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Introduction

Motivation: Increase the reliability of programs used in the industry

Approach: Machine-code verification for x86 platforms
- We are developing a formal x86 model in ACL2 for code analysis.
- We are vetting our tools on commercial-sized problems.

Today, we talk about our ongoing work in formal verification of software,
and present our plans to verify supervisor-level code in the immediate
future.

Objective: Emulate an operating system, like FreeBSD, along with the
programs running on it, and prove properties about kernel code
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Ecosystem

Our group has significant collaboration with the government and industry.

AMDD\ [ei]au (intel)

Raytheon
=== Rockwel//
ORACLE  IE=EE  WnNTWbas Collins

Our own research includes:
- Development of core technologies
- Application of these technologies in different domains

- Validation of commercial processor designs at Centaur and Oracle
(10+ developers, 30+ users)

Introduction 3 /27



Project Overview

Goal: Build robust tools to increase software reliability
» Verify critical properties of application and system programs

» Correctness with respect to behavior, security, & resource usage

Plan of Action: J |

1. Build a formal, executable x86 ISA model using “P\C LZ
2. Develop a machine-code analysis framework based on this model

3. Employ this framework to verify application and system programs
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Contributions

A new tool: General-purpose analysis framework for x86 machine-code
» Accurate x86 ISA reference

Program verification taking memory management into account:
» Properties of x86 memory-management data structures
» Analysis of programs, including low-level system & ISA features

Reasoning strategies: Insight into low-level code verification in general
» Build effective lemma libraries

Foundation for future research:
» Target for verified/verifying compilers
» Resource usage guarantees
» Information-flow analysis
» Ensuring process isolation
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Motivation
Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs
Future Work & Conclusion

Accessing Source Code + Documentation
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Model Development

Obtaining the x86 ISA Specification
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Model Development

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Combined Volumes:
1, 2A, 2B, 2C, 3A, 3B and 3C

NOTE: This document contains all seven volumes of the Intel 64 and IA-32 Architectures Software
Developer's Manual: Basic Architecture, Instruction Set Reference A-M, Instruction Set Reference N-
Z, Instruction Set Reference, and the System Programming Guide, Parts 1, 2 and 3. Refer to all seven
volumes when evaluating your design needs.

.
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~3400 pages
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Model Development

Obtaining the x86 ISA Specification

---------------------------------------------------------------------------------------------------------------------- -
. .
.

(i@ /| AmMDZV

AMD64 Technology

Intel® 64 and IA-32 Architectures

Software Developer’s Manual AMDG64 Architecture
Combined Volumes:

’
1,2A,28,2C,3A, 3Band 3C | Programmer’s Manual

Volume 3:
NOTE: This document contains all seven volumes of the Intel 64 and IA-32 Architectures Software GeneraI'Pu rpose and

Developer's Manual: Basic Architecture, Instruction Set Reference A-M, Instruction Set Reference N-

Z. Instruction Set Reference, and the System Programming Guide, Parts 1, 2 and 3. Refer to all seven Sy stem I n stru ctio ns

volumes when evaluating your design needs.

~3400 pages
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Model Development

Obtaining the x86 ISA Specification

---------------------------------------------------------------------------------------------------------------------- -
. .

AMD64 Technology
Intel® 64 and IA-32 Architectures :
Software Developer's Manual .
P . AMDG64 Architecture
Combined Volumes: : y
1,2A,28,2C,3A 3Band3c | Programmer’s Manual
__asm__ volatile
("stc\n\t" // Set CF.
hoTe T eunent s e "mov $0, %%eax\n\t" // Set EAX = 0.
2 Instruction Set Reference, and the Sy "mov $0, %%ebx\n\t" // Set EBX = 0.
volumes when evaluating your design ne: "mov $@, %%ecx\n\t" // Set ECX _ @
"mov %4, %kecx\n\t" // Set CL = rotate by.
_____________________________________________________ "mov %3, %%edx\n\t" // Set EDX = old cf = 1.
"mov %2, %%eax\n\t" // Set EAX = num.
"rcl %%cl, %%al\n\t" // Rotate AL by CL.
"ecmovb %%edx, %%ebx\n\t" // Set EBX = old cf if CF = 1.
// Otherwise, EBX = 0.
"mov %%eax, %O\n\t" // Set res = EAX.
"mov %%ebx, %1\n\t" // Set cf = EBX.
Il=g||(res), Il=gll(cf)
"g"(num), "g"(old cf), "g"(rotate by)
”raX”, ”rbX”, ”rCX”, ”rdX”);

