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Photolysis. Various dyes can be pumped with a primary
la.'ser and they convert the original wavelength of the
picosecond pulses into any one required, with high effi-
ciency. This way the whole visible spectrum can be
covered. Coupling times in important conversions might
be measured (for example, photo-clectric effect, laser
produced plasmas, and so on). Some new, fast or higher
order non-linear effects might be observed.

These very short pulses may distinguish between
different time-dependont effects in a complex phenomenon.
One such experiment has been done®: in the intensity-
dependent frequency broadening of liquid-scattered laser
light, it is very difficult to separate two processes, one
due to the refractive index and one due to Raman-
scattering.

For certain liquids, such as CS,, however, the pico-
second pulses reduce the efficiency of the Raman process,
while leaving the other part intact, so that for the first
time it can be studied in detail. Similarly, in the case
of laser produced plasmas, there are single-photon and
multi-photon processes present. By shortening the laser
pulsewidth to less than a nanosecond, it is possible to
reduce the first to an insignificant amount in comparison
with the second.

There arc many possible technical applications. As
light-sources, the picosecond lasers can be used to illu-
minate some very rapid processes—for example, the pulse
train can be directed as a stroboscopic source at a shock-
wave. In high-speed photography generally, they can be
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used to test fast components or perhaps even to build
very fast photomultipliers and image intensifiers. Simi-
larly, they could test fast electronics or be used as fast
components—for example in computers—and they would
provide unheard-of accuracy in range-finding.

No doubt some of these predictions may not materialize,
but there will be many more applications, at present
unthought of, which will outdo in significance the few
examples given here. The story of the laser, like that of
any great invention, shows that the initiators are never
aware of all the implications and possibilities which
gradually unfold later.
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““Memo” Functions and Machine Learning

by
DONALD MICHIE

Experimental Programming Unit,
Department of Machine
Intelligence and Perception,
University of Edinburgh language.
Ir computers could learn from experience their usefulness
would be increased. When I write a clumsy program
for a contemporary computer a thousand runs on the
machine do not re-educate my handiwork. On every
oxecution, each time-wasting blemish and crudity, each
needless test and redundant evaluation, is meticulously
reproduced.

Attempts to computerize learning processes date back
little more than 10 yr. The most significant early mile-
stone was A. L. Samucl’s study! using the game of
checkers (draughts). Samuel devised detailed procedures
both of “rote-learning” and “learning by generalization”.
When coupled with efficicnt methods of lookahead and
search, these procedures enabled the computer to raise
itself by prolonged practice from the status of a beginner
to that of a tournament player. Hence there now exists
a checkers program which can learn through experience
of checkers to play better checkers. What does not yet
exist is any way of providing in general that all our
programs will automatically raise the efficacy of their
own execution, Samuelwise, as a result of repeated “‘plays’.

Here I outline proposals? for enabling the programmer
to “‘Samueclize” any functions he pleases, and so endow
his program with self-improving powers—both of “rote-
learning” and ‘learning by generalization”. 1 shall
be talking about mathematical funections. ‘Factorial”
(of a natural number) is a function; so is ‘“highest common
factor”’ (of a pair of real numbers); so is “member” (of
an element-set pair); so is the “reverse” (of a list). Thus

It would be useful if computers could learn from experience and
thus automatically improve the efficiency of their own programs
during execution.
can be provided within the framework of a suitable programming

