be
ome primary outputs. Finally, to evaluate a primi-tive, a spe
i�
 primitive evaluator is then 
alled after binding the ne
essaryarguments. This set of de�nitions is 
omposed of four (two groups of) fun
-tions (given below), and these fun
tions 
ontain an argument that permitsdi�erent primitive evaluators to be used.The following four fun
tions 
ompletely de�ne the evaluation of a netlistof modules, no matter whi
h type of primitive evaluation is spe
i�ed. Thefun
tions presented in this se
tion 
onstitute the entire de�nition of the sim-ulator for the DE2 language. This de�nition is small enough to allow us toreason with it me
hani
ally, yet it is ri
h enough to permit the de�nition ofa variety of evaluators. The se fun
tion evaluates a module and returns itsoutputs as a fun
tion of its inputs and its internal state. The de fun
tionevaluates a module and returns its next state; this state will be stru
turallyidenti
al to the module's 
urrent state, but with updated values. Both seand de have sibling fun
tions, se-o

 and de-o

 respe
tively, that iteratethrough ea
h sub-module referen
ed in the body of a module de�nition. We



present the se and de evaluator fun
tions to make 
lear the importan
e wepla
e on making the de�nition 
ompa
t.The se and de fun
tions both have a flg argument that permits thesele
tion of a spe
i�
 primitive evaluator. The fn argument identi�es thename of a module to evaluate; its de�nition should be found in the netlist.The ins and st arguments provide the primary inputs and the 
urrent stateof the fn module. The params argument allows for parametrized modules;that is, it is possible to de�ne modules with wire and state sizes that aredetermined by this parameter. The env argument permits 
on�guration ortest information to be passed deep into the evaluation pro
ess.The se-o

 fun
tion evaluates ea
h o

urren
e and returns an environ-ment that in
ludes values for all internal signals. The se fun
tion returnsa list of outputs by �ltering the desired outputs from this environment. To
ompute the outputs as fun
tions of the inputs, only a single pass is required.(defun se (flg fn params ins st env netlist)(if (
onsp fn);; Primitive Evaluation.(
dr (flg-eval-lambda-expr flg fn params ins env));; Evaluate submodules.(let ((module (asso
-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-outs m-sts m-o

s)(m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-
ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso
-eq-netlist fn netlist)))(asso
-eq-list-vals(strip-
ars m-outs)(se-o

 flg m-o

s new-env new-netlist))))))))(defun se-o

 (flg o

s env netlist)



(if (atom o

s) ;; Any more o

urren
es?env;; Evaluate spe
ifi
 o

urren
e.(let-names(o-name o-outs o-
all o-ins)(
ar o

s)(se-o

 flg (
dr o

s)(add-pairlist(o-outs-names o-outs)(flg-eval-listflg (parse-output-listo-outs(se flg (o-
all-fn o-
all)(flg-eval-list flg(o-
all-params o-
all)env)o-ins o-name env netlist))env)env)netlist))))Similarly, the fun
tions de and de-o

 perform the next-state 
ompu-tation for a module's evaluation; given values for the primary inputs and astru
tured state argument, these two fun
tions 
ompute the next state ofa spe
i�ed module. This result state is stru
tured isomorphi
ally to its in-put (internal) state. Note that the de�nition of de 
ontains a referen
e tothe fun
tion se-o

; this referen
e 
omputes the value of all internal signalsfor the module whose next state is being 
omputed. This 
all to se-o

represents the �rst of two passes through a module des
ription when DE is
omputing the next state.(defun de (flg fn params ins st env netlist)(if (
onsp fn)(
ar (flg-eval-lambda-expr flg fn params ins env))(let ((module (asso
-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-sts m-o

s) (m-body module)(let*((new-env (add-pairlist m-params params nil))



(new-env (add-pairlist (strip-
ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso
-eq-netlist fn netlist))(new-env (se-o

