Applications of the DE2 Language

Warren A. Hunt, Jr. and Erik Reeber
March 22, 2006

Abstract

We have developed a formal verification approach that permits the
mechanical verification of circuit generators and hardware optimiza-
tion procedures, as well as existing hardware designs. Our approach
is based on deeply embedding the DE2 HDL into the ACL2 logic [3];
we use the ACL2 theorem-proving system to verify the circuit gen-
erators. During circuit generation, a circuit generator may generate
circuits based on variety of non-functional criteria. For example, a
circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and
circuit topology.

In this paper, we show how we have applied the DE2 system to a
simple circuit generator—the n-bit ripple-carry adder. We then show
how we have applied the DE2 system to the verification of components
of the TRIPS microprocessor design.

1 Introduction

We have developed a hardware description language, DE2; which has a num-
ber of features that make it suitable for the verification of modern hardware
designs. DE2 has a simple semantics and includes capabilities for specify-
ing and verifying non-functional properties, circuit generators, and hardware
optimization programs.

Our verification system is based on the deep embedding of DE2 within
the ACL2 logic and theorem prover. Furthermore, we have built a fully
automatic SAT-based proof engine that can verify invariants of machines

designed in DE2. This SAT-based proof engine involves an extension to the
ACL2 theorem-proving system so that it can use external SAT solvers.

In this paper, we discuss related work in Section 2. We provide some
background on the ACL2 theorem prover, the DE2 language, and our veri-
fication system, in Section 3. Next, in Section 4, we show how to apply our
system to the verification of a ripple-carry adder. In Section 5, we show how
we apply our system to the verification of a communication protocol used in
the TRIPS processor.

2 Related Work

This work builds on our previous work with the DE2 language [3], as well
as our previous work with the verification of the FM9001 microprocessor
[8]. In our earlier work, we only employed theorem-proving techniques, but
our current effort also permits the use of SAT and BDD based techniques.
In addition, our current approach to verifying circuit generators permits a
circuit generator to make choices based on non-functional criteria. For exam-
ple, a circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and circuit
topology.

This work is similar in spirit to work by the functional language commu-
nity to generate regular circuits using functional programs. For instance, the
WIRED language has been used to improve performance of multipliers by
incorporating layout information into the design of circuit generators [1].

Many model-checkers, and other automated verification tools, verify FSM
properties automatically. UCLID, for example, uses SAT solvers to verify
high-level FSMs with uninterpreted function symbols [5]. Another example
is the FORTE tool, which has been used at Intel to verify components of
processor designs [2].

3 Background

3.1 The ACL2 Theorem Prover

ACL2 stands for A Computation Logic for Applicative Common Lisp. The
ACL2 language is a functional subset of Common Lisp. For a thorough
description of ACL2 see Kaufmann, Manolios, and Moore’s book [4].

(defun concatn (n a b)
(if (zp n)
b
(cons (car a)
(concatn (- n 1) (cdr a) b))))

(defun uandn (n a)
(if (zp mn)
t
(if (car a)
(uandn (- n 1) (cdr a))
nil)))

(defun bequiv (a b)
(if a b (not b)))

(defthm example-thm
(implies (and (not (zp x))
(not (zp y)))
(bequiv (uandn (+ x y) (concatn x a b))
(and (uandn x a) (uandn y b)))))

Figure 1: ACL2 Definitions and a Bit-Vector Concatenation Theorem

Figure 1 illustrates several ACL2 definitions. Here, function concatn
concatenates two bit vectors, uandn returns the conjunction of the bits in a
bit vector. The ACL2 function bequiv determines whether two ACL2 values
represent the same Boolean value. We also make use of the built-in ACL2
function (zp n), which returns nil if n is a positive integer and t otherwise.

The functions uandn and concatn are defined recursively. In order for
such definitional axioms to be added to the ACL2 theory, one must first prove
that the definition terminates for all inputs. In this case, the proof follows
from the fact that the function argument n decreases on every recursive call.

Figure 1 also illustrates an ACL2 theorem. This theorem states that
the unary-and of the concatenation of two bit vectors is equivalent to the
conjunction of the unary-and of each individual bit vector.