Model Development Running tests on x86 machines 7 127



Model Development

Focus: 64-bit sub-mode of Intel’s IA-32e mode
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Model Development

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Basic Program Execution Registers Address Space
2764 -1
Sixteen 64-bit General-Purpose Registers
Registers
Six 16-bit ;
Registers Segment Registers
| 64-bits | RFLAGS Register
| 64-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floating-Point
Registers Data Registers 0
Control Register
Status Register
Tag Register
[ ] Opcode Register (11-bits)
| 64 bits |  FPU Instruction Pointer Register
| 64 bits |  FPU Data (Operand) Pointer Register
MMX Registers
Eiggéigttrbsit MMX Registers
XMM Registers
Slxﬁeeg?slggb't XMM Registers
| 32-bits | MXCSR Register

Figure 3-2. 64-Bit Mode Execution Environment
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Model Development

Model Development

Focus: 64-bit sub-mode

Basic Program Execution Registers

Sixteen 64-bit
Registers

Six 16-bit
Registers

| 64-bits |

| 64-bits |

FPU Registers

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register

Eight 80-bit Floating-Point

Registers Data Registers
Control Registe
Status Register

Tag Register
[ ] Opcode Registé
| 64 bits |  FPU Instruction
| 64 bits |  FPU Data (Oper|

MMX Registers
Eiggéi?ttrbsit MMX Registers

XMM Registers

Sixteen 128-bit
Registers

RFLAGS

Control Register

Physical Address
————— >

Linear Address
e

\j

Code, Data or Stack
Segment (Base =0)

CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 il >
CR2
CR1
CRO )
- Global Descriptor
Task Register Table (GDT)
[Segment Sel. | - »| Seg.Desc. — Irgelrrupt Handler
NULL - - pC0de]
|nterrupt TR |‘ — »| TSS Desc. Stack
Vector
. - —— - > Seg. Desc.
Interrupt Descriptor |
Table (IDT) I- - — »| Seg.Desc. _—l—;nterr. Handler
l Code
Interrupt Gate | — — LDT Desc. | Current TSS
[
; Stack
Interrupt Gate | - - -
P 1 (GDTR] IST—
> Trap Gate [ - -~ o .
! Local Descriptor Exception Handler
! Table (LDT >
__ (LDT) NULL - ;Codel
[ Stack
IDTR Call-Gate 3| Seg. Desc. ||
Segment Selector
| |- > CallGate | -~ - N Protected Procedure
XCRO (XFEM Code
( ) LDTR |€«——— NULL - — >

Linear Address Space

0

L Stack

Linear Address

TI PML4 [Dir. Pointer | Directory [ Table  [Offset |
Linear Addr.

PML4 Pg. Dir. Ptr.| Page Dir.

Page Table Page

Physical

PML4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>

*Physical Address

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

[ 32bis

| MXCSR Register

Figure 3-2. 64-Bit Mode Execution Environment

Source: Intel Manuals
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Model Development

