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Introduction

2Introduction

Motivation: Increase the reliability of programs used in the industry 

Approach: Machine-code verification for x86 platforms 
-We are developing a formal x86 model in ACL2 for code analysis. 
-We are vetting our tools on commercial-sized problems.

Today, we talk about our ongoing work in formal verification of software, 
and present our plans to verify supervisor-level code in the immediate 
future.

Objective: Emulate an operating system, like FreeBSD, along with the 
programs running on it, and prove properties about kernel code
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3Introduction

Our group has significant collaboration with the government and industry.

Our own research includes: 
- Development of core technologies 
- Application of these technologies in different domains 
- Validation of commercial processor designs at Centaur and Oracle 

(10+ developers, 30+ users)
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Project Overview

4Introduction

Goal:  Build robust tools to increase software reliability 

‣ Verify critical properties of application and system programs 

‣ Correctness with respect to behavior, security, & resource usage 

Plan of Action: 

1. Build a formal, executable x86 ISA model using 

2. Develop a machine-code analysis framework based on this model 

3. Employ this framework to verify application and system programs
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Contributions

5Introduction

A new tool: General-purpose analysis framework for x86 machine-code 
‣ Accurate x86 ISA reference

Reasoning strategies: Insight into low-level code verification in general 
‣ Build effective lemma libraries

Program verification taking memory management into account:  
‣ Properties of x86 memory-management data structures 
‣ Analysis of programs, including low-level system & ISA features

Foundation for future research: 
‣ Target for verified/verifying compilers 
‣ Resource usage guarantees 
‣ Information-flow analysis 
‣ Ensuring process isolation
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Outline

๏ Motivation 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion 

๏ Accessing Source Code + Documentation
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7Model Development

Obtaining the x86 ISA Specification

~3400 pages

__asm__ volatile 
("stc\n\t"                   // Set CF. 
 "mov $0, %%eax\n\t"         // Set EAX = 0. 
 "mov $0, %%ebx\n\t"         // Set EBX = 0. 
 "mov $0, %%ecx\n\t"         // Set ECX = 0. 
 "mov %4, %%ecx\n\t"         // Set CL = rotate_by. 
 "mov %3, %%edx\n\t"         // Set EDX = old_cf = 1. 
 "mov %2, %%eax\n\t"         // Set EAX = num. 
 "rcl %%cl, %%al\n\t"        // Rotate AL by CL.  
 "cmovb %%edx, %%ebx\n\t"    // Set EBX = old_cf if CF = 1.  
                             // Otherwise, EBX = 0.  
 "mov %%eax, %0\n\t"         // Set res = EAX. 
 "mov %%ebx, %1\n\t"         // Set cf  = EBX. 
  
 : "=g"(res), "=g"(cf)    
 : "g"(num), "g"(old_cf), "g"(rotate_by)   
 : "rax", "rbx", "rcx", "rdx"); 

Running tests on x86 machines
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Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical 
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that 
use only 2 of the 4 possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing 
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level 
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the 
following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It 

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of 
the code segment from which instructions are being fetched. The processor changes the CPL when program 
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently 
when accessing conforming code segments. Conforming code segments can be accessed from any privilege 
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment. 
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different 
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL 
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment 
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the 
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on 
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have 
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running 
at a CPL of 0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that 
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code 
segment is 0, only programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program 
or task can be at and still be able to access the call gate. (This is the same access rule as for a data 
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The 
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access 
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or 
1 cannot access the segment. 

Figure 5-3.  Protection Rings
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— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or 
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment 
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL 
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has 
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is, 
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa. 
The RPL can be used to insure that privileged code does not access a segment on behalf of an application 
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller 
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register. 
The checks used for data access differ from those used for transfers of program control among code segments; 
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded 
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into 
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently 
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment 
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment 
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege 
levels and each attempting to access the same data segment. 

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL 
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL 
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than 
the DPL of data segment E. A code segment B procedure can also access data segment E using segment 
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line), 
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less 
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector 

Figure 5-4.  Privilege Check for Data Access
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— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or 
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment 
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL 
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has 
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is, 
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa. 
The RPL can be used to insure that privileged code does not access a segment on behalf of an application 
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller 
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register. 
The checks used for data access differ from those used for transfers of program control among code segments; 
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded 
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into 
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently 
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment 
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment 
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege 
levels and each attempting to access the same data segment. 