3.2 The DE2 Evaluator

The semantic evaluation of a DE2 design proceeds by binding actual (eval-
uated) parameters (both the inputs and the current state) to the formal
parameters of the module to be evaluated; this in turn causes the evaluation
of each submodule. This evaluation process is recursively repeated until a
primitive module is encountered. This recursive-descent/ascent part of the
evaluation can be thought of as performing all of the “wiring”; values are
“routed” to appropriate modules and results are collected and passed along
to other modules or become primary outputs. Finally, to evaluate a primi-
tive, a specific primitive evaluator is then called after binding the necessary
arguments. This set of definitions is composed of four (two groups of) func-
tions (given below), and these functions contain an argument that permits
different primitive evaluators to be used.

The following four functions completely define the evaluation of a netlist
of modules, no matter which type of primitive evaluation is specified. The
functions presented in this section constitute the entire definition of the sim-
ulator for the DE2 language. This definition is small enough to allow us to
reason with it mechanically, yet it is rich enough to permit the definition of
a variety of evaluators. The se function evaluates a module and returns its
outputs as a function of its inputs and its internal state. The de function
evaluates a module and returns its next state; this state will be structurally
identical to the module’s current state, but with updated values. Both se
and de have sibling functions, se-occ and de-occ respectively, that iterate
through each sub-module referenced in the body of a module definition. We

present the se and de evaluator functions to make clear the importance we
place on making the definition compact.

The se and de functions both have a flg argument that permits the
selection of a specific primitive evaluator. The fn argument identifies the
name of a module to evaluate; its definition should be found in the netlist.
The ins and st arguments provide the primary inputs and the current state
of the fn module. The params argument allows for parametrized modules;
that is, it is possible to define modules with wire and state sizes that are
determined by this parameter. The env argument permits configuration or
test information to be passed deep into the evaluation process.

The se-occ function evaluates each occurrence and returns an environ-
ment that includes values for all internal signals. The se function returns
a list of outputs by filtering the desired outputs from this environment. To
compute the outputs as functions of the inputs, only a single pass is required.

(defun se (flg fn params ins st env netlist)
(if (consp fn)
;3 Primitive Evaluation.
(cdr (flg-eval-lambda-expr flg fn params ins env))
;3 Evaluate submodules.
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let-names
(m-params m-ins m-outs m-sts m-occs)
(m-body module)

(let*
((new-env (add-pairlist m-params params nil))
(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)
new-env))
(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)
new-env))
(new-netlist (delete-assoc-eq-netlist fn netlist)))
(assoc-eq-list-vals
(strip-cars m-outs)
(se-occ flg m-occs new-env new-netlist))))))))

(defun se-occ (flg occs env netlist)

(if (atom occs) ;; Any more occurrences?
env

;3 Evaluate specific occurrence.
(let-names
(o-name o-outs o-call o-ins)
(car occs)
(se-occ flg (cdr occs)

(add-pairlist

(o-outs-names o-outs)

(flg-eval-list

flg (parse-output-list
o-outs
(se flg (o-call-fn o-call)
(flg-eval-list flg
(o-call-params o-call)
env)
o-ins o-name env netlist))
env)
env)
netlist))))

Similarly, the functions de and de-occ perform the next-state compu-
tation for a module’s evaluation; given values for the primary inputs and a
structured state argument, these two functions compute the next state of
a specified module. This result state is structured isomorphically to its in-
put (internal) state. Note that the definition of de contains a reference to
the function se-occ; this reference computes the value of all internal signals
for the module whose next state is being computed. This call to se-occ
represents the first of two passes through a module description when DE is
computing the next state.

(defun de (flg fn params ins st env netlist)
(if (consp fn)
(car (flg-eval-lambda-expr flg fn params ins env))
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let-names
(m-params m-ins m-sts m-occs) (m-body module)
(et
((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)
new-env))

(new-env (add-pairlist m-sts
(flg-eval-expr flg st env)
new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist))

(new-env (se-occ flg m-occs new-env new-netlist)))

(assoc-eq-list-vals
m-sts
(de-occ flg m-occs new-env new-netlist))))))))

(defun de-occ (flg occs env netlist)
(if (atom occs)
env
(let-names
(o-name o-call o-ins) (car occs)
(de-occ flg (cdr occs)
(cons
(cons
o-name
(de flg (o-call-fn o-call)
(flg-eval-list flg (o-call-params o-call) env)
o-ins o-name env netlist))
env)
netlist))))

This completes the entire definition of the DE2 evaluation semantics.
This clique of functions is used for all different evaluators; the specific kind
of evaluation is determined by the flg input. We have proved a number of
lemmas that help to automate the analysis of DE2 modules. These lemmas
allow us to hierarchically verify FSMs represented as DE2 modules. We have
also defined simple functions that use de and se to simulate a DE2 design

through any number of cycles.