 flg m-o

s new-env new-netlist)))(asso
-eq-list-valsm-sts(de-o

 flg m-o

s new-env new-netlist))))))))(defun de-o

 (flg o

s env netlist)(if (atom o

s)env(let-names(o-name o-
all o-ins) (
ar o

s)(de-o

 flg (
dr o

s)(
ons(
onso-name(de flg (o-
all-fn o-
all)(flg-eval-list flg (o-
all-params o-
all) env)o-ins o-name env netlist))env)netlist))))This 
ompletes the entire de�nition of the DE2 evaluation semanti
s.This 
lique of fun
tions is used for all di�erent evaluators; the spe
i�
 kindof evaluation is determined by the flg input. We have proved a number oflemmas that help to automate the analysis of DE2 modules. These lemmasallow us to hierar
hi
ally verify FSMs represented as DE2 modules. We havealso de�ned simple fun
tions that use de and se to simulate a DE2 designthrough any number of 
y
les.An important aspe
t of this semanti
s is its brevity. Furthermore, sin
ewe spe
ify our semanti
s in the formal language of the ACL2 theorem prover,we 
an me
hani
ally and hierar
hi
ally verify properties about any systemde�ned using the DE2 language.
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Figure 2: An overview of the DE2 veri�
ation system3.3 The Veri�
ation SystemHaving an evaluator for DE2 written in ACL2 enables many forms of ver-i�
ation. In Figure 2, we illustrate our veri�
ation system, whi
h is builtaround the DE2 language.We typi
ally use the DE2 veri�
ation system to verify Verilog designs.These designs are denoted in the upper left of Figure 2. Currently, our subsetof Verilog in
ludes arrays of wires (bit ve
tors), instantiations of modules,assignment statements, and some basi
 primitives (e.g. &, ?: and |). Wealso allow the instantiation of memory (array) modules and vendor-de�nedprimitives.We have built a translator that translates a Verilog des
ription into anequivalent DE2 des
ription. Our translator parses the Verilog sour
e textinto a Lisp expression, and then an ACL2 program 
onverts this Lisp expres-sion into a DE2 des
ription.We have also built a translator that 
onverts a DE2 netlist into a 
y
le-a

urate ACL2 model. This translator also provides an ACL2 proof thatthe DE2 des
ription is equivalent to the me
hani
al produ
ed ACL2 model.The pro
ess of translating a DE2 des
ription into its 
orresponding ACL2model in
ludes a partial 
one-of-in
uen
e redu
tion; an ACL2 fun
tion is
reated for ea
h module's output and parts of the initial design whi
h areirrelevant to that output are removed. The DE2 to ACL2 translator allows



us to enjoy both the advantages of a shallow embedding (e.g. straightforwardveri�
ation) and the advantages of a deep embedding (e.g. syntax resemblingVerilog).We start with an informal spe
i�
ation of the design in the form of Englishdo
uments, 
harts, graphs, C-models, and test 
ode whi
h is represented inthe upper right of Figure 2. This information is 
onverted manually into aformal ACL2 spe
i�
ation. Using the ACL2 theorem prover, these spe
i�
a-tions are simpli�ed into a number of invariants and equivalen
e properties.If these properties are simple enough to be proven by our SAT-based de
i-sion pro
edure, we prove them automati
ally; otherwise, we simplify su
h
onje
tures using the ACL2 theorem prover until we 
an su

essfully appealto some automated de
ision pro
edure.We also use our system to verify sets of DE2 des
riptions. This is a
-
omplished by writing ACL2 fun
tions that generate DE2 des
riptions, andthen proving that these fun
tions always produ
e 
ir
uits that satisfy theirACL2 spe
i�
ations.Sin
eDE2 des
riptions are represented as ACL2 
onstants, fun
tions thattransform DE2 des
riptions 
an be veri�ed using the ACL2 theorem prover.By 
onverting from Verilog to DE2 and from DE2 to ba
k into Verilog, we
an use DE2 as an intermediate language to perform veri�ed optimizations.Another use of this feature involves performing redu
tions or optimizationson DE2 spe
i�
ations prior to veri�
ation. For example, one 
an use ade
ision pro
edure to determine that two DE2 
ir
uits are equivalent andthen use this fa
t to avoid verifying properties of a less 
leanly stru
tureddes
ription.We 
an also build stati
 analysis tools, su
h as extended type 
he
kers, inDE2 by using annotations. In DE2, annotations are �rst-
lass obje
ts (i.e.annotations are not embedded in 
omments). Su
h type 
he
kers, sin
e theyare written in ACL2, 
an be analyzed and 
an also assist in the veri�
ation ofDE2 des
riptions. Furthermore, annotations 
an be used to embed informa-tion into a DE2 des
ription to assist with synthesis or other post-pro
essingtools.4 Ripple-Carry Adder Generator Veri�
ationIn this se
tion we present a de�nition of a simple parametrized ripple-
arryadder to show how the DE2 veri�
ation system is applied to verify 
ir
uit



generators. The following two ACL2 fun
tions generate the DE2 de�nitionof the top-level module of the ripple-
arry adder:(defun generate-ripple-o