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL 
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL 
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than 
the DPL of data segment E. A code segment B procedure can also access data segment E using segment 
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line), 
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less 
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector 

Figure 5-4.  Privilege Check for Data Access
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INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an 

INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are 
placed in more privileged code segments (numerically lower privilege level). For hardware-generated 
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical 
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that 
use only 2 of the 4 possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing 
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level 
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the 
following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It 

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of 
the code segment from which instructions are being fetched. The processor changes the CPL when program 
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently 
when accessing conforming code segments. Conforming code segments can be accessed from any privilege 
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment. 
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different 
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL 
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment 
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the 
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on 
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have 
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running 
at a CPL of 0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that 
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code 
segment is 0, only programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program 
or task can be at and still be able to access the call gate. (This is the same access rule as for a data 
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The 
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access 
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or 
1 cannot access the segment. 

Figure 5-3.  Protection Rings
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— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or 
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment 
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL 
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has 
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is, 
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa. 
The RPL can be used to insure that privileged code does not access a segment on behalf of an application 
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller 
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register. 
The checks used for data access differ from those used for transfers of program control among code segments; 
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded 
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into 
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently 
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment 
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment 
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege 
levels and each attempting to access the same data segment. 

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL 
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL 
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than 
the DPL of data segment E. A code segment B procedure can also access data segment E using segment 
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line), 
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less 
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector 

Figure 5-4.  Privilege Check for Data Access
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INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an 

INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are 
placed in more privileged code segments (numerically lower privilege level). For hardware-generated 
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes 
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of 
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction 
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of 
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in 
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base 

(SIB) byte (if required) 
• a displacement and an immediate data field (if required) 

The following sections discuss this format.

B.1.1  Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H 
and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on legacy prefixes.

Figure B-1.  General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6     5-3     2-07-6     5-3     2-0

T T T T T T T T T T T T T T T T

Mod   Reg*  R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
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Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2, 
Grp 3, Grp 4 

NOTE:

*  The Reg Field may be used as an 
opcode extension field (TTT) and as a 
way to  encode diagnostic registers 
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode 
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Model Development

9Model Development

Under active development: an x86 ISA model in ACL2

➡ Instruction Semantic 
Functions: specify the effect 
of each instruction

➡ Step Function: fetches, 
decodes, and executes one 
instruction 

➡ x86 State:  specifies the 
components of the ISA 
(registers, flags, memory)

Optimized for 
reasoning 
efficiency

Optimized for 
execution 
efficiency

Layered modeling approach mitigates 
the trade-off between reasoning and 
execution efficiency [ACL2’13]  
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Model Validation

10Model Development

How can we know that our model faithfully represents the x86 ISA? 

Validate the model to increase trust in the applicability of formal analysis.
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Current Status: x86 ISA Model

11

• The x86 ISA model supports 400+ instructions, including some floating-
point and supervisor-mode instructions  

‣ Can execute almost all user-level programs emitted by GCC/LLVM 
‣ Successfully co-simulated a contemporary SAT solver on our model 
‣ Successfully simulated a supervisor-mode zero-copy program 

• IA-32e paging for all page configurations (4K, 2M, 1G) 

• Segment-based addressing 

• Lines of Code: ~85,000 (not including blank lines) 

• Simulation speed*:  

‣ ~3.3 million instructions/second (paging disabled) 
‣ ~330,000 instructions/second (with 1G pages)

Model Development: Current Status * Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz
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Outline

๏ Motivation 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion 

๏ Accessing Source Code + Documentation
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Building a Lemma Database

13Machine-Code Analysis Framework

• Semantics of the program is given by the effect it has on the machine 
state.

• The database should include lemmas about reads from and writes to 
the machine state, along with the interactions between these 
operations.

add %edi, %eax 
je  0x400304 

1. read instruction from mem 

2. read operands 

3. write sum to eax 

4. write new value to flags 

5. write new value to pc

1. read instruction from mem 

2. read flags  

3. write new value to pc
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Building a Lemma Database

14Machine-Code Analysis Framework

• System data structures, like the paging structures, are extremely 
complicated. 

• Correct operation of a system heavily depends upon such structures. 