A simple but effective rote-learning facility

Sfactorial (5)=120; hef (63, 18)=9; member (Queen Eliz-
abeth, the Cabinet)=false; and reverse ([Tom Dick
Harry]) =[Harry Dick Tom]. The present proposals
involve a particular way of looking at functions. This
point of view asserts that a function is not to be identified
with the operation by which it is evaluated (the rule for
finding the factorial, for instance) nor with its repre-
sentation in the form of a table or other look-up medium
(such as a table of factorials). A function is a function,
and the means chosen to find its value in a given case is
independent of the function’s intrinsic meaning. This is
no more than a restaternent of a mathematical truism,
but it is one which has been lost sight of by the designers
of our programming languages. By resurrecting this
truism we become free to assert: (1) that the apparatus
of evaluation associated with any given function shall
consist of a ‘“rule part” (computational procedure) and a
“rote part”” (look-up table); (2) that evaluation in the
computer shall on each given occasion proceed either by
rule, or by rote, or by a blend of the two, solely as dictated
by the expedicney of the moment; (3) that the rule versus
rote dzcisions shall be handled by the machine behind the
scenes; and (4) that various kinds of interaction be per-
mitted to occur between the rule part and the rote part.
Thus each evaluation by rule adds a fresh entry to the
rote. Updating the rote by assignment from outside the
function apparatus (such as from the tape reader or other
input channcl) is allowed, and may alter some of the
consequences of future evaluations by rule. The rule
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itself may be self-modifying and seek to increase its
agreement with the contents of the rote.

Parable of Self-improvement

Before describing the detailed application of this
scheme, I shall take a fanciful example to show how
exactly it corresponds to the way a human tackles such
problems. Imagine that I am hired by an old-fashioned
commercial company which does not possess, or believe
in, calculating machines. ‘“We necd someone to sit under
the stairs during board meetings”, explains the company
secretary, ‘‘someone with his wits about him. We some-
times need to know the hef of two numbers: when I
shout a pair of numbers down the stairs, you will shout
the answer up as soon as you've worked it out. Our
chairman is an impatient man, and you will be paid a
speed bonus”.

“Well”, I might say, “I don’t know about hef’s, but I
need the monecy and I'll do the best I can”.

So I am issued with Euclid’s rule for computing the
hef; I also have the sense to demand a supply of index
cards and a pencil. Whenever I apply my rule to a given
pair of numbers, I enter this pair together with the
result on an index card and add it to a growing pile of
tabulated answers., Whenever I am asked for the hef of
a new pair, I first look through this pile, from top to
bottom: if I find it I merely read out the answer, replacing
this card one place higher in the pile, so that I can find
it a little faster next time. Through this promotion
process, rarely-occurring problems will gravitate towards
the bottom and frequently occurring problems towards
the top. If I do not find the required number-pair in the
pile, then and only then do I have recourse to the rule.
Having found the answer, in this case by calculation, I
enter tho result on a new card to be added to the pile.
Supposing that there is a limit to the size of the pile of
cards which I can handle, I discard the bottom card
whenever there is need to shorten the pile.

Recursively Defined Functions

We will now re-interpret this scheme in the context of
digital computing, taking the factorial function. This has
the advantage that it can be defined in a recursive manner
with particular case and clarity, as will appear. I shall
suppose that a “card index’ regime for the evaluation of
functions is available, so that we have facilities for con-
verting funections into “memo functions’”?. Because this
can only be done at all easily using an open-ended pro-
gramming language free of arbitrary constraints I shall
conduct my illustration in POP-2 (ref. 3) which has the
furthor advantage that the needed facility is actually
available in the form of half a dozen POP-2 library
routines?.

We define the rule part of factorial as follows:

function fact n;

if n < 0 or if not (n. isinteger) then undef else
if n = 0 then 1 else n * fact (n-1) close
end

In words—*if n is negative or is not an integer then its
factorial is undefined; if n is zero then its factorial is
equal to 1; otherwise it is equal to » times the factorial
of n-1".

To endow fact with the “memo” facility, using Popple-
stone’s routines, we merely writo

newmeomo (fact, 100, nonop =) — fact;

This replaces the old definition of fact with a new one
with a memo apparatus attached, such that the rote has
an upper fixed limit of 100 entries and uses the “="
relation for look-up purposes. The symbol nonop warns
the machine not to try to operate the ‘="’ function
at this stage but merely to note it for future reference.
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Suppose now that the first call of the function is fact (3).
The rote is inspected, but no entry for 3 is found there.
So the rule is invoked. Is n=0? No. The answer then,
according to the rule is 3 xfact (2). We now set out to
evaluate fact (2). First we inspect the rote, again without
success. Then we enter the rule and find that fact (2) is
equal to 2 x fact (1). The process of recursion continues
until we encounter fact (0), which we find, by rule, is
equal to 1. We can now evaluate fact (1)=1 x fact (0),
and hence fact (2) =2 x fact (1) and hence fact (3) =3 x fact
(2). Each of these evaluations adds a new entry to the
rote, which on exit at the end of the recursion looks like
this