An important aspect of this semantics is its brevity. Furthermore, since
we specify our semantics in the formal language of the ACL2 theorem prover,
we can mechanically and hierarchically verify properties about any system

defined using the DE2 language.

Verilog English Spec, C Model

Design = 7 and Test Suite
_ Testing & ;
Automatic Inspection . Manual
Translation " Translation
Optimizations DE y
& Rg_ductlons @ Design ACL2 Spec
(verified)
Verified /\ Guided
Translation SAT-Based . Proof
Decision \/
Procedure s
ACL2 Model Simplified
Invariants

Figure 2: An overview of the DE2 verification system

3.3 The Verification System

Having an evaluator for DE2 written in ACL2 enables many forms of ver-
ification. In Figure 2, we illustrate our verification system, which is built
around the DE2 language.

We typically use the DE2 verification system to verify Verilog designs.
These designs are denoted in the upper left of Figure 2. Currently, our subset
of Verilog includes arrays of wires (bit vectors), instantiations of modules,
assignment statements, and some basic primitives (e.g. &, ?: and |). We
also allow the instantiation of memory (array) modules and vendor-defined
primitives.

We have built a translator that translates a Verilog description into an
equivalent DE2 description. Our translator parses the Verilog source text
into a Lisp expression, and then an ACL2 program converts this Lisp expres-
sion into a DE2 description.

We have also built a translator that converts a DE2 netlist into a cycle-
accurate ACL2 model. This translator also provides an ACL2 proof that
the DE2 description is equivalent to the mechanical produced ACL2 model.
The process of translating a DE2 description into its corresponding ACL2
model includes a partial cone-of-influence reduction; an ACL2 function is
created for each module’s output and parts of the initial design which are
irrelevant to that output are removed. The DE2 to ACL2 translator allows

us to enjoy both the advantages of a shallow embedding (e.g. straightforward
verification) and the advantages of a deep embedding (e.g. syntax resembling
Verilog).

We start with an informal specification of the design in the form of English
documents, charts, graphs, C-models, and test code which is represented in
the upper right of Figure 2. This information is converted manually into a
formal ACL2 specification. Using the ACL2 theorem prover, these specifica-
tions are simplified into a number of invariants and equivalence properties.
If these properties are simple enough to be proven by our SAT-based deci-
sion procedure, we prove them automatically; otherwise, we simplify such
conjectures using the ACL2 theorem prover until we can successfully appeal
to some automated decision procedure.

We also use our system to verify sets of DE2 descriptions. This is ac-
complished by writing ACL2 functions that generate DE2 descriptions, and
then proving that these functions always produce circuits that satisfy their
ACL2 specifications.

Since DE2 descriptions are represented as ACL2 constants, functions that
transform DE2 descriptions can be verified using the ACL2 theorem prover.
By converting from Verilog to DE2 and from DE2 to back into Verilog, we
can use DE2 as an intermediate language to perform verified optimizations.
Another use of this feature involves performing reductions or optimizations
on DE2 specifications prior to verification. For example, one can use a
decision procedure to determine that two DE2 circuits are equivalent and
then use this fact to avoid verifying properties of a less cleanly structured
description.

We can also build static analysis tools, such as extended type checkers, in
DE2 by using annotations. In DE2, annotations are first-class objects (i.e.
annotations are not embedded in comments). Such type checkers, since they
are written in ACL2, can be analyzed and can also assist in the verification of
DE2 descriptions. Furthermore, annotations can be used to embed informa-
tion into a DE2 description to assist with synthesis or other post-processing
tools.