• We need to prove lemmas that can aid in proving the following kinds of 
critical properties: 
- Processes are isolated from each other. 
- Page tables, including access rights, are set up correctly.
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Current Status: Analysis Framework

16Machine-Code Analysis Framework

• Automatically generate and prove many lemmas about reads and writes 

• Libraries to reason about (non-)interference of memory regions 

• Proved general lemmas about paging data structure traversals 
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Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55                 push   %rbp 
48 89 e5           mov    %rsp,%rbp 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 7d fc           mov    -0x4(%rbp),%edi 
8b 45 fc           mov    -0x4(%rbp),%eax 
c1 e8 01           shr    $0x1,%eax 
25 55 55 55 55     and    $0x55555555,%eax 
29 c7              sub    %eax,%edi 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
25 33 33 33 33     and    $0x33333333,%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 02           shr    $0x2,%edi 
81 e7 33 33 33 33  and    $0x33333333,%edi 
01 f8              add    %edi,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 04           shr    $0x4,%edi 
01 f8              add    %edi,%eax 
25 0f 0f 0f 0f     and    $0xf0f0f0f,%eax 
69 c0 01 01 01 01  imul   $0x1010101,%eax,%eax 
c1 e8 18           shr    $0x18,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
5d                 pop    %rbp 
c3                 retq  
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Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55                 push   %rbp 
48 89 e5           mov    %rsp,%rbp 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 7d fc           mov    -0x4(%rbp),%edi 
8b 45 fc           mov    -0x4(%rbp),%eax 
c1 e8 01           shr    $0x1,%eax 
25 55 55 55 55     and    $0x55555555,%eax 
29 c7              sub    %eax,%edi 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
25 33 33 33 33     and    $0x33333333,%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 02           shr    $0x2,%edi 
81 e7 33 33 33 33  and    $0x33333333,%edi 
01 f8              add    %edi,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 04           shr    $0x4,%edi 
01 f8              add    %edi,%eax 
25 0f 0f 0f 0f     and    $0xf0f0f0f,%eax 
69 c0 01 01 01 01  imul   $0x1010101,%eax,%eax 
c1 e8 18           shr    $0x18,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
5d                 pop    %rbp 
c3                 retq  

int popcount_32 (unsigned int v) 
{ 
  // From Sean Anderson’s Bit-Twiddling Hacks 
  v = v - ((v >> 1) & 0x55555555); 
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 
  v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 
  return(v); 
}
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Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55                 push   %rbp 
48 89 e5           mov    %rsp,%rbp 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 7d fc           mov    -0x4(%rbp),%edi 
8b 45 fc           mov    -0x4(%rbp),%eax 
c1 e8 01           shr    $0x1,%eax 
25 55 55 55 55     and    $0x55555555,%eax 
29 c7              sub    %eax,%edi 
89 7d fc           mov    %edi,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
25 33 33 33 33     and    $0x33333333,%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 02           shr    $0x2,%edi 
81 e7 33 33 33 33  and    $0x33333333,%edi 
01 f8              add    %edi,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
8b 7d fc           mov    -0x4(%rbp),%edi 
c1 ef 04           shr    $0x4,%edi 
01 f8              add    %edi,%eax 
25 0f 0f 0f 0f     and    $0xf0f0f0f,%eax 
69 c0 01 01 01 01  imul   $0x1010101,%eax,%eax 
c1 e8 18           shr    $0x18,%eax 
89 45 fc           mov    %eax,-0x4(%rbp) 
8b 45 fc           mov    -0x4(%rbp),%eax 
5d                 pop    %rbp 
c3                 retq  

RAX = popcount(input)

specification function

popcount(x): 

if (x <= 0) then 
   return 0 
else 
   lsb := x & 1 
   x   := x >> 1 
   return (lsb + popcount(x)) 
endif

unsigned int
int popcount_32 (unsigned int v) 
{ 
  // From Sean Anderson’s Bit-Twiddling Hacks 
  v = v - ((v >> 1) & 0x55555555); 
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 
  v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 
  return(v); 
}
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Application Program #2: word-count

19Program Verification

• Proved the functional correctness of a word-count program that reads 
input from the user using read system calls. System calls are non-
deterministic for application programs. [FMCAD’14]