s (n)(if (zp n)nil(append (generate-ripple-o

s (1- n))`((,(de-make-n-name '
arry n)((q ,(1- n) ,(1- n)) (
arry ,n ,n))(full-adder)((g x ,(1- n) ,(1- n)) (g y ,(1- n) ,(1- n))(g 
arry ,(1- n) ,(1- n))))))));; Make an n-bit ripple-
arry adder(defun generate-ripple-
arry (n)`(,(de-make-n-name 'ripple-
arry n)(type module)(params )(outs (q ,n) (
_out 1))(ins (x ,n) (y ,n) (
_in 1))(sts )(wires (
arry ,(1+ n)))(o

s(
arry_0 ((
arry 0 0)) (bufn 1) ((g 
_in 0 0))). ,(append (generate-ripple-o

s n)`((
arry_out ((
_out 0 0))(bufn 1)((g 
arry ,n ,n))))))))The fun
tion generate-ripple-o

s 
reates the o

urren
e list by re
ur-sively laying down one full-adder for ea
h output bit. The fun
tiongenerate-ripple-
arry then uses this o

urren
e list to 
reate the top-level ripple-
arry adder de�nition. For example, the following is the four bitripple-
arry adder produ
ed by (generate-ripple-
arry 4):(RIPPLE-CARRY_4(TYPE MODULE)(PARAMS)(OUTS (Q 4) (C_OUT 1))(INS (X 4) (Y 4) (C_IN 1))



(STS)(WIRES (CARRY 5))(OCCS (CARRY_0 ((CARRY 0 0))(BUFN 1)((G C_IN 0 0)))(CARRY_1 ((Q 0 0) (CARRY 1 1))(FULL-ADDER)((G X 0 0) (G Y 0 0) (G CARRY 0 0)))(CARRY_2 ((Q 1 1) (CARRY 2 2))(FULL-ADDER)((G X 1 1) (G Y 1 1) (G CARRY 1 1)))(CARRY_3 ((Q 2 2) (CARRY 3 3))(FULL-ADDER)((G X 2 2) (G Y 2 2) (G CARRY 2 2)))(CARRY_4 ((Q 3 3) (CARRY 4 4))(FULL-ADDER)((G X 3 3) (G Y 3 3) (G CARRY 3 3)))(CARRY_OUT ((C_OUT 0 0))(BUFN 1)((G CARRY 4 4)))))We next de�ne a ripple-
arry adder in ACL2 whi
h follows the samestru
ture as the one de�ned in DE2. The following is the top-level de�nitionof the ACL2 ripple-
arry adder and the main theorem we prove about it:(defun a
l2-ripple-adder (n x y 
_in)(if (zp n)(list nil (get-sublist 
_in 0 0))(let* ((adder_1b(a
l2-full-adder (get-sublist x 0 0)(get-sublist y 0 0)(get-sublist 
_in 0 0)))(sub_adder (a
l2-ripple-adder (1- n)(nth-
dr 1 x)(nth-
dr 1 y)(
adr adder_1b))))(list (append-n 1 (
ar adder_1b) (
ar sub_adder))(append-n 1 
_in (
adr sub_adder))))))



(defthm a
l2-ripple-adder-adds(implies(and (equal n (len a))(equal (len b) (len a)))(equal (v-to-nat(
ar (a
l2-ripple-adder n a b(list (bool-fix 
_in)))))(mod-2-n (+ (if 
_in 1 0)(v-to-nat a)(v-to-nat b))n))))The above theorem states that the ACL2 fun
tional de�nition of the ripple-
arry adder implements modular addition, as de�ned by ACL2's additionaxioms. We prove this theorem by making use of ACL2's indu
tion andsimpli�
ation proof engines, as well as the library of lemmas that has been
reated to assist ACL2 users in the veri�
ation of arithmeti
 properties.Next we verify the theorem below:(defthm generate-ripple-se-rewrite(implies(and (not (zp n))(generate-ripple-
arry-& n netlist))(equal(se 'bvev(de-make-n-name 'ripple-
arry n)params ins st env netlist)(let ((x (get-value 'bvev ins env))(y (get-value 'bvev (
dr ins) env))(
_in (get-sublist (get-value 'bvev(
ddr ins)env)00)))(list (
ar (a
l2-ripple-adder n x y 
_in))(get-sublist (
adr (a
l2-ripple-adder nxy
_in))nn))))))