4 Ripple-Carry Adder Generator Verification

In this section we present a definition of a simple parametrized ripple-carry
adder to show how the DE2 verification system is applied to verify circuit

generators. The following two ACL2 functions generate the DE2 definition
of the top-level module of the ripple-carry adder:

(defun generate-ripple-occs (n)
(if (zp n)
nil
(append (generate-ripple-occs (1- n))
“((, (de-make-n-name ’carry n)

((q ,(1- n) ,(1- n)) (carry ,n ,n))
(full-adder)
((gx ,(1-n) ,(1-n)) (gy ,(1- n) ,(1- n))
(g carry ,(1- n) ,(1- n))))))))

;3 Make an n-bit ripple-carry adder
(defun generate-ripple-carry (n)
¢(, (de-make-n-name ’ripple-carry n)
(type module)
(params)
(outs (q ,n) (c_out 1))
(ins (x ,n) (y ,n) (c_in 1))
(sts)
(wires (carry ,(1+ n)))
(occs
(carry_0 ((carry 0 0)) (bufn 1) ((g c_in 0 0)))
, (append (generate-ripple-occs n)
‘((carry_out ((c_out 0 0))
(bufn 1)
((g carry ,n ,n))))))))

The function generate-ripple-occs creates the occurrence list by recur-
sively laying down one full-adder for each output bit. The function
generate-ripple-carry then uses this occurrence list to create the top-
level ripple-carry adder definition. For example, the following is the four bit
ripple-carry adder produced by (generate-ripple-carry 4):

(RIPPLE-CARRY_4

(TYPE MODULE)

(PARAMS)

(0UTS (Q 4) (C_OUT 1))
(INS (X 4) (Y 4) (C_IN 1))

(STS)
(WIRES (CARRY 5))
(0CCS (CARRY_O ((CARRY 0 0))
(BUFN 1)
((G C_IN 0 0)))
(CARRY_1 ((Q 0 0) (CARRY 1 1))
(FULL-ADDER)
((GX00) (GY
(CARRY_2 ((Q 1 1) (CARRY
(FULL-ADDER)
((GXxX11) (Y
(CARRY_3 ((Q 2 2) (CARRY
(FULL-ADDER)
((GX22) (GY
(CARRY_4 ((Q 3 3) (CARRY
(FULL-ADDER)
((GX33) (GY 3 3) (G CARRY 3 3)))
(CARRY_OUT ((C_0OUT 0 0))
(BUFN 1)
((G CARRY 4 4)))))

(@]

0) (G CARRY 0 0)))
2))

N

-

1) (G CARRY 1 1)))
3))

w

N

2) (G CARRY 2 2)))
4))

N

We next define a ripple-carry adder in ACL2 which follows the same
structure as the one defined in DE2. The following is the top-level definition
of the ACL2 ripple-carry adder and the main theorem we prove about it:

(defun acl2-ripple-adder (n x y c_in)
(if (zp n)
(1ist nil (get-sublist c_in 0 0))
(let* ((adder_1b
(acl2-full-adder (get-sublist x 0 0)
(get-sublist y 0 0)
(get-sublist c_in 0 0)))
(sub_adder (acl2-ripple-adder (1- n)
(nth-cdr 1 x)
(nth-cdr 1 y)
(cadr adder_1b))))

(1ist (append-n 1 (car adder_1b) (car sub_adder))
(append-n 1 c_in (cadr sub_adder))))))

(defthm acl2-ripple-adder-adds
(implies
(and (equal n (len a))
(equal (len b) (len a)))
(equal (v-to-nat
(car (acl2-ripple-adder n a b
(1ist (bool-fix c_in)))))
(mod-2-n (+ (if c_in 1 0)
(v-to-nat a)
(v-to-nat b))
n))))

The above theorem states that the ACL2 functional definition of the ripple-

carry adder implements modular addition, as defined by ACL2’s addition

axioms. We prove this theorem by making use of ACL2’s induction and

simplification proof engines, as well as the library of lemmas that has been

created to assist ACL2 users in the verification of arithmetic properties.
Next we verify the theorem below:

(defthm generate-ripple-se-rewrite
(implies
(and (not (zp mn))
(generate-ripple-carry-& n netlist))
(equal
(se ’bvev
(de-make-n-name ’ripple-carry n)
params ins st env netlist)
(let ((x (get-value ’bvev ins env))
(y (get-value ’bvev (cdr ins) env))
(c_in (get-sublist (get-value ’bvev
(cddr ins)
env)
0
0)))
(1ist (car (acl2-ripple-adder n x y c_in))
(get-sublist (cadr (acl2-ripple-adder n
X
¥
c_in))
n

n))))))

This theorem states that, given certain conditions, the DE2 ripple-carry
adder produces the same result as the ACL2 ripple-carry adder. The hy-
potheses of the theorem are that the number of bits is a positive inte-
ger and that the ripple-carry adder modules occurs in the given netlist,
along with its submodules. This theorem is proven using ACL2’s induc-
tion proof engine, which we use to show that each occurrence produced by a
recursive step of generate-ripple-occs corresponds to a recursive step in
acl2-ripple-adder.