Value
6
2
1
1

Argument

O NW

Suppose that the next call of the function is fact (2).
The answer is immediately found from the rote, being the
second value encountered in a top-to-bottom search. On
exiting, the ‘“‘successful” entry is promoted one rung up
the ladder (compare Samuel’s “refreshing’ of checker
board positions stored on his dictionary tape), so that
the rote now looks like this

Argument Value
2 2
3 6
1 1

0 1

Let the next call now be fact (5). Is 5 in the rote ? No.
Enter the rule. Is 5=07 No. Then fact (5)=>5 x fact (4).
Is 4 in the rote ? No. Enter the rule. Is 4=0? No.
Then fact (4)=4x fact (3). Is 3 in the rote ? Yes! fact
(3)=16 (promote this entry), so fact (4)=4x 6 =24 (make
a rote entry), so fact (5)=>5 x 24=120 (makec a rote entry),
exit. The rote now looks like this, momentarily restored,
as it happens, to numerical order.

Argument Value
5 120
4 24
3 6
2 2
1 1
0 1

Use as a Learning Mechanism

Viewed simply as speed-up aids for the evaluation of
numerical functions, memo functions promise practical
utility. In preliminary tests, Popplestonet found that a
program had ‘“learned” to evaluate a standard numer-
ical function 10-20 times faster than normal after 200
successive calls. But the usc of memo functions can be
extended beyond this limited aim, so as to confer powers
of learning by genecralization, and of inductive reasoning.
To clear the ground for these topics I shall deseribe an
experimental study in machine learning on which I have
been engaged for a number of years®®, I shall then
discuss how the rote-learning basis of this work can be
fitted into the memo function scheme, and how memo
functions can then be used to extend this basis by pro-
vision of facilities for generalization and induction.

The rote-learning algorithm is known as ‘“‘boxes”, and
its computer program embodiment is intended to copc
with adaptive control situations of the “black box”
variety—that is, situations in which the physical para-
meters and laws of motion of the controllable system are
unknown a priori. The program runs in an Elliott
4100 computer, connected by a high-speed link to a
PDP-7 computer. The PDP-7’s task is to simulate some
unstable system specified by the programmer, to display
a einematic representation of this system on the cathode
ray display panel and to send regular signals over the
link to the Elliott 4100, these signals encoding successive
state vectors of the unstable system during its evolution
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through time. At any instant a “fail” signal may be
transmitted in place of the state vector, indicating that
the simulated system has crashed. The “boxes” pro-
gram running in the Elliott computer is provided with
no information concerning the system being simulated at
the other end of the link, apart from the number of
elements of the state vector and their ranges. Its task is
to receive, at each interval of time, the latest state signal
from the link and to transmit a signal in return, corre-
sponding to the selection of one out of a repertoire of
control actions. Its “aim’ is to learn to respond in such
a way as to maximize the length of time elapsing between
failure signals.

In all our experimental tests, the PDP-T7 program
has simulated a Donaldson system’—that is a motor-
driven cart running on a track of fixed length balancing
a pole so hinged at the base as to be free to fall in the
plane of the track (see Fig. 1). Control is in our casc by
means of the switch with only two settings, “left” or
“right”’, so that the motor operates continually at full force,
changing only in sign. Failure is registered if any one of
the four variables—z, the position of the cart on the
track, &, the velocity of the cart, 8, the angle of the pole,
and 6, the rate of change of the pole’s angle—goes outside
pre-set bounds. In our implementation the ‘‘boxes’ pro-
gram running in the Elliott 4100 computer receives
over the link every 1/15 s a 4-tuple of numbers z, &, 0, 6,
and must reply either with the number 1 (left) or 2 (right).
From time to time, in place of a fresh 4-tuple, a ‘““fail”
signal arrives. From this scanty information the pro-
gram must, by trial and error, construct a control func-
tion which maps state signals on to control signals so
as to make the occurrence of failure states as infrequent
as possible. The task is approached from a condition of
complete initial ignorance about the interpretation of
both state signals and control signals.
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Fig. 1. The pole-and-cart system, set up for pure trial-and-error
learning. The lower curve shows a smoothed average (‘“merit”) of the
time-until-crash, plotted against the total accumulated lecarning time.