This theorem states that, given 
ertain 
onditions, the DE2 ripple-
arryadder produ
es the same result as the ACL2 ripple-
arry adder. The hy-potheses of the theorem are that the number of bits is a positive inte-ger and that the ripple-
arry adder modules o

urs in the given netlist,along with its submodules. This theorem is proven using ACL2's indu
-tion proof engine, whi
h we use to show that ea
h o

urren
e produ
ed by are
ursive step of generate-ripple-o

s 
orresponds to a re
ursive step ina
l2-ripple-adder.On
e we have veri�ed generate-ripple-se-rewrite, we 
an prove the�nal theorem below:(defthm generate-ripple-se-adds(implies(and (not (zp n))(generate-ripple-
arry-& n netlist)(equal (len (get-value 'bvev ins env)) n)(equal (len (get-value 'bvev (
dr ins) env)) n))(equal(v-to-nat (
ar (se 'bvev(de-make-n-name 'ripple-
arry n)params ins st env netlist)))(let ((x (get-value 'bvev ins env))(y (get-value 'bvev (
dr ins) env))(
_in (get-sublist (get-value 'bvev (
ddr ins) env)00)))(mod-2-n (+ (if (
ar 
_in) 1 0)(v-to-nat x)(v-to-nat y))n)))))This theorem states that if the n-bit, ripple-
arry adder module is in thenetlist, along with its submodules, and the �rst two inputs are n bit, bitve
tors, then the natural number representation of the output of the ripple-
arry adder is equal to the modular addition of its inputs.Note we proved this theorem entirely using the standard ACL2 theoremproving te
hniques, without the use of SAT solvers or BDDs. That is be
ausewe 
ompleted this proof before our SAT-based proof engine was fully inpla
e. In the next se
tion we will show how we are verifying next-generationhardware using a mixture of SAT-solving and theorem proving.



5 Verifying TRIPS Pro
essor ComponentsWe are using our veri�
ation system to verify 
omponents of the TRIPSpro
essor. The TRIPS pro
essor is a prototype of a next-generation pro
essorthat has been designed at the University of Texas [7℄ and being built by IBM.One novel aspe
t of the TRIPS pro
essor is that its memory is divided intofour pie
es; ea
h pie
e has its own memory 
ontrol tile, with its own 
a
heand Load Store Queue (LSQ). We plan to verify the LSQ design, based onthe design des
ribed in Sethumadhavan et. al., [6℄, using our veri�
ationsystem. In this se
tion, we present our veri�
ation of a part of the LSQ thatmanages 
ommuni
ation with other LSQs.We �rst use our veri�
ation system, mentioned in Se
tion 3.3, to \
om-pile" the Verilog design that implements the LSQ 
ommuni
ation proto
olinto a DE2 module. We then used our automati
 translation engine to 
om-pile the DE2 des
ription into an ACL2 model and prove their equivalen
erelative to the DE2 semanti
s.5.1 Veri�
ation of the Ex
eption Proto
olOne reason that the LSQ units must 
ommuni
ate is to 
onglomerate ex-
eptions generated in various tiles into a single mask. Figure 3 presents anoverview of the proto
ol that 
onglomerates ex
eptions. Ea
h tile re
eives afour-bit input denoting the ex
eption generated this 
y
le|a three-bit ad-dress plus a one-bit enable signal. The ex
eptions are de
oded into an eight-bit mask, that ea
h tile passes to the tile above it. Ex
eptions are removedwhen the instru
tion that generated the ex
eption is 
ushed. The s
hemati
of the design that implements this proto
ol is shown in Figure 4.To verify the multi-tile design in Figure 3, we prove that it is equivalentto the single-tile design in Figure 5. This equivalen
e is broken into thefollowing two properties:(defthm ex
eption-safety(implies(and (integerp tao)(<= 0 tao)(Tth-inputs-goodp tao input-list))(submaskp8(out-udt_miss_ordering_ex
eptions
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*t0*(Tth-internal-state tao input-list)(nth tao input-list))(spe
-miss_ordering(Tth-spe
-state tao input-list)(nth tao input-list)))))(defthm ex
eption-liveness(implies(and (integerp tao)(<= 3 tao)(Tth-inputs-goodp tao input-list))(submaskp8(bv-or8(re
ent-flushes 3 tao *t0* input-list)(spe
-miss_ordering(Tth-spe
-state (- tao 3) input-list)(nth (- tao 3) input-list)))(out-udt_miss_ordering_ex
eptions*t0*(Tth-internal-state tao input-list)(nth tao input-list)))))The �rst property proves that, for any 
y
le number tao, assuming goodinputs, the ex
eption mask generated by tile zero is a subset of the ex
eptionmask generated by the single-tile ma
hine. The se
ond property proves thatthe ex
eption mask generated by the single tile ma
hine is a subset of the
ombination of the ex
eption mask generated by tile zero and the last three
ush masks. In e�e
t, these properties prove that our multi-tile ex
eptiondesign only produ
es ex
eptions produ
ed by the spe
i�
ation and eventuallyprodu
es all ex
eptions produ
ed by the spe
i�
ation.We prove these properties by redu
ing them to the proof of an invariant;we prove these invariants through a mixture of theorem proving and SATsolving. The following example illustrates the type of lemma that we provewith SAT. This lemma is proven by telling ACL2 to automati
ally 
all theSAT-based proof engine on
e its simpli�
ation rules rea
h a �x point.(defthm sub-of-spe
-mask-t0