Once we have verified generate-ripple-se-rewrite, we can prove the
final theorem below:

(defthm generate-ripple-se-adds
(implies
(and (not (zp mn))
(generate-ripple-carry-& n netlist)
(equal (len (get-value ’bvev ins env)) n)
(equal (len (get-value ’bvev (cdr ins) env)) n))
(equal
(v-to-nat (car (se ’bvev
(de-make-n-name ’ripple-carry n)
params ins st env netlist)))
(let ((x (get-value ’bvev ins env))
(y (get-value ’bvev (cdr ins) env))
(c_in (get-sublist (get-value ’bvev (cddr ins) env)
0
0)))
(mod-2-n (+ (if (car c_in) 1 0)
(v-to-nat x)
(v-to-nat y))
n)))))

This theorem states that if the n-bit, ripple-carry adder module is in the
netlist, along with its submodules, and the first two inputs are n bit, bit
vectors, then the natural number representation of the output of the ripple-
carry adder is equal to the modular addition of its inputs.

Note we proved this theorem entirely using the standard ACL2 theorem
proving techniques, without the use of SAT solvers or BDDs. That is because
we completed this proof before our SAT-based proof engine was fully in
place. In the next section we will show how we are verifying next-generation
hardware using a mixture of SAT-solving and theorem proving.

5 Verifying TRIPS Processor Components

We are using our verification system to verify components of the TRIPS
processor. The TRIPS processor is a prototype of a next-generation processor
that has been designed at the University of Texas [7] and being built by IBM.
One novel aspect of the TRIPS processor is that its memory is divided into
four pieces; each piece has its own memory control tile, with its own cache
and Load Store Queue (LSQ). We plan to verify the LSQ design, based on
the design described in Sethumadhavan et. al., [6], using our verification
system. In this section, we present our verification of a part of the LSQ that
manages communication with other LSQs.

We first use our verification system, mentioned in Section 3.3, to “com-
pile” the Verilog design that implements the LSQ communication protocol
into a DE2 module. We then used our automatic translation engine to com-
pile the DE2 description into an ACL2 model and prove their equivalence
relative to the DE2 semantics.

5.1 Verification of the Exception Protocol

One reason that the LSQ units must communicate is to conglomerate ex-
ceptions generated in various tiles into a single mask. Figure 3 presents an
overview of the protocol that conglomerates exceptions. Each tile receives a
four-bit input denoting the exception generated this cycle—a three-bit ad-
dress plus a one-bit enable signal. The exceptions are decoded into an eight-
bit mask, that each tile passes to the tile above it. Exceptions are removed
when the instruction that generated the exception is flushed. The schematic
of the design that implements this protocol is shown in Figure 4.

To verify the multi-tile design in Figure 3, we prove that it is equivalent
to the single-tile design in Figure 5. This equivalence is broken into the
following two properties:

(defthm exception-safety
(implies
(and (integerp tao)
(<= 0 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(out-udt_miss_ordering_exceptions

Multi-Tile Design

Flush_mask Exception_mask

Tile O UDT_EX_Mas

@ Flush_mask

TO_Except Local_Except

DDT_EX_Mas

REG <

Tile 1 UDT_EX_Mas

®————=| Flush_mask

T1_Except Local_Except

DDT_EX_Mas

REG <

Tile 2 UDT_EX_Mas

®————= Flush_mask

T2_Except Local_Except

DDT_EX_Mas

REG <

Tile3 UDT_EX_Mas

Flush_mask

T3_Except Local_Except

DDT_EX_Mas

KN

Figure 3: An overview of the four tile exception protocol design.

Single Tile Design

UDT_EX_mask

8 8
Flush_mask
N
R O
R
E R
G L A E
A g G
4 8 A
Local_Except 7
o Evoecone
(e]
R
8

DDT EX mask
Figure 4: A look into the internals of a tile within the exception protocol.

Specification Machine

Flush_mask | e—
- NOT
8
Spec_EX_mask
4 8 =
TO_Except
— EN-DECODE
. 4 8 A R
T1_Except E
—= EN-DECODE N G
(o] D
R
4 8 A

T2_Except EN-DECODE
* 4 8
T3_Except” | L| EN-DECODE

-

" This input has been modified: an exception is disabled if it occurs in an
insturction that has already been flushed.