[ ]
64-bit sub-mode
RFLAGS
Physma I}Address > Code, Data or Stack
asic Program Execution Registers Control Register Linear Address Segment (Base =0)
Operatin CR8 Task-State
PS g CR4 Segment Selector Segment (TSS)
ystem - . CR3 ST >
Kernel Sixteen 64-bit General-Purpose Registers CR2
. Registers CR1
Operating System
Services “ - CRO Global Descriptor
Task Reglster Table (GDT)
I~ Six 16-bit ; Interrupt Handler
Applications Redi Segment Registers [Segment Sel. } - » Seg. Desc. |— 1€
egisters NULL .  »Code |
. - [TR__ |} - > TSSDesc. | [Stack
Figure 5-3. Protection Rings o 64-bits | RFLAGS Register Ir\‘}ggtgpr)t L
i - —— - > Seg. Desc.
_ . . . Interrupt Descriptor |
64-bits | RIP (Instruction Pointer Register) Table (IDT) |, - — »| Seg.Desc. | Interr. Handler
CS Register I . Code
. Interrupt Gater — — - LDT Desc. —  Current TSS
CPL b] .
URegisters Interrupt Gate | - - - ‘ E Stack
. . [GDTR]
Egrggeir;t SS:SI;T%?& Eight 80-bit Floating-Point > TrapGaw | - - W » IST—
. Registers Data Registers | Local Descriptor Exception Handler
! Table (LDT >
> - (LoT) NULL - — ;COSECIK
i ; »| Privilege . : IDTR Call-Gate ~ -»| Seg. Desc.
Data-Segment Descriptor > Checﬁ 16 bits Control Registel [IDTR | Segment Selector g L
DPL > 16 bits Status Register | | - > CallGate | |- - o Protected Procedure
| 16 bits Tag Register % < NULL - — ;)og:a -
ac
- =4 Privilode Check for Data A [ ] Opcode Registe L
igure >-4. Frivilege eCcK Tor bata Access - .
g g | 64 bits |  FPU Instruction , )
: Linear Address Space Linear Address
| 64 bits |  FPU Data (Oper: [PML4 | Dir. Pointer | Directory | Table | Offset |
MMX Registers
Li Addr.
inear L PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Eight 64-bit .
Registers MMX Registers . Physical
PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>
XMM Registers 0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.
i 128-bi *Physical Address
IX}?:gri]sters- "t ) ; ; ;
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode
| 32-bits | MXCSR Register

Figure 3-2. 64-Bit Mode Execution Environment
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Model Development

Operating
System
Kernel

Operating System
Services

Applications

Protection Rings

L

“

64-bit sub-mode

asic Program Execution Registers

Figure 5-3. Protection Rings

CS Register

CPL

Segment Selector
For Data Segment

RPL

Sixteen 64-bit General-Purpose Registers
Registers
Six 16-bit ;
Registers Segment Registers
64-bits | RFLAGS Register
64-bits | RIP (Instruction Pointer Register)

U Registers

1

Y

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler’s Stack

<—— ESP Before

EFLAGS

Transfer to Handler

CS

EIP

Error Code

«——ESP After

Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Stack

<<——ESP Before

Transfer to Handler

ESP After——>»

Transfer to Handler

RFLAGS
Physical Address

\j

_____ > Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 il >
CR2
CR1
CRO .
Global Descriptor
Task Register Table (GD'IIP)
[Segment Sel. | - »| Seg. Desc. Irgelrrupt Handler
NULL - - pC0de]
|nterrupt TR |‘ — »| TSS Desc. Stack
Vector
. - —— - > Seg. Desc.
Interrupt Descriptor |
Table (IDT) I- - — »| Seg.Desc. _—l—;nterr. Handler
l Code
Interrupt Gate | — — LDT Desc. | Current TSS
[ ’—>
Stack
Interrupt Gate | - - -
P 1 GDTR IST—
> Trap Gate - -~ - ]
! Local Descriptor Exception Handler
! Table (LDT >
__ (LDT) NULL - ;Codel
[ Stack
IDTR Call-Gate -3 Seg. Desc. ||
Segment Selector
| |- > CallGate | -~ - N Protected Procedure
XCRO (XFEM Code
( ) LDTR |€«——— NULL - — >

Linear Address Space

L Stack

Linear Address

ﬁ»l PML4 [Dir. Pointer | Directory [ Table  [Offset |
Li Addr.
near . PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PML4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>
0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.

*Physical Address

Eight 80-bit Floating-Point
Registers Data Registers
Control Registel
Status Register
Tag Register
[ ] Opcode Registe
| bits FPU Instruction
I bits FPU Data (Oper:
MMX Registers
Handler’s Stack
Ss
ESP n 128-bit )
EFLAGS isters
CS
EIP
Error Code [ 32bits | MXCSR Register

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Model Development

Figure 3-2. 64-Bit Mode Execution Environment

Source: Intel Manuals
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Model Development
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Model Development

Under active development: an x86 ISA model in ACL2

- Xx86 State: specifies the
components of the ISA
(registers, flags, memory)

= Instruction Semantic
Functions: specify the effect
of each instruction

= Step Function: fetches,

decodes, and executes one
instruction

Model Development

Layered modeling approach mitigates
the trade-off between reasoning and
execution efficiency

x86 interpreter
A Optimized for
supports reasoning
efficiency

Abstract Processor State

correspondence Optimized for
= execution

Concrete Processor State eff1c1ency
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Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

.C
GCC/LLVM
Implement
Program No —» missing
: 115 121§§ Opcodes opcodes
————— | Implemented? \
Yes
v

Binary Program

Co-simulations

State-by-State
ACL2 printing 1 GDB scripts,
functiony D'ff \ Pin
x86 ISA model in ACL2 1100

Instruction Semantic
Functions

Fetch, Decode, and Execute
Function

x86
state

Loader in ACL2

Model Development
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Current Status: x86 ISA Model

- The x86 ISA model supports 400+ instructions, including some floating-
point and supervisor-mode instructions

» Can execute almost all user-level programs emitted by GCC/LLVM
» Successfully co-simulated a contemporary SAT solver on our model
» Successfully simulated a supervisor-mode zero-copy program

- TA-32e paging for all page configurations (4K, 2M, 1G)
- Segment-based addressing
. Lines of Code: ~85,000 (not including blank lines)

- Simulation speed’:

» ~3.3 million instructions/second (paging disabled)
» ~330,000 instructions/second (with 1G pages)

Model Development: Current Status " Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz  11/27
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Building a Lemma Database

- Semantics of the program is given by the effect it has on the machine

state.

1. read instruction from mem

2. read flags

3. write new value to pc

add %edi, %eax
je ©0x400304

1. read instruction from mem
. read operands

. Write sum to eax

. write new value to flags

. write new value to pc

- The database should include lemmas about reads from and writes to
the machine state, along with the interactions between these

operations.

Machine-Code Analysis Framework
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Building a Lemma Database

- System data structures, like the paging structures, are extremely
complicated.

- Correct operation of a system heavily depends upon such structures.
- We need to prove lemmas that can aid in proving the following kinds of
critical properties:

- Processes are isolated from each other.
- Page tables, including access rights, are set up correctly.

Machine-Code Analysis Framework 14/27
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Logical Address
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Logical Address

! '
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Logical Address
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Current Status: Analysis Framework

- Automatically generate and prove many lemmas about reads and writes

- Libraries to reason about (non-)interference of memory regions

- Proved general lemmas about paging data structure traversals

Machine-Code Analysis Framework 16/27
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Application Program #1: popcount

Automatically verify snippets of straight-line machine code using bit-

blasting
55 push %rbp
48 89 e5 mov %rsp,%rbp
89 7d fc mov %edi, -0x4(%rbp)
8b 7d fc mov -0x4(%rbp), %edi
8b 45 fc mov -0x4(%rbp), %keax
cl e8 01 shr $0x1,%eax
25 55 55 55 55 and $0x55555555, %eax
29 c7/ sub %eax ,%edi
89 7d fc mov %edi, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 £8 add %edi , %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 04 shr $0x4 , %edi
01 £8 add %edi, %eax
25 0f of of of and $0xfOfOf0of , %eax
69 cO0 01 01 01 01 imul $0x1010101, %eax , %eax
cl e8 18 shr $0x18, %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
5d pop %rbp
c3 retq

Program Verification

18/27



Application Program #1: popcount

Automatically verify snippets of straight-line machine code using bit-
blasting [vsTTE 13]

int popcount 32 (unsigned int v)
{
// From Sean Anderson’s Bit-Twiddling Hacks
v v - ((v >> 1) & 0x55555555);
v (v & 0x33333333) + ((v >> 2) & 0Ox33333333);
v ((v + (v >> 4) & OxFOFOFQOF) * 0x1010101) >> 24;

return(v);

b
8b 45 fc mov -0x4(%rbp), %keax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 £8 add %edi , %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 04 shr $0x4 , %edi
01 £8 add %edi, %eax
25 0f of of of and $0xfOfOf0of , %eax
69 cO0 01 01 01 01 imul $0x1010101, %eax , %eax
cl e8 18 shr $0x18, %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
5d pop %rbp
c3 retq