The learning program is thus in the same situation
as pre-scientific man, with a fixed repertoire of acts
(control signals), a growing repertoire of experiences (state
signals) and a basic assumption that there exist somo
unknown “laws of nature’’ which enable predictions to be
made and strategies for survival to be devised. Progress
in such a situation proceeds via the construction of a
succession of models (partial descriptions) of the environ-
ment, proceeding from the crudest by successive refine-
ment. If a given model can be used for prediction we
call it a theory.

What is the most primitive pre-scientific model of all ?
It is the one on which the ‘“boxes’” algorithm is based.
In this model, experience of the environment is described
by a rough categorization of properties—hot, warm, eool,
cold; big, middle-sized, small; fast, slow, stationary;
dry, moist, damp, wet; and so on. This categorization is
then used to subdivide the totality of cxperience into a
relatively small number of discrete situations. These
recur in experience, so that we can attach to each separate
situation a growing body of ‘lore”, summarizing the
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average consequences in the past of performing this or
that action in this particular situation. If the accumu-
lating stocks of lore are now used to determine a strategy
for selecting actions in future, with no attempt to
generalize, then we have the essence of the “boxes”
algorithm for adaptive control. Its application to the
problem of evolving a cart-and-pole control strategy
under ‘black box’ conditions proceeds by reducing the
totality of all possible z, z, 0, § 4-tuples to a mere 162
discrete states defined by the following categorization

Position: left end, middle, right end;

Velocity: leftwards, roughly stationary, rightwards;

Angle of lean: extreme loft, moderate loft, slight left,
slight right, moderate right, extreme right;

Rate of swing: leftwards, roughly stationary, rightwards.

In the “boxes” algorithm a computing process is
associated with each discrete region of state-space, which
has the task of accumulating by experiment a corpus of
statistical lore about the cxpected consequences of taking,
in that region, the two alternative actions. Fig. 1 shows
a learning run, from which it can be concluded that even
such a primitive model can be a first basis for enabling
an automaton to learn what is—under ‘‘black box”
constraints—a non-trivial task. We shall now step out-
side this primitive framework and see whether the memo
function apparatus can encompass the needed extensions
from pure rote-learning to learning with generalization
and theory-formation.

Generalization by Approximation

The most unsatisfactory feature of the boxes algorithm
described is that the discrete situations into which the
total state-space is resolved are defined by an arbitrary
choice of threshold settings: where is ‘“moderate” to end
and “‘extreme” to begin ? Further, there is no program
control over these settings, so that certain obvious and
attractive forms of generalization—such as the “lumping’’
and “‘sphtting”’ procedures described elsewhere®——can only
be tackled by ad hoc extensions of the program. The key
to resolving state-space into diserete regions, as has been
pointed out by Popplestone, lies in the function equév which
is left to the user to define for himself. equév is used when
searching the rote, to decide for each entry in turn whether
it is or is not sufficiently close to the argument which we are
looking for to be classified as ‘‘the same”. In the case of
“factorial”’ described earlier, equév is no more than the
relation of cquality between integers, but for a function
of real arguments, like “harmonic mean”, say, it could
define the number of decimal places of approximation. In
this last case the reach of equiv could conveniently be
extended, in recognition of the fact that harm mean
(@, y)=harm mean (y, x), so as to treat all z, y pairs as
“the same’’ as their y, 2 opposite numbers. An example
from the pole-balancing case is that it might be decreed,
or discovered, that the 5-tuple x, @, 0, 0, 4, should be
treated as equivalent to —z, —&, —0, —8, —A, so as to
exploit the situation’s essential symmetry (4 here stands
for a control action). Once we see the definition of equiv
as modifiable by program, processes such as <“‘lumping”
and “‘splitting” can be taken in our stride—at the simplest
level by varying in the light of experience the “‘tolerance”
of the measure for recognizing the recurrence of ‘“‘the
same” event as one which has occurred before. I use the
term tolerance deliberately to direct attention to a simi-
larity to Zeeman’s® notion of “tolerance embedding”
which, however, I do not propose to pursuc here.