Figure 5: A simplified machine that produces the exception mask.

*t0x

(Tth-internal-state tao input-list)
(nth tao input-1list))
(spec-miss_ordering

(Tth-spec-state tao input-list)
(nth tao input-list)))))

(defthm exception-liveness

(implies
(and (integerp tao)
(<= 3 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(bv-or
8

(recent-flushes 3 tao *t0* input-list)
(spec-miss_ordering
(Tth-spec-state (- tao 3) input-list)
(nth (- tao 3) input-1list)))
(out-udt_miss_ordering_exceptions
*tOx
(Tth-internal-state tao input-list)
(nth tao input-1list)))))

The first property proves that, for any cycle number tao, assuming good
inputs, the exception mask generated by tile zero is a subset of the exception
mask generated by the single-tile machine. The second property proves that
the exception mask generated by the single tile machine is a subset of the
combination of the exception mask generated by tile zero and the last three
flush masks. In effect, these properties prove that our multi-tile exception
design only produces exceptions produced by the specification and eventually
produces all exceptions produced by the specification.

We prove these properties by reducing them to the proof of an invariant;
we prove these invariants through a mixture of theorem proving and SAT
solving. The following example illustrates the type of lemma that we prove
with SAT. This lemma is proven by telling ACL2 to automatically call the
SAT-based proof engine once its simplification rules reach a fix point.

(defthm sub-of-spec-mask-t0

(implies
(and
(equiv-bvp

8

(in-ddt_miss_ordering_exceptions *tO* ins)

(internal-st-udt_miss_ordering *tl* internal-state))
(equiv-bvp
8

(in-flush_mask *tO* ins)

(internal-st-flush_mask *tl* internal-state))
(sub-of-spec-mask-tile *t0* spec-st internal-state)
(sub-of-spec-mask-tile *tl* spec-st internal-state))

(sub-of-spec-mask-tile

tOx

(update-spec-st spec-st internal-state ins)
(update-internal-state internal-state ins))))

5.2 Verification of an Arrived-Store Protocol

The LSQ units also communicate to create a mask of arrived stores; these
are used to generate exceptions, wake deferred loads, and detect comple-
tion. Figure6 presents an overview of the arrived-store-mask protocol. This
protocol is more complex than the exception protocol, because tiles send in-
formation to both the tile above and the tile below them. Also, since the
arrived store mask is 256 bits, the whole mask is never sent. Instead up to
three, nine-bit store signals are sent to each neighboring tile, informing each
neighbor of all the new stores it has received in the last cycle.

We used the same methodology to verify the arrived-store-mask protocol
as we used to verify the exception-mask protocol. We first define a single-tile
design that produces the store mask. This design is shown in Figure 7. Next,
we prove the equivalence of the single-tile and multi-tile designs using the
following two theorems. Note that these theorems prove an equivalence over
all tiles, whereas the exception mask equivalence only dealt with tile zero.

(defthm arrived-safety

(implies
(and (integerp tao)
(<= 0 tao)

(Tth-inputs-goodp tao input-list))

Store Mask Design

. ccc ccc
Teo 993 93§
N B O N B O
® Flush_mask [M o lolo
@ —————=|commit_mask -~ ~ 7 55858
| TO_Store_mask
TO_Store Store_mas|
— Local_store
599 88%8
333 3598
NEe N Ee
28 555
[rReG <
. ccc ccc
Tel 8933 3939§9
N = O N B O
® Flush_mask [oo o
@ —————=|Commit_mask - ~ ° 555
| T1_Store_mask
T1_Store Store_mas
- Local_store
$5% 989
333 598
NEe dES
ggg 555
| rec < b1
y ccc ccc
Tile 2 g g o g 0 Qg
SH3 SA3
® Flush_mask [oo o
@ = Commit_mask - > > 555
| T2_Store_mask
T2_Store Store_mas
- —— Local_store
[sNeNv] [sReNle]
58§ 939
I \S |':' |5|
ggg 555
LRee 4 N |
. ccc ccc
Tez 993 98§
N = O N B O
Flush_mask 1 1_ 12, oo o
p = =3 € c ¢
Commit_mask Il T3_Store_mask
T3_Store Store_mas
T Local_store
[sleN] [sRoNv]
SSg 85§
g \S |':' |S
ggg 555

Figure 6: An overview of the protocol for generating the mask of arrived
stores. Note that the tile inputs that are unconnected are either grounded
or known to always be low.