55                      push   %rbp                           
48 89 e5                mov    %rsp,%rbp                      
48 83 ec 20             sub    $0x20,%rsp                     
c7 45 fc 00 00 00 00    movl   $0x0,-0x4(%rbp)                
c7 45 e8 00 00 00 00    movl   $0x0,-0x18(%rbp)               
c7 45 ec 00 00 00 00    movl   $0x0,-0x14(%rbp)               
c7 45 f0 00 00 00 00    movl   $0x0,-0x10(%rbp)               
c7 45 f4 00 00 00 00    movl   $0x0,-0xc(%rbp)                
e8 90 ff ff ff          callq  <_gc>                
…              
05 01 00 00 00          add    $0x1,%eax                      
89 45 f0                mov    %eax,-0x10(%rbp)               
e9 00 00 00 00          jmpq   <_main+0xb8>         
e9 6e ff ff ff          jmpq   <_main+0x2b>         
31 c0                   xor    %eax,%eax                      
48 83 c4 20             add    $0x20,%rsp                     
5d                      pop    %rbp                           
c3                      retq                                 



/27

Application Program #2: word-count

19Program Verification

• Proved the functional correctness of a word-count program that reads 
input from the user using read system calls. System calls are non-
deterministic for application programs. [FMCAD’14]

55                      push   %rbp                           
48 89 e5                mov    %rsp,%rbp                      
48 83 ec 20             sub    $0x20,%rsp                     
c7 45 fc 00 00 00 00    movl   $0x0,-0x4(%rbp)                
c7 45 e8 00 00 00 00    movl   $0x0,-0x18(%rbp)               
c7 45 ec 00 00 00 00    movl   $0x0,-0x14(%rbp)               
c7 45 f0 00 00 00 00    movl   $0x0,-0x10(%rbp)               
c7 45 f4 00 00 00 00    movl   $0x0,-0xc(%rbp)                
e8 90 ff ff ff          callq  <_gc>                
…              
05 01 00 00 00          add    $0x1,%eax                      
89 45 f0                mov    %eax,-0x10(%rbp)               
e9 00 00 00 00          jmpq   <_main+0xb8>         
e9 6e ff ff ff          jmpq   <_main+0x2b>         
31 c0                   xor    %eax,%eax                      
48 83 c4 20             add    $0x20,%rsp                     
5d                      pop    %rbp                           
c3                      retq                                 

 ncSpec(offset, str, count): 

  if (well-formed(str) && offset < len(str)) then 
     c := str[offset]  
     if (c == EOF) then 
        return count  
     else 
        count := (count + 1) mod 2^32 
        ncSpec(1 + offset, str, count)  
     endif 
  endif Functional Correctness Theorem: Values 

computed by specification functions on standard 
input are found in the expected memory locations 
of the final x86 state.

Specification for counting the # of  
characters in str:
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Other properties verified using our machine-code framework: 

• Resource Usage:  
‣ Program and its stack are disjoint for all inputs.  
‣ Irrespective of the input, program uses a fixed amount of memory. 

• Security:  
‣ Program does not modify unintended regions of memory.

Application Program #2: word-count



/2721Program Verification

System Program: zero-copy

xl0

Linear  
Memory

xl1

xp

Physical 
Memory

Specification:  
Copy data x from virtual memory location l0 to 
disjoint linear memory location l1.

Verification Objective:  
After a successful copy, l0 and l1 contain x.

Implementation:  
Include the copy-on-write technique: l0 and l1 
can be mapped to the same physical memory 
location p. 

‣ Modifications to address mapping 
‣ Access control management
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System Program: zero-copy

xl0

Linear  
Memory

xl1

xp

Physical 
Memory

Proved that the implementation of a zero-copy 
program meets the specification of a simple 
copy operation. 

For simplicity, marking of paging structures 
during their traversal was turned off, i.e., no 
accessed and dirty bit updates were allowed for 
this proof. 

We are currently porting this proof over to a more 
accurate x86 model, which characterizes updates 
to accessed and dirty bits as well.
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Outline

๏ Motivation 

๏ Project Description 

➡ [1] Developing an x86 ISA Model 

➡ [2] Building a Machine-Code Analysis Framework 

➡ [3] Verifying Application and System Programs 

๏ Future Work & Conclusion 

๏ Accessing Source Code + Documentation
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Future Work

24Future Work

• Run a 64-bit FreeBSD kernel on our x86 ISA model 
- This involves identifying and implementing relevant instructions, call 

gates, supporting task management, etc. 