(implies(and(equiv-bvp8(in-ddt_miss_ordering_ex
eptions *t0* ins)(internal-st-udt_miss_ordering *t1* internal-state))(equiv-bvp8(in-flush_mask *t0* ins)(internal-st-flush_mask *t1* internal-state))(sub-of-spe
-mask-tile *t0* spe
-st internal-state)(sub-of-spe
-mask-tile *t1* spe
-st internal-state))(sub-of-spe
-mask-tile*t0*(update-spe
-st spe
-st internal-state ins)(update-internal-state internal-state ins))))5.2 Veri�
ation of an Arrived-Store Proto
olThe LSQ units also 
ommuni
ate to 
reate a mask of arrived stores; theseare used to generate ex
eptions, wake deferred loads, and dete
t 
omple-tion. Figure6 presents an overview of the arrived-store-mask proto
ol. Thisproto
ol is more 
omplex than the ex
eption proto
ol, be
ause tiles send in-formation to both the tile above and the tile below them. Also, sin
e thearrived store mask is 256 bits, the whole mask is never sent. Instead up tothree, nine-bit store signals are sent to ea
h neighboring tile, informing ea
hneighbor of all the new stores it has re
eived in the last 
y
le.We used the same methodology to verify the arrived-store-mask proto
olas we used to verify the ex
eption-mask proto
ol. We �rst de�ne a single-tiledesign that produ
es the store mask. This design is shown in Figure 7. Next,we prove the equivalen
e of the single-tile and multi-tile designs using thefollowing two theorems. Note that these theorems prove an equivalen
e overall tiles, whereas the ex
eption mask equivalen
e only dealt with tile zero.(defthm arrived-safety(implies(and (integerp tao)(<= 0 tao)(Tth-inputs-goodp tao input-list))
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Figure 6: An overview of the proto
ol for generating the mask of arrivedstores. Note that the tile inputs that are un
onne
ted are either groundedor known to always be low.
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hine that produ
es the mask of arrived stores.(submaskp8(out-arrived_masktile(Tth-internal-state tao input-list)(nth (- tao 3) input-list))(spe
-arrived_mask(Tth-spe
-state tao input-list)(nth tao input-list)))))(defthm arrived-liveness(implies(and (integerp tao)(<= 3 tao)(Tth-inputs-goodp tao input-list))(submaskp8(bv-or



8(expand-mask 8 256 (re
ent-flushes 3 tao tile input-list))(bv-or8(expand-mask 8 256 (re
ent-
ommits 3 tao tile input-list))(spe
-arrived_mask(Tth-spe
-state (- tao 3) input-list)(nth (- tao 3) input-list))))(out-arrived_masktile(Tth-internal-state tao input-list)(nth tao input-list)))))6 Con
lusionThe veri�
ation of an automati
ally generated 
ir
uit des
ription usuallyinvolves verifying the netlist post-synthesis. Through our ripple-
arry adderexample, we have shown how we 
an verify the 
orre
tness of the 
ir
uitgenerators dire
tly, thus obviating the need to verify the resultant 
ir
uitdes
riptions.To aid our veri�
ation e�ort, we have 
ombined the 
omplementary te
h-niques of theorem proving and SAT solving. We show the usefulness of this
ombination through the veri�
ation of a Verilog implementation of a 
om-muni
ation proto
ol used in the TRIPS pro
essor.An extension of our approa
h is to show how 
ir
uit generators 
an beused within the veri�
ation of the TRIPS pro
essor. Rather than partitionmemory into four pie
es, one 
ould design a TRIPS pro
essor with memorypartitioned into a parametrized number of pie
es. This type of veri�
ation �tswell into the modular nature of the TRIPS pro
essor design and show
asesthe advantages of the DE2 language. Furthermore, this veri�
ation e�ortwill allow us to explore the appli
ations and limitations of fully automatedveri�
ation te
hniques, like SAT, when used to verify large 
ir
uit generationdesigns.Moving beyond 
ir
uit generators, there are many other potential appli-
ations for the DE2 veri�
ation system. For example, we 
an use the DE2language to verify hardware optimization programs and non-fun
tional prop-erties. The 
exibility of the DE2 language and the ACL2 theorem provingsystem provides the opportunity to verify many types of appli
ations, many
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