
Testing the FM���� Microprocessor

Kenneth L� Albin� Bishop C� Brock�

Warren A� Hunt� Jr�� Lawrence M� Smith

Technical Report �� January �� ����

Computational Logic� Inc�

���� West Sixth Street� Suite ���

Austin� Texas �	��
�����

TEL
 �� ��� 
�� ����

FAX
 �� ��� 
�� ����

EMAIL
 hunt�cli�com

This work was supported in part at Computational Logic� Inc� and by the
Defense Advanced Research Projects Agency� ARPA Orders ���� and ����� The
views and conclusions contained in this document are those of the author	s
 and
should not be interpreted as representing the o�cial policies� either expressed or
implied� of Computational Logic� Inc�

Copyright c� ���� Computational Logic� Inc�



CLI Technical Report �� �

Abstract

The FM���� is a general�purpose 
��bit microprocessor that was fabricated for
Computational Logic� Inc�� by LSI Logic� Inc�� as an ASIC� Prior to fabrication�
the FM���� netlist was formally and mechanically proved to implement its user�
level speci�cation by Brock and Hunt using the Nqthm theorem prover� In this
report� we document our post�fabrication testing of the physical device� The testing
included both executing FM���� machine code and also low�level testing with a
Tektronix LV��� chip tester� To date� all tests have con�rmed that the FM����
behaves as formally speci�ed�

� Introduction

The FM���� is a general purpose CMOS� 
��bit microprocessor that was fabri�
cated for us by LSI Logic in ����� Prior to fabrication� the netlist design of the
FM���� that we later supplied to LSI Logic was formally proven� using the mechan�
ical theorem prover Nqthm ��� ��� to implement its user�level� i�e�� machine�code
level� speci�cation� 	See the report �The FM���� Microprocessor Proof� ��� for
the details of this formal proof e�ort�
 In the present report� we describe a se�
ries of post�fabrication physical tests that have increased our con�dence that the
manufactured device does indeed meet its netlist speci�cation�

One purpose of testing the fabricated devices� of which we received �fty� was
to insure that these integrated circuits were free of physical defects� Testing is
necessary because even given a logically perfect netlist� one may encounter prob�
lems with the physical manufacturing process� e�g�� dirt� broken wires� and cracked
packages�

A second reason for testing was to validate our assumptions that we made
about the LSI Logic primitives when we formalized the behavior of the primitive
elements used in making the FM����� Our lowest level formal model was one
that de�ned such LSI Logic primitives as an AND gate and a one�bit latch� Even
though LSI Logic provides a databook ���� of gate�level primitives� their actual
gate array devices are composed of columns of N�type and P�type transistors� It
was important to us to discover whether the translation process from our gate�
level model to LSI Logic�s Network Description Language 	NDL
 and then on to
transistors all worked as we expected�

Finally� we wanted to validate our e�ort in producing a veri�ed hardware and
software computing platform� The CLI �short stack� ���� includes the FM����
microprocessor as a base� upon which the Piton assembler ��
� ���� the Micro�
Gypsy compiler ���� ��� �
�� and the Micro�Nqthm compiler ��� have been proven
to operate correctly� We �nd that our having actually completed this veri�cation
exercise to be compelling evidence ���� that we do not have to settle for hardware
and software validated only with the conventional test�oriented approaches�

Upon �rst receiving the fabricated FM���� integrated circuits we evaluated



CLI Technical Report �� �

Micro-Gypsy program

Piton assembly language

FM9001 machine code

Mask pattern

Translations

Manufacturing
Process

FM9001 die

Chip Tester

Proved

Mappings

Unmodeled

Testing

LSI Logic’s NDL netlist

Dual-Eval netlist

Figure �� Proved and Tested Portions of the CLI Stack

the timing of the various control signals by stimulating the FM���� with a �xed
instruction� Using an oscilloscope� we observed the low�level timing of FM����
control signals� See Section 
� Next we built a single�board computer which con�
tained an FM����� ROM� RAM� a USART� and an interface to a logic analyzer�
through which we were able to monitor all FM���� signals� Using this single�board
computer we have run a number of pieces of software� See Section �� To obtain
pin�level control and testing of the FM����� we also connected the FM���� to
a Tektronix LV��� ����� which is an industrial �stand�alone veri�cation tester for
ASICs�� See Section �� Some additional testing of the FM���� has been performed
at Indiana University at Bloomington� See Section ��

Testing is an important component of our CLI stack� It provides assurance that
our formalization of the netlist of the FM���� 	in the DUAL�EVAL formal hardware
description language���
 is a good clock�cycle by clock�cycle model of the operation
of the FM����� Testing is always required because the manufacturing process can
introduce physical �aws� The testing we have performed here is primarily aimed
at checking the translation process from DUAL�EVAL netlists into LSI Logic�s design
environment� These various layers are shown in Figure ��

The physical act of testing is dependent upon how we physically access the
device under test� that is� how we supply signals to and read results from the
device� Therefore� as we discuss the testing below� we �rst identify the physical
test jig used because the nature of the jig determines the kind of tests we can run



CLI Technical Report �� 


and the kinds of measurements we can make�

� Interacting with LSI Logic

The very �rst physical testing of fabricated FM����s was actually performed by
LSI Logic as part of its �contract� with the customer� That contract stipulates
that the customer must provide both a netlist and also some means of testing the
result of fabricating the netlist� The test information we provided included both
inputs� called �test vectors� and also some simulation control language statements�
which were used to feed the test vectors both to LSI Logic�s simulator and to its
test equipment� The results of the physical testing of the fabricated device must
match the results predicated by running those same tests on LSI Logic�s software
simulator� LSI Logic only delivers parts for which the supplied physical tests yield
results identical to those predicted by LSI Logic�s simulator�

The test vectors provided to LSI Logic were of several varieties� functional�
stuck�at�fault� RAM�speci�c� and parametric� Initially� we concentrated on pro�
ducing test vectors that would reveal manufacturing defects� On the �rst occasion
that we attempted to transfer the entire FM���� design to LSI Logic for man�
ufacture� we had no �functional� test vectors� LSI Logic was appalled because
the typical ASIC design �ow was to specify a netlist along with a series of test
vectors and their expected results� The post�fabrication test vectors that we had
created were usually the last thing produced by designers� However� in our case�
the post�fabrication stuck�at tests were the �rst set of test vectors we produced�
because we did not feel there was a need for functional test vectors� That is� our
veri�cation approach suggested to us that our netlist design was logically correct�
but LSI Logic insisted that we provide functional test vectors�

We actually produced the test vectors using our DUAL�EVAL simulator and a
parallel�fault simulator we developed� We produced test vectors that satis�ed our
fault simulator before we translated both the netlist and the test vectors into a LSI
Logic compatible format� Our DUAL�EVAL hardware description language ��� �� was
designed in such a way that it was extremely simple to translate designs into the
NDL� In fact� NDL was based upon TEGAS� a simulation control language that
Bishop Brock helped develop� To validate our translation process� we executed test
vectors on our DUAL�EVAL simulator and on LSI Logic�s simulator� and compared
the results on thousands of test vectors for tens of thousands of clock cycles�

Finally� before we proceed to describe the physical testing that we performed�
it is perhaps worth noting that it is also straightforward to translate DUAL�EVAL

netlists into VHDL����� and we have in fact also� post�fabrication� simulated a
VHDL version of the FM���� netlist under the Vantage VHDL simulator� using
LSI�Logic�supplied VHDL models of LSI Logic�s primitives�



CLI Technical Report �� �

� Signal Timing Validation

The �rst physical test jig we built allowed us only to program the databus with
resistors� See Figure � for a picture of this jig� That is� what the processor read for
every data access was set by 
� resistors connected either to �� V 	logic true
 or to
ground 	logic false
� This allowed a single instruction to be repetitively executed
so we could carefully observe the timing of signals being generated by the processor
using an oscilloscope� In addition� we connected a series of LEDs to the address
bus so we could observe the changing of the address bus� For simple programs�
the address bus could be observed to be counting up in binary� as the program
counter was incremented after each instruction� In addition we had multiple clock
drivers on this board to permit the clock rate to be changed between ten� twenty�
and twenty��ve megahertz� This board also contained �buttons� so we could reset
and hold the processor�

Through the use of di�erent loads on the output signals to the processor we
observed the rise and fall times of the various control and data signals emanating
from the processor� This was done by changing the amount of resistance and
capacitance on various processor signals and observing the result on an oscilloscope�
This kind of testing is performed principally to discover the analog behavior of the
pad drivers� Further� measurements were made to �characterize� the relationships
between the control signals that the processor generates and the externally supplied
clock� In e�ect� we were trying to insure that the processor exhibited the very low�
level analog behavior predicted by the LSI Logic simulator� As far as we could tell�
the processor satis�ed the expected behavior�

After validating the basic analog behavior of the signal pins of the FM����� we
constructed a single�board computer� This single board computer is a wire�wrap
board with pre�loaded pins upon which we put the following components�

� � FM���� microprocessor

� � 
�x� byte�wide static RAMs

� � 
�Kx� byte�wide EPROMs

� � National Semiconductor ����� USART

� � RS�
� signal level interface

� � PALs

� 
 clocks

� an � megahertz clock for the USART

� a �� megahertz clock for the FM����

� a �� megahertz clock for determining memory delay



CLI Technical Report �� �

Figure �� The Analog Signal Testing Jig



CLI Technical Report �� �

FM9001

Serial
Connector

RAM

EPROM

UART

Test Connectors

clk

clk clk

control

Figure 
� Pictorial Diagram of Single�Board Computer

The board is connected to a �� volt source to supply power to the logic elements
and also a ��� volt source to supply power to the RS�
� interface� Some of these
major pieces are shown in the pictorial diagram Figure 
�

In addition this board contains two large connectors whose pins are connected
to all the FM���� data and control signals� We use these connectors to interface
the single�board computer to a Tektronix DAS ���� Digital Analysis System� a
typical logic analyzer�

The EPROM 	ROM
 contains an FM���� monitor program that permits other
FM���� machine code programs to be loaded over the serial interface into the
RAM from a controlling workstation� which can been seen in Figure �� A picture
of a part of the single�board computer can be found in Figure �� After a program
has been loaded into RAM� the ROM monitor program can then be instructed
to �jump� to the loaded code as a subroutine� Upon completion of a subroutine
execution� control is returned to the ROM monitor program� and then the contents
of the register �le and the memory may be determined with suitable commands to
the ROM�based program�

At any time� the signal values on the FM���� microprocessor may be read every
clock cycle by the attached logic analyzer� This testing is nonintrusive� That is�
the logic analyzer merely �listens� to all the FM���� signals� We checked that
various programs caused the correct pin�level behavior on the FM���� by running
the programs using the monitor control program and simultaneously recording the



CLI Technical Report �� �

create test,

execute spec,

compare results

FM9001
Single-Board Computer

Logic Analyzer

Serial Linemonitor
in ROM

GPIB

snapshots

test case

Workstation

Figure �� Single Board Testing Environment



CLI Technical Report �� �

signal values for all FM���� signals� After accumulating this data with the logic
analyzer� the identical program was loaded into our DUAL�EVAL based simulator and
the same pin�level signal values were collected� We then compared the predicted
pin�level behavior with the observed pin�level behavior�

� The FM���� Single�Board Computer

Below is an abbreviated example of the information recorded by the logic analyzer
during the execution of a single FM���� instruction� a move instruction�

�������c �������� w�d fetch�

�������d ffffffff r�� fetch�

�������d ��e�fc�� rs� fetch�

�������d ��e�fc�� rs� fetch�

�������d ��e�fc�� rs� fetch�

�������d ��e�fc�� rs� fetch�

�������d ��e�fc�� rsd fetch�

�������d ��e�fc�� rsd fetch�

�������d fffffdfa r�d decode

�������d ffffffff r�� rega

�������d ffffffff r�� write�

�������e �������� w�� write�

�������e �������� ws� write�

�������e �������� ws� write�

�������e �������� ws� write�

�������e �������� ws� write�

�������e �������� wsd write�

�������e �������� wsd write�

The columns� in order� indicate the contents of the address bus� data bus�
read�write�strobe signals� and the decoded internal major control state 	microin�
struction
� Each of these samples were taken during consecutive clock cycles� These
values are actually read as binary values of individual signal lines� The display seen
above has been �formatted� into hexadecimal numbers� symbols and state names�
This formatting is part of the programming done to the DAS ���� so as to identify
logic�analyzer inputs with FM���� signal lines�

A number of programs were loaded into the RAM and executed� This testing
was not particularly complete because the DAS ���� had small bu�ers permitting
us only to record ��� clock cycles of signal information per test� After this informa�
tion was gathered� it was then copied to the workstation so that we could compare
it with the values predicted by the DUAL�EVAL simulation of the FM���� netlist� Al�
together� information for approximately several thousand clock cycles was gathered



CLI Technical Report �� �

Figure �� The Single�Board Computer



CLI Technical Report �� ��

and compared in this fashion� Further details concerning the construction of the
single�board computer may be found in Ken Albin�s report ���� which includes the
schematic wiring diagram� the monitor program� and the workstation�to�monitor
interface program� Subsequently� for work on real�time software veri�cation� the
board has been adapted to include a simple switch and a light� both of which are
memory mapped�

The single�board computer has been used to execute the following example
programs�

� various utility programs and the ROM�based monitor program�

� a Piton program that adds multi�word integers ��
��

� a Piton program that plays the game Nim� proved to win if possible �����

� a factorial program�

� a program ���� that computes the Takeuchi function� which is commonly used
to benchmark Lisp systems� and

� a real�time program that senses a switch and turns on a light when the switch
is depressed �����

In all these cases� the FM���� microprocessor worked as expected� Perhaps the
most satisfying of these software tests is the Nim game�playing program� It was
most rewarding to see this rather subtle Piton program� which has been formally
proved� with Nqthm� to win if possible� actually win� when possible� while execut�
ing on a physical FM�����and winning within a proven real�time performance
envelope�

There are about ten �layers� of formal� mathematical abstraction between the
user interface to the Nim game and the interpretation of the FM���� netlist by the
DUAL�EVAL semantics� It is a source of real joy� and relief� to see the �real� world
behave as predicted by all this formal mathematics� This is the only example we
know of a proven stack of hardware and software components�

� Testing with the Tektronix LV���

The most thorough testing of the FM���� microprocessor was performed by inter�
facing an FM���� microprocessor to a Tektronix LV��� chip tester� This device is
similar to the logic analyzer used above� but can also provide pin�level stimulation
to the device under test� That is� all inputs are driven solely by the chip tester�
and all outputs are monitored on a clock�by�clock cycle basis� The LV��� permits
programming of the clock� sampling of signals several times per clock cycle� and
complete control over data input lines� including full �exibility in setting the hold�
reset� test� and memory signals�



CLI Technical Report �� ��

Figure �� The LV��� Test Jig with the FM����



CLI Technical Report �� ��

UNIX-based
Logic Analyzer

Test Head

Workstation

create test,

execute spec,

Console

Ethernet

DUT board

FM9001

log results

compare results

execute test,

Figure �� The LV��� Testing Setup

By interfacing the FM���� to the chip tester� it was possible for us to randomly
generate inputs for every FM���� signal and record the processor responding to
this stimulation� That is� we could simulate any kind of memory� with any contents
desired� This was not possible with the single�board computer� because it contains
only a modest amount of RAM and ROM� Further� the FM���� can be tested in
ways that would never be used in any typical application� For instance� it is possible
to randomly enable and disable the FM���� test inputs� causing the processor to
change between normal operational modes and the test modes on a clock�cycle
by clock�cycle basis� To take advantage of this kind of capability� we generated
random sequences of inputs for the LV��� to provide to the FM����� We took
these same randomly generated sequences and provided them to the DUAL�EVAL

simulator� We then could compare every signal output from a physical FM����
and with the output predicted by our lowest�level formal model�

With the LV���� we undertook a substantial series of random tests of the
FM����� We now describe the major tests that were performed�

� A set of hand�crafted test vectors were created to insure that the FM����
was correctly interfaced to the LV����

� A small set of �
� input test vectors was created to force each input to both
logic false and logic true and to cause each output to produce both logic false



CLI Technical Report �� �


and logic true� Additionally the processor was forced to enter each major
control state�

� A test suite of ������ random input test vectors was generated� The reset
and test inputs were kept disabled� but all other inputs were allowed to vary
randomly� The processor was given these input vectors after it was driven
into its reset state� These same ������ vectors were given to DUAL�EVAL�
which predicted the identical results that were observed by the LV���� Note
that the �pseudo interrupt� facility of the FM���� was exercised by these
tests� which varied the input signals that determine which register is taken
as holding the program counter�

� Another test suite of over ��������� random input test vectors was gen�
erated� In this case� we allowed all inputs to vary randomly except the
TEST�REGFILE� input� The processor was given these input vectors after it
was driven into its reset state� These same million�plus vectors were given to
DUAL�EVAL� which predicted the identical results that were observed by the
LV���� This is our most general testing procedure�

The testing of the FM���� was not completely straightforward because the
FM���� design contains a level�sensitive register �le� Avoiding a level�sensitive
implementation of our register �le by using standard one�bit scanned latches would
have simpli�ed testing but would have tripled the size of the register �le imple�
mentation and necessitated a shift to a substantially larger die� The DUAL�EVAL

model used to specify the netlist�level implementation does not permit the formal�
ization of level�sensitive devices� We implemented the register �le by surrounding
it with registers that operate within DUAL�EVAL�s modeling capability� and we be�
lieve that this entire register �le implementation works exactly like a collection
of 
�x�� one�bit latches� Because the level�sensitive register �le was a single LSI
Logic primitive� we were required to provide direct testing inputs� TEST�REGFILE�
and DISABLE�REGFILE��

In attempting to derive our most general testing procedure� we realized that
not all inputs could be varied on every clock cycle� In particular� we discovered
that we could not vary the TEST�REGFILE� input� which combinationally controls
the write�enable signal to the level�sensitive ��x
� register �le� This was obvious
in retrospect� Our DUAL�EVAL model of the four gates that control the register��le�
write�enable signal ignores the TEST�REGFILE� input� Thus our DUAL�EVAL model
does not accurately predict the operation when the TEST�REGFILE� signal is varied�

The DISABLE�REGFILE� input also controls the write�enable line to the level�
sensitive ��x
� register �le� but this is only partially re�ected in the DUAL�EVAL

model� The actual implementation of the write�enable control logic is �gated�clock�
combinational logic� Therefore� to ensure that the DUAL�EVAL model correctly
tracks the operation of the physical register �le� we must be careful when� between
successive clock pulses� we allow this value to change� otherwise� we can cause
spurious writes into the register �le� To get results from the FM���� that were



CLI Technical Report �� ��

identical to those predicted by the DUAL�EVAL model� we had to insure that the
DISABLE�REGFILE� signal for each clock pulse was stable during the previous cycle�s
clock�high time�� To make the e�ect of the DISABLE�REGFILE� signal mirror the
DUAL�EVAL model� we moved its stimulation period �backward� in time to satisfy
this timing requirement�

This timing issue reveals the need for the study of formal hardware models that
include low�level timing information� The DUAL�EVALmodel is for Mealy machines�
Because we chose to use a level�sensitive register �le� a very common component�
we exposed the limitations of such simple hardware models� Certainly� simulation
environments� such as VHDL� do provide low�level timing simulation capability�
but they do not provide any facility other than simulation to insure the correctness
of hardware designs� Given a formal model for a VHDL�like language one could
verify such low�level timing properties�

Extensive details of the LV��� testing work may be found in Lawrence M�
Smith�s report �FM���� Model Validation on the LV��� Logic Veri�er� �����

� Independent Testing at Indiana University

Bhaskar Bose of Indiana University� working under the supervision of Steven John�
son� studied the FM���� design with an eye towards attempting to automatically
synthesize an FM���� design from its behavioral speci�cation using the DDD syn�
thesis tool �
� ��� As a part of the preparation for this synthesis project� William
Hunt 	Warren�s brother
 of the VLSI laboratory of the Computer Science De�
partment at Indiana University interfaced a fabricated FM���� to the Indiana
University Logic Engine� This provided a way to test the FM���� in a manner
that was somewhat more general than we could with our single�board computer
but not so thoroughly as is possible with the LV��� chip tester� In fact� the �rst
machine code program testing was performed at Indiana� before our single�board
system was built�

	 Conclusion

We have rather extensively tested fabricated FM���� microprocessors in a vari�
ety of settings� Thus far� this formally veri�ed microprocessor has behaved as
predicted�

�Also� the DISABLE�REGFILE� signal must be stable for at least ten nanoseconds after the falling

edge of the clock to account for internal gate delays�



References

��� Kenneth L� Albin and LawrenceM� Smith� FM����Model Validation� Internal
Report ���� Computational Logic� �����

��� Kenneth L� Albin� The FM���� Single�Board Computer� Internal Note 
�
�
Computational Logic� �����

�
� Bhaskar Bose� DDD�A Transformation System for Digital Design Deriva�
tion� Technical Report 

�� Computer Science Department� Indiana Univer�
sity� May� �����

��� Bhaskar Bose� DDD�FM����� Derivation of a Veri�ed Microprocessor�
Ph� D� Dissertation� Indiana University� �����

��� R�S� Boyer and J S� Moore� A Computational Logic Handbook� Academic
Press� Boston� �����

��� Bishop C� Brock� Warren A� Hunt� Jr�� and William D� Young� Introduction
to a Formally De�ned Hardware Description Language� Theorem Provers in

Circuit Design� V� Stavridou� T� Melham� and R� Boute� eds�� North�Holland�
pp� 
�
�� �����

��� Bishop C� Brock� Warren A� Hunt� Jr�� and Matt Kaufmann� The FM����
Microprocessor Proof� Technical Report ��� Computational Logic� December�
�����

��� Arthur D� Flatau� A Veri�ed Implementation of an Applicative language with

Dynamic Storage Allocation� Ph� D� Dissertation� The University of Texas
at Austin� December� ����� Also available 	minus certain appendices
 from
Computational Logic as CLI Technical Report �
�

��� Warren A� Hunt� Jr� and Bishop Brock� A Formal HDL and Its Use in the
FM���� Veri�cation� In C�A�R� Hoare and M�J�C� Gordon� editors� Mech�

anized Reasoning and Hardware Design� pages 
����� Prentice�Hall Interna�
tional Series in Computer Science� Englewood Cli�s� N�J�� �����

���� IEEE� Standard VHDL Language Reference Manual� ANSI�IEEE Std �����
���
� IEEE� 
�� East ��th St�� NY� NY� June �� �����

���� LSI LOGIC� ����Micron Array�Based Products Databook� LSI Logic Corpo�
ration� Milpitas� CA� �����

���� John McCarthy� It�s Past Time for Practical Computer Checked Proofs of
Program Correctness� Computational Logic� Symposium Proceedings� Brus�
sels� Esprit Basic Research Series� DG XIII� Commission of the European
Communities� Springer�Verlag� November �����



CLI Technical Report �� ��

��
� J Strother Moore� PITON� A Veri�ed Assembly Level Language� Technical
Report ��� Computational Logic� ����� To appear as a book in the Kluwer�s
series on automated reasoning under the title Piton� A Mechanically Veri�ed

Assembly�Level Language�

���� J Strother Moore� A Mechanically Veri�ed Language Implementation� Journal
of Automated Reasoning� �	�
���
����� December ����� Also published as CLI
Technical Report 
��

���� J Strother Moore� et al� Special Issue on System Veri�cation� Journal of

Automated Reasoning� Vol� �� No� �� pp� �����
�� �����

���� Lawrence M� Smith� FM���� Model Validation on the LV��� Logic Veri�er�
Internal Report ���� Computational Logic� �����

���� Tektronix� Inc� LV����SE Operator�s Manual� Tektronix� Inc� Walker Road
Industrial Park� Beaverton� OR ������ �����

���� Matthew Wilding� Using the Fabricated FM����� Internal Note ���� Compu�
tational Logic� August� ���
�

���� Matthew Wilding� A Mechanically Veri�ed Application for a Mechanically
Veri�ed Environment� Fifth Conference on Computer�Aided Veri�cation� Lec�
ture Notes in Computer Science� LNCS ���� pp� �������� Springer�Verlag�
���
� Also available as Technical Report ��� Computational Logic� �����

���� Matthew Wilding� A Real�time Programmer�s Model of the FM����� Internal
Note 
��� Computational Logic� December� �����

���� William D� Young� A Mechanically Veri�ed Code Generator� Journal of

Automated Reasoning� Vol� �� Number �� 	December� ����
� pp� ��
����� Also
available from Computational Logic as Technical Report 
��

���� William D� Young� A Veri�ed Code Generator for a Subset of Gypsy� Ph� D�
Dissertation� University of Texas at Austin� �����

��
� William D� Young� Veri�ed Compilation in Micro�Gypsy� Proceedings of the

Software Testing� Analysis and Veri�cation Symposium� Key West Florida�
December� ����� pp� ������


