
A Futures Library and Parallelism Abstractions for a
Functional Subset of Lisp

David L. Rager
The University of Texas at

Austin
1616 Guadalupe Street

Suite 2.408
Austin, TX 78701

ragerdl@cs.utexas.edu

Warren A. Hunt, Jr.
The University of Texas at

Austin
1616 Guadalupe Street

Suite 2.408
Austin, TX 78701

hunt@cs.utexas.edu

Matt Kaufmann
The University of Texas at

Austin
1616 Guadalupe Street

Suite 2.408
Austin, TX 78701

kaufmann@cs.utexas.edu

ABSTRACT
This paper discusses Lisp primitives and abstractions devel-
oped to support the parallel execution of a functional subset
of Lisp, specifically ACL2.

We (1) introduce our Lisp primitives (futures) (2) present
our abstractions built on top of these primitives (spec-mv-
let and plet+), and (3) provide performance results.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.2 [Programming Lan-

guages]: Language Classifications—applicative (functional)
languages

General Terms
Performance, Verification

Keywords
functional language, parallel, plet+, spec-mv-let, granular-
ity, Lisp, ACL2

1. INTRODUCTION
Our project is about supporting parallel evaluation for ap-
plicative Common Lisp, specifically the purely functional
programming language provided by the ACL2 system [11,
9]. We provide language primitives, three at a low level and
two at a more abstract level, for convenient annotation of
source code to enable parallel execution.

Our intended application for this parallel evaluation capabil-
ity is the ACL2 theorem prover, which has been used in some
of the largest industrial formal verification efforts [2, 14]. As
multi-core CPUs become commonplace, ACL2 users would
like to take advantage of the underlying available hardware

resources [10]. Since the ACL2 theorem prover is primarily
written in its own functional language, it is reasonable to in-
troduce parallelism into ACL2’s proof process in a way that
takes advantage of the functional programming paradigm.

After discussing some related work, we introduce three Lisp
primitives that enable and control parallel evaluation, based
on a notion of futures. We build on these three primitives
to introduce two primitives at a higher level of abstraction.1

We then demonstrate these primitives’ utility by presenting
some performance results. We conclude with remarks that
include challenges for the Lisp community.

2. RELATED WORK
There is a large body of research in parallelizing functional
languages and their applications, including work in auto-
mated reasoning. Here, we simply mention some of the pio-
neers and describe some recent developments in the area.

An early parallel implementation of Lisp was Multilisp, cre-
ated in the early 1980s as an extended version of Scheme [6].
It implemented the future operator, which is often defined
as a promise for a form’s evaluation result [7, 3]. Other
parallel implementations of Lisp include variants such as
Parallel Lisp [7], a Queue-based Multi-processing Lisp [4],
and projects described in Yuen’s book “Parallel Lisp Sys-
tems” [16]. Our approach builds upon these approaches
by implementing parallelism primitives and abstractions for
systems that are compliant with ANSI Common Lisp, and
thus, available for use in applications like ACL2. Further-
more, our abstractions have clear logical definitions inside a
theorem proving system, making it straightforward to rea-
son about their use.

More recent developments include the Bordeaux Threads
project [1], which seeks to unify the multi-threading inter-
faces of different Lisps. We approach the same problem
by providing a multi-threading interface [12, 13] to Clozure
Common Lisp (CCL) and Steel Bank Common Lisp (SBCL).
We have our own multi-threading interface because we need
some different features. For example, our interface exposes

1The higher-level primitives are defined within the ACL2
logic, and hence have clear functional semantics that are
amenable to formal verification. We avoid further discussion
of the ACL2 logic in this paper.



a CCL feature for semaphores, notification objects, that we
use to determine whether a semaphore was actually signaled
(as opposed to returning from a wait due to a timeout or in-
terrupt).

Another recent development is Haverbeke’s PCall library [8].
This library is similar to our futures library, in that it pro-
vides a way to spawn a thread to evaluate an expression and
then use the returned value in the original spawning thread.
As a branch of this PCall library, Sedach has initiated the
Eager Future2 project, whose web site [15] reports some ad-
ditional features like error handling and the ability to force
the abortion of a future’s evaluation. Our latest extension
of ACL2, which is described in this paper, has some of these
features.

3. FUTURES LIBRARY
There are three Lisp primitives that enable and control par-
allel evaluation: future, future-read, and future-abort.
The future macro surrounds a form and returns a data
structure with fields including the following: a closure rep-
resenting the necessary computation, and a slot (initially
empty) for the value returned by that computation. This
structure can then be passed to future-read to access the
value field after the closure has been evaluated. The final
primitive, future-abort, terminates futures whose values
are no longer needed.

The following näıve version of the Fibonacci function illus-
trates the use of future and future-read.

(defun pfib (x)
(if (< x 33)

(fib x)
(let ((a (future (pfib (- x 1))))

(b (future (pfib (- x 2)))))
(+ (future-read a)

(future-read b)))))

Even if only a single core is available, we still want to support
the delaying of a computation until its result is needed, as il-
lustrated by the spec-mv-let primitive discussed in the next
section. Of course, in the single-threaded case we need not
provide infrastructure for distributing computation to more
than one thread. The following discussion of our implemen-
tation of futures primitives thus includes optimizations for
the single-threaded case.

The multi-threaded implementation of future provides the
behavior summarized above as follows: when a thread eval-
uates a call of future, it returns a future, F. F contains a
closure that is placed on the work-queue for evaluation by
a worker thread. The value returned by that computation
may only be obtained by calling the future-read macro on
F. If a thread tries to read F before the worker thread fin-
ishes evaluating the closure, the reading thread will block
until the worker thread finishes. However, when the single-
threaded implementation is given a future, F, to read, if the
future has not previously been read, the closure is evaluated
by the reading thread, and the resulting value is saved in-
side F. The final primitive, future-abort, removes a given
future, F, from the work-queue; sets an abort flag in F; and
aborts evaluation (if in progress) of F’s closure.

4. ABSTRACTIONS
We build two abstractions on top of the futures primitives.
These abstractions avoid the difficult task of introducing fu-
tures into the ACL2 programming language and logic. One
primitive, spec-mv-let, is similar to mv-let (ACL2’s no-
tion of multiple-value-bind). Our design of spec-mv-let
is guided by the shape of the code where we want to par-
allelize ACL2’s proof process. Spec-mv-let calls have the
following form.

(spec-mv-let
(v1 ... vn) ; bind distinct variables
<spec> ; evaluate speculatively; return n values
(mv-let
(w1 ... wk) ; bind distinct variables
<eager> ; evaluate eagerly
(if <test> ; ignore <spec> if true

; (does not mention v1 ... vn)
<abort-form> ; does not mention v1 ... vn
<normal-form>))) ; may mention v1 ... vn

Evaluation of the above form proceeds as suggested by the
comments. First, <spec> is executed speculatively (as our
implementation of spec-mv-let wraps <spec> inside a call
of future). Control then passes immediately to the mv-let

call, without waiting for the result of evaluating <spec>.
The variables (w1 ... wk) are bound to the result of eval-
uating <eager>, and then <test> is evaluated. If the value
of <test> is true, then the values of (v1 ... vn) are not
needed, and the evaluation of <spec> may be aborted. If
the value of <test> is false, then the values of (v1 ... vn)

are needed, and <normal-form> blocks until they are avail-
able.

The other abstract primitive, intended to be of more general
use to the ACL2 programmer, is plet+. Plet+ is similar to
let, but it has three additional features: (1) it can eval-
uate its bindings in parallel, (2) it allows the programmer
to bind not just single values but also multiple values, and
(3) it supports speculative evaluation, only blocking when
the bindings’ values are actually needed in the body of the
form. Plet+ is an enhanced version of our previous primi-
tive, plet [13], and it supports the Lisp declarations for let
that are allowed by ACL2: type, ignore, and ignorable.
An optional granularity form (as for plet) provides a test for
whether the computation is estimated to be of large enough
granularity. To date we have restricted our use of plet+ to
small examples, preferring to use spec-mv-let in our ACL2
builds and testing. That may change as we further develop
plet+, for example by reducing the garbage generated when
binding multiple values.

5. PERFORMANCE RESULTS
We first present example uses of each primitive with näıve
versions of the Fibonacci function, comparing their times for
parallel and serial executions. Figure 1 shows the results for
these tests. Then, in Subsection 5.4, we compare the per-
formance of the parallelized ACL2 prover to the unmodified
(serial) version.

All testing was performed on an eight-core 64-bit Linux ma-
chine running 64-bit CCL with the Ephemeral Garbage Col-
lector (EGC) disabled and a 16 gigabyte Garbage Collection



(GC) threshold. See Subsection 5.5 for the reasons behind
this decision. All times are reported in seconds, and each
speedup factor reported is a ratio of serial execution time to
parallel execution time. In each case we report minimum,
maximum, and average times for ten consecutive runs of
each test, both parallel and serial, in the same environment.
The scripts and output from running these tests are available
for download at http://www.cs.utexas.edu/users/ragerdl/-
els2011/supporting-evidence.tar.gz.

5.1 Testing Futures
Recall the definition of pfib in Section 3. In our experi-
ments, calling (pfib 45) yielded a speedup factor of 7.62
on an eight-core machine, which is nearly ideal in spite of
asymmetrical computations occurring at the end of parallel
evaluation.