Program Verification 18/27



Application Program #1: popcount

Automatically verify snippets of straight-line machine code using bit-
blasting [vsTTE 13]

unsigned int

int popcount 32 (unsigned int v) //
{
// From Sean Anderson’s Bit-Twiddling Hacks RAX = popcount(inbut)
v=Vv - ((v > 1) & 0x55555555); =
v = (v & ©x33333333) + ((v >> 2) & 0x33333333); \\\\
v = ((v + (v >> 4) & OxFOFOFOF) * 0x1010101) >> 24; . . .
return(v); specification function
b
8b 45 fc mov -0x4(%rbp), %keax
25 33 33 33 33 and $0x33333333,%eax popcount(x):
8b 7d fc mov -0x4(%rbp), %edi
cl ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi if ()( <= @) then
01 £8 add %edi , %eax
89 45 fc mov %eax, -0x4(%rbp) return ©
8b 45 fc mov -0x4(%rbp) , %eax else
8b 7d fc mov -0x4(%rbp), %edi . _
cl ef 04 shr  $0x4,%edi lsb 1= x & 1
91 £8 add %edi , %eax X = X >> 1
25 0f 0f of of and $0xfOfOf0of , %eax
69 c0 01 01 01 @1 imul  $0x1010101,%eax,%eax return (lsb + popcount(x))
cl e8 18 shr $0x18 ,%eax endif
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
5d pop %rbp
c3 retq
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Application Program #2: word-count

- Proved the functional correctness of a word-count program that reads
input from the user using read system calls. System calls are non-
deterministic for application programs.

Program Verification

55
48
48
c/
c/
c/
c/
c/
e8

05

89
e9
e9
31
48
5d
c3

89
83
45
45
45
45
45
90

01
45
00
6e
co
83

e5
ec
fc
e8
ec
fo
f4
ff

00
fo
00
ff

c4

20
00
00
00
00
00
ff

00

00
ff

20

00
00
00
00
00
ff

00

00
ff

00 00
00 00
00 00
00 00
00 00

push
mov

sub

mov L
mov L
mov L
mov L
mov L
callg

add
mov
jmpq
Jmpq
Xor
add
pop
retq

%Trbp

%rsp,%rbp
$0x20,%rsp

$0x0, -0x4(%rbp)
$0x0,-0x18(%rbp)
$0x0, -0x14(%rbp)
$0x0,-0x10(%rbp)
$0x0, -0xc(%rbp)
<_gc>

$0x1,%eax
%eax,-0x10(%rbp)
< _main+@xb8>
<_main+@x2b>
%eax , %eax
$0x20,%rsp

%Trbp
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Application Program #2: word-count

- Proved the functional correctness of a word-count program that reads
input from the user using read system calls. System calls are non-
deterministic for application programs.

Specification for counting the # of 55 push  %rbp
. 48 89 e5 mov %rsp,%rbp
characters in str: 48 83 ec 20 sub $0x20,%rsp
- """7 00 00 movl  $0x0,-0x4(%rbp)
ncSpec(offset, str, count): 00 00 movl  $0x@,-0x18(%rbp)
90 00 movl  $0x0,-0x14(%rbp)
_ 90 00 movl  $0x0,-0x10(%rbp)
if (well-formed(str) && offset < len(str)) then | oo 00 movl  $0x0,-0xc(%rbp)
c := str[offset] callg <_ge>
if (c == EOF) then add $0x1,%eax
return count mov %eax, -0x10(%rbp)
else jmpg < _main+@xb8>
im < main+0x2b>
count := (count + 1) mod 2732 yon| %anx. %eax
ncSpec(l + offset, str, count) add $0x20,%rsp
endif ) e
endif Functional Correctness Theorem: Values

computed by specification functions on standard
input are found in the expected memory locations
of the final x86 state.
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Application Program #2: word-count

Other properties verified using our machine-code framework:
- Resource Usage:
» Program and its stack are disjoint for all inputs.

» Irrespective of the input, program uses a fixed amount of memory.

- Security:
» Program does not modify unintended regions of memory.
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System Program: zero-copy

Specification:
Copy data x from virtual memory location 10 to
disjoint linear memory location L1.