Recasting the primitive ‘‘boxes” scheme in the new
mould, we have predictor functions predl and pred2
corresponding to the two alternative actions “left” and
“pight”. A predictor function takes a state-action pair
as argument and produces a description of future state as
a result. We also have a function called strategy which
maps from predictions to actions. It is clearly appropriate
to make predl and pred2 into memo functions. At the
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elementary level of the current “boxes” implementation,
these functions prediet no more than the expected lapse
of time before the next crash. In the present context
we are chiefly concerned with the use of equiv in looking
up a state-description on the rote and thus providing for
approximation in state-space as a crude form of general-
ization. If we make the definition of equiv program-
modifiable in the light of emergent properties of the rote,
then we can ensure that states (arguments) not worth
distinguishing are lumped into a single rote entry, whereas
those presenting difficulties of prediction are given a
finer-grained representation. For example, we can have
equiv continuously up-dated in such a way that the
result-values entered against adjacent values of those
arguments which gain entry to the rote are always separ-
ated by more than a specified minimum. A thoroughgoing
“lumping and splitting” facility is in this way auto-
matically created.

Generalization by Interpolation

To see that approximation as described represents a
primitive kind of generalization, we can relate it to
interpolation. Figs. 2 and 3 depict the same set of data
points. In the first case the gaps arc partially filled by
approximation. The lengths of the horizontal lines are
sot by the equév function, which deerees which values of
the z-variable are to bo regarded as equivalent to each
other for look-up purposes. In the second case a poly-
nomial is fitted to the points. The question arises as to
whether in some cases a list of polynomial coefficients
would not be a more powerful and condensed means of

Fig. 2. An z-y plot in which y-values are obtained by look-up when the

r-value falls within the vieinity of an existing point, as defined by

the horizontal lines, F¥or an z-value falling outside these intervals, a
new point is computed by rule and added to the plot.
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Fig. 3. The same points as in Fig. 2, with the gaps bridged by poly-
nomial interpolation (see text).

providing for quick and approximate evaluation than a
rote; also whether combinations of rote and cocfficient-
list could be used. Just as in the rote-learning case the
rote is up-dated by simple aceretion of new x—y pairs, so
in the case of polynomial interpolation the coefficient list
can be up-dated (and the polynomial thus revised) to
accommodate each newly added z—y pair. In this way a
process of induction on the growing store of examples is
carried out, as demonstrated and discussed clsewhere by
Fredkin®, Pivar and Finkelstein®, and by Popplestone?.

I thank the Science Research Council for their generous
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Chiasma Frequency and Maternal Age in Mammals

by A decrease in the frequency of chiasmata, a change in their location

S. A. HENDERSON
R. G. EDWARDS

Department of Genetics and
Physiological Laboratory,
University of Cambridge

It is well established that in man there is a higher fre-
quency of chromosomally and phenotypically abnormal
offspring and a decline in fertility as maternal age in-
creases, A number of suggestions have been made to

on the chromosome and an increase in the frequency of univalents
have been found in mouse oocytes with increasing maternal age.
Many of the univalents displayed a non-chiasmate association, others
were not associated. Several of these observations evidently apply
to man and are perhaps relevant in the aetiology of Down's syndrome
and infertility in older mothers.

account for this increase in abnormalities. Most of the
suggestions have involved the assumption that certain
events must occeur during the relatively prolonged nuc-
leated stage, termed dictvotene, which is in effect a

©1968 Nature Publishing Group