Thus futures provide an efficient mechanism for parallel eval-
uation. But they also provide an efficient mechanism for
aborting computation. By running the following test, we can
see how long it takes to abort computation that has already
been added to the work-queue. The following script takes
approximately 6 seconds to finish, so it only takes about 60
microseconds to spawn and abort a future. We call func-
tion count-down, which is designed to consume CPU time.
(Count-down 1000000000) typically requires about 5 sec-
onds. Since calling mistake 100,000 times only requires 6
seconds, we know that we are actually aborting computa-
tion.

(defun mistake ()
(future-abort (future (count-down 1000000000))))

(time
(dotimes (i 100000)
(mistake)))

5.2 Testing Spec-mv-let
We next define a parallel version of the Fibonacci function
using the spec-mv-let primitive. The support for specula-
tive execution provided by spec-mv-let is unnecessary here,
since we always need the result of both recursive calls; but
our purpose here is to benchmark spec-mv-let. The follow-
ing definition has provided a speedup factor of 7.75 when
evaluating (pfib 45).2

(defun pfib (x)
(if (< x 33)

(fib x)
(spec-mv-let (a)

(pfib (- x 1))
(mv-let (b)
(pfib (- x 2))
(if nil

"speculative result is always needed"
(+ a b))))))

5.3 Testing Plet+
The following version of the Fibonacci function, which uses
plet+, has provided a speedup factor of 7.82 for the evalu-
ation of (pfib 45).
2ACL2 users may be surprised to see mv-let bind a single
variable. However, this definition is perfectly fine in Lisp,
outside the ACL2 read-eval-print loop.

Figure 1: Performance of Parallelism Primitives in

the Fibonacci Function

Case Min Max Avg Speedup
Serial 40.06 40.21 40.08

Futurized 5.15 5.78 5.26 7.62
Spec-mv-let 5.13 5.22 5.17 7.75

Plet+ 5.08 5.18 5.12 7.82

Figure 2: Performance of ACL2 Proofs with the

EGC Disabled and a High GC Threshold

Proof Case Min Max Avg Speedup
Embarrass serial 36.49 36.53 36.50

par 4.58 4.61 4.60 7.93
JVM-2A serial 229.79 242.40 231.14

par 34.42 39.42 35.51 6.51
Measure-2 serial 175.99 179.93 176.53

par 47.07 53.71 50.01 3.53
Measure-3 serial 86.63 86.85 86.73

par 24.24 25.36 24.90 3.48

(defun pfib (x)
(if (< x 33)

(fib x)
(plet+ ((a (pfib (- x 1)))

(b (pfib (- x 2))))
(with-vars (a b)

(+ a b)))))

5.4 ACL2 Proofs
We currently use spec-mv-let to parallelize the main part
of the ACL2 proof process. We are not interested in speedup
for proof attempts that take a small amount of time. How-
ever, we have obtained non-trivial speedup for some sub-
stantial proofs.

Figure 2 shows the speedup for four proofs. The first proof
is a toy proof that we designed to be embarrassingly parallel
and test the ideal speedup of our system. The proof named
“JVM-2A”is about a JVM model constructed in ACL2. The
third and fourth proofs are related to proving the termi-
nation of Takeuchi’s Tarai function [5]. These proofs are
not intended to be representative of all ACL2 proofs. Par-
allelism does not improve the performance of many ACL2
proofs, and it might even slow down some proofs. Investi-
gating these issues is part of our future work.

5.5 The Effects of GC
We now consider the performance of parallelized ACL2 with
different garbage collector configurations. In Figure 3, we
report the performance of proof “JVM-2A” with the EGC
either enabled or disabled and the GC configured to use
either the default threshold or a threshold of 16 gigabytes.

While it is clear that both serial and parallel executions ben-
efit from having the EGC disabled and a high GC threshold,
one may wish to make a comparison not presented in the
figures. Specifically, one could compare the optimal serial



Figure 3: Performance of Theorem JVM-2A with

Varying GC Configurations

EGC & Case Min Max Avg Speedup
Threshold
on, default serial 245.52 246.99 246.79

par 372.54 482.62 413.42 0.60
on, high serial 245.38 247.09 246.90

par 377.91 524.78 422.20 0.58
off, default serial 291.57 292.14 291.97

par 110.57 117.17 114.77 2.54
off, high serial 229.79 242.40 231.14

par 34.42 39.42 35.51 6.51

configuration that uses the default GC threshold (where the
EGC is enabled) to the optimal parallel configuration that
uses the default GC threshold (where the EGC is disabled).
In this comparison, the serial execution requires an average
of 247 seconds, and the parallel execution takes an average
of 115 seconds, yielding a speedup factor of 2.15.

Figure 3 shows that for applications running in parallel, it
may be beneficial to disable the EGC and use a high GC
threshold. Of course, those steps would likely be unneces-
sary in the presence of parallelized garbage collection.

6. CONCLUSION
We provide parallelism primitives at two levels of abstraction
and demonstrate their successful use in speeding up compu-
tation. The higher-level library provides abstractions, spec-
mv-let and plet+, which allow significant speedup with lit-
tle extra annotation in the code. The lower-level library is
based on the concept of futures and provides more explicit
control of parallel computations. Note that the higher-level
primitives fit nicely into the ACL2 applicative programming
environment. Indeed, we parallelized the key ACL2 proof
process, which is written in the ACL2 programming lan-
guage, using spec-mv-let. Our results to date are promis-
ing, obtaining significant reductions in some proof times us-
ing this parallelized version.

It is our hope that by bringing the continued development of
this library to the attention of the Lisp community: (1) ideas
from our library can be reused in other systems, (2) Lisp
implementors will be motivated to continue improving multi-
threading capabilities, for example by parallelizing garbage
collection, (3) the Lisp community will continue to think
about parallelism standards, and (4) we will gain feedback
on ways to improve our implementation and/or design.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0945316. We
thank Jared Davis, J Strother Moore, and Nathan Wetzler
for helpful discussions.

8. REFERENCES
[1] Bordeaux Threads. Bordeaux Threads API

Documentation, March 2010. http://trac.common-

lisp.net/bordeaux-threads/wiki/ApiDocumentation.

[2] Bishop Brock, Matt Kaufmann, and J Strother Moore.
ACL2 theorems about commercial microprocessors. In
Mandayam K. Srivas and Albert John Camilleri,
editors, Proceedings of Formal Methods in
Computer-Aided Design (FMCAD ’96), pages
275–293. Springer-Verlag, 1996.

[3] Marc Feeley. An efficient and general implementation
of futures on large scale shared-memory
multiprocessors. PhD thesis, Waltham, MA, USA,
1993. UMI Order No. GAX93-22348.

[4] Richard P. Gabriel and John McCarthy. Queue-based
multi-processing lisp. In Conference on LISP and
Functional Programming, pages 25–44, 1984.

[5] David Greve. Assuming termination. In ACL2 ’09:
Proceedings of the eighth international workshop on
the ACL2 theorem prover and its applications, pages
121–129, New York, New York, USA, 2009. ACM.

[6] Robert H. Halstead, Jr. Implementation of multilisp:
Lisp on a microprocessor. In Conference on LISP and
Functional Programming, pages 9–17, 1984.

[7] Robert H. Halstead, Jr. New ideas in parallel lisp:
Language design, implementation, and programming
tools. In Parallel Lisp: Languages and Systems, pages
2–57, 1989.

[8] Marijn Haverbeke. Idle cores to the left of me, race
conditions to the right. June 2008.
http://marijnhaverbeke.nl/pcall/background.html.

[9] Matt Kaufmann, Pete Manolios, and J Strother
Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Press, Boston, MA., 2000.

[10] Matt Kaufmann and J Strother Moore. Some key
research problems in automated theorem proving for
hardware and software verification. Spanish Royal
Academy of Science (RACSAM), 98(1):181–195, 2004.

[11] Matt Kaufmann and J Strother Moore. ACL2
Documentation. ACL2, March 2010.
http://www.cs.utexas.edu/∼moore/acl2/current/acl2-
doc-index.html.

[12] David L. Rager. Adding parallelism capabilities in
ACL2. In ACL2 ’06: Proceedings of the sixth
international workshop on the ACL2 theorem prover
and its applications, pages 90–94, New York, New
York, USA, 2006. ACM.

[13] David L. Rager and Warren A. Hunt, Jr.
Implementing a parallelism library for a functional
subset of lisp. In Proceedings of the 2009 International
Lisp Conference, pages 18–30, Sterling, Virginia, USA,
2009. Association of Lisp Users.

[14] David Russinoff, Matt Kaufmann, Eric Smith, and
Robert Sumners. Formal verification of floating-point
RTL at AMD using the ACL2 theorem prover. In
Simonov Nikolai, editor, Proceedings of the 17th
IMACS World Congrress on Scientific Computation,
Applied Mathematics and Simulation, Paris, France,
2005.

[15] Vladimir Sedach. Eager Future2, January 2011.
http://common-lisp.net/project/eager-future/.

[16] C. K. Yuen. Parallel Lisp Systems: A Study of
Languages and Architectures. Chapman & Hall, Ltd.,
London, UK, 1992.