• Develop lemma libraries to reason about kernel code 
- This involves developing automated reasoning infrastructure for page 

table walks, access rights, etc. 

• Identify and prove critical invariants in kernel code 
- This includes proving the correctness of context switches, privilege 

escalations, etc.

We look forward to collaborating with the                                         community!
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Conclusion

25Conclusion

It is essential to state and prove properties related to behavior, security, 
and resource usage; bug-hunting can only take us so far. This task is 
within the scope of mechanized theorem proving, as is evidenced by 
its use by our collaborators in the government and the industry to prove 
complex properties about complex systems. 

Although full verification of all software is the ultimate goal, the focus 
for the coming years is to create islands of trust, i.e., parts of the system 
for which complex properties have been formally verified. 
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Accessing Source Code + Documentation

26Source Code + Documentation

The x86isa project is available under BSD 3-Clause 
license as a part of the ACL2 Community Books project.  

Go to https://github.com/acl2/acl2/ 
and see books/projects/x86isa/README for details.

www.cs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2____X86ISA 

Also, documentation and user’s manual is 
available online  at

https://github.com/acl2/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA
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Verification Effort vs. Verification Utility

System-level ModeProgrammer-level Mode

- Verification of application 
programs 

- Linear memory address space     
(264 bytes) 

- Assumptions about correctness of 
OS operations

- Verification of system programs 

- Physical memory address space  
(252 bytes) 

- No assumptions about OS 
operations

Task 3 | Program Verification | Effort vs. Utility
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Motivation: x86 Machine-Code Verification

30Motivation

• Why not high-level code verification? 

X High-level verification frameworks do not address compiler bugs 

✓ Verified/verifying compilers can help 

X But these compilers typically generate inefficient code 

X Need to build verification frameworks for many high-level languages 

X Sometimes, high-level code is unavailable 

• Why x86? 

✓ x86 is in widespread use — our approach will have immediate practical 
application



/27

Building a Lemma Database

31Task 2 | Machine-Code Analysis Framework | Lemma Database

Three kinds of theorems: 
‣ Read-over-Write Theorems 
‣ Write-over-Write Theorems 
‣ Preservation Theorems
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Read-over-Write Theorem: #1

32Task 2 | Machine-Code Analysis Framework | Lemma Database
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Read-over-Write Theorem: #1
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Read-over-Write Theorem: #2

33Task 2 | Machine-Code Analysis Framework | Lemma Database
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Read-over-Write Theorem: #2
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Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

i j

Program 
Order



/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

Wi(x)

i j

x

Program 
Order



/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

Wi(x)

i j

x y

Wj(y)

Program 
Order



/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Program 
Order

Program 
Order



/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

y

Program 
Order

Program 
Order



/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

Wi(x)

x y

Program 
Order

Program 
Order



/27

Write-over-Write Theorem: #2
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Write-over-Write Theorem: #2
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valid-address-p(i) ⋀ 

valid-x86-p(x86) 
⇒ 
valid-value-p(      ) ⋀ 

valid-x86-p(x86)

Preservation Theorems

36Task 2 | Machine-Code Analysis Framework | Lemma Database
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valid-address-p(i) ⋀ 

valid-x86-p(x86) 
⇒ 
valid-value-p(      ) ⋀ 

valid-x86-p(x86)

Preservation Theorems

36Task 2 | Machine-Code Analysis Framework | Lemma Database

reading from a valid x86 state

Ri: x

writing to a valid x86 state

Wi(x)

valid-address-p(i) ⋀ 

valid-value-p(x) ⋀ 
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⇒ 
valid-x86-p(      )

memory
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Verification Effort vs. Verification Utility

Task 3 | Program Verification | Effort vs. Utility
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Programmer-level Mode: Model Validation

Task B: Validate the execution mode against the processor + 
system call service provided by the OS

Task A: Validate the logical mode against the execution mode
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Programmer-level Mode: Execution Mode
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Programmer-level Mode: Execution and Reasoning
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Verification Landscape

Verification Tools:

Automatic Interactive

Static & 
dynamic 
analyzers

SAT & SMT 
solvers

Model 
checkers

Interactive 
theorem 
provers

Interactive 
theorem 
provers coupled 
with automatic 
tools

state 
explosion 
problem

high degree 
of manual 
effort

can be 
applied to 
large systems

limited 
analysis 
capabilities