Store Mask Specification Machine

Flush_mask 8
Commit_mask NOR
256
256 Store_mask
9 256 =
TO_Store
- — EN-DECODE
. 9 256 A R
T1_Store E
—= EN-DECODE N G
[¢] D
R
9 256 A

T2 Store EN-DECODE
. 9 256
T3 Store | /| EN-DECODE

r

" This input has been modified: a store is removed if it occurs in an
insturction that has already been flushed.

Figure 7: A simplified machine that produces the mask of arrived stores.

(submaskp
8
(out-arrived_mask
tile
(Tth-internal-state tao input-list)
(nth (- tao 3) input-list))
(spec-arrived_mask
(Tth-spec-state tao input-list)
(nth tao input-list)))))

(defthm arrived-liveness
(implies
(and (integerp tao)
(<= 3 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(bv-or

8
(expand-mask 8 256 (recent-flushes 3 tao tile input-1list))
(bv-or
8
(expand-mask 8 256 (recent-commits 3 tao tile input-1list))
(spec-arrived_mask
(Tth-spec-state (- tao 3) input-list)
(nth (- tao 3) input-1list))))
(out-arrived_mask
tile
(Tth-internal-state tao input-list)
(nth tao input-list)))))

6 Conclusion

The verification of an automatically generated circuit description usually
involves verifying the netlist post-synthesis. Through our ripple-carry adder
example, we have shown how we can verify the correctness of the circuit
generators directly, thus obviating the need to verify the resultant circuit
descriptions.

To aid our verification effort, we have combined the complementary tech-
niques of theorem proving and SAT solving. We show the usefulness of this
combination through the verification of a Verilog implementation of a com-
munication protocol used in the TRIPS processor.

An extension of our approach is to show how circuit generators can be
used within the verification of the TRIPS processor. Rather than partition
memory into four pieces, one could design a TRIPS processor with memory
partitioned into a parametrized number of pieces. This type of verification fits
well into the modular nature of the TRIPS processor design and showcases
the advantages of the DE2 language. Furthermore, this verification effort
will allow us to explore the applications and limitations of fully automated
verification techniques, like SAT, when used to verify large circuit generation
designs.

Moving beyond circuit generators, there are many other potential appli-
cations for the DE2 verification system. For example, we can use the DE2
language to verify hardware optimization programs and non-functional prop-
erties. The flexibility of the DE2 language and the ACL2 theorem proving
system provides the opportunity to verify many types of applications, many

of which are rarely, if ever, been formally verified.

References

1]

7]

8]

Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-Aware
Circuit Design. In Correct Hardware Design and Verification Methods
(CHARME 2005), volume 3725 of Lecture Notes in Computer Science,
pages 5-19. Springer, 2005.

Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark Aagaard,
and Thomas F. Melham. Practical Formal Verification in Microprocessor
Design. IEEE Design € Test of Computers, 18(4):16-25, 2001.

Warren A. Hunt Jr. and Erik Reeber. Formalization of the DE2 Lan-
guage. In Correct Hardware Design and Verification Methods (CHARME
2005), volume 3725 of Lecture Notes in Computer Science, pages 20-34.
Springer, 2005.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer
Aided Reasoning: An Approach. Kluwer Academic, 2000.

Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of
advanced out-of-order microprocessors. In Computer Aided Verification,
15th International Conference (CAV 2003), volume 2725 of Lecture Notes
in Computer Science, pages 341-353. Springer, 2003.

Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.
Moore, and Stephen W. Keckler. Scalable hardware memory disambigua-
tion for high ilp processors. In Proceedings of the 36th Annual Inter-
national Symposium on Microarchitecture (MICRO 36), pages 399-410.
ACM/IEEE, 2003.

Tera-op Reliable Intelligently adaptive Processing System,
www.cs.utexas.edu/users/cart /trips.

Warren A. Hunt, Jr. and Bishop C. Brock. A Formal HDL and its Use in
the FM9001 Verification. In Mechanized Reasoning and Hardware Design,
pages 35-47, Upper Saddle River, NJ, USA | 1992. Prentice-Hall, Inc.