Verification Objective:
After a successful copy, 1@ and 11 contain x.

Implementation:
Include the copy-on-write technique: 10 and 11

can be mapped to the same physical memory : .
location p. Linear Physical

Memory Memory

» Modifications to address mapping
» Access control management
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System Program: zero-copy

Proved that the implementation of a zero-copy
program meets the specification of a simple
CcOpy operation.

For simplicity, marking of paging structures
during their traversal was turned off, i.e., no
accessed and dirty bit updates were allowed for
this proof.

L1

We are currently porting this proof over to a more
accurate x86 model, which characterizes updates
to accessed and dirty bits as well.

Linear Physical
Memory Memory
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Motivation
Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs
Future Work & Conclusion

Accessing Source Code + Documentation
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Future Work

- Run a 64-bit FreeBSD kernel on our x86 ISA model
- This involves identifying and implementing relevant instructions, call
gates, supporting task management, etc.

- Develop lemma libraries to reason about kernel code
- This involves developing automated reasoning infrastructure for page
table walks, access rights, etc.

- Identify and prove critical invariants in kernel code
- This includes proving the correctness of context switches, privilege
escalations, etc.

y

We look forward to collaborating with the | | Free BSD® community!
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Conclusion

It is essential to state and prove properties related to behavior, security,
and resource usage; bug-hunting can only take us so far. This task is
within the scope of mechanized theorem proving, as is evidenced by
its use by our collaborators in the government and the industry to prove
complex properties about complex systems.

Although full verification of all software is the ultimate goal, the focus

for the coming years is to create islands of trust, i.e., parts of the system
for which complex properties have been formally verified.

Conclusion 25/27



Accessing Source Code + Documentation

The x86isa project is available under BSD 3-Clause
license as a part of the ACL2 Community Books project. AC L2

Gotohttps://github.com/acl2/acl2/
and see books/projects/x86isa/README for details.

Also, documentation and user’s manual is

available online at

www.Ccs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2 X86I1SA
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Some Publications

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann.
Abstract Stobjs and Their Application to ISA Modeling
In ACL2 Workshop, 2013

Shilpi Goel and Warren A. Hunt, Jr.
Automated Code Proofs on a Formal Model of the x86
In Verified Software: Theories, Tools, Experiments (VSTTE), 2013

Shilpi Goel, Warren A. Hunt, Jr., Matt Kaufmann, and Soumava Ghosh.

Simulation and Formal Verification of x86 Machine-Code Programs That Make System Calls
In Formal Methods in Computer-Aided Design (FMCAD), 2014

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann.

Engineering a Formal, Executable x86 ISA Simulator for Software Verification
To appear in Provably Correct Software (ProCoS), 2015
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Verification Effort vs. Verification Utility

| Programmer-level Mode | System-level Mode

- Verification of application - Verification of system programs
programs

- Linear memory address space - Physical memory address space
(2%4bytes) (2°2 bytes)

- Assumptions about correctness of - No assumptions about OS
OS operations operations
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Motivation: x86 Machine-Code Verification

- Why not high-level code verification?
x High-level verification frameworks do not address compiler bugs
v Verified/verifying compilers can help
x But these compilers typically generate inefficient code
x Need to build verification frameworks for many high-level languages

X Sometimes, high-level code is unavailable

- Why x86?

v x86 is in widespread use — our approach will have immediate practical
application

Motivation 30/27



Building a Lemma Database

Three kinds of theorems:
» Read-over-Write Theorems
»  Write-over-Write Theorems
» Preservation Theorems

Task 2 | Machine-Code Analysis Framework | Lemma Database 31/27



Read-over-Write Theorem: #1

non-interference

Program

Order i 3

memory
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Read-over-Write Theorem: #1

non-interference

Program
Order

i j
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Read-over-Write Theorem: #1

non-interference

Program
Order

i j

Rj:y
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Read-over-Write Theorem: #2

overlap

Program
Order

i

memory
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Read-over-Write Theorem: #2

overlap

Program
Order

i
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Read-over-Write Theorem: #2

overlap

Program
Order

i

Ri: X
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Write-over-Write Theorem: #1

Program independent writes commute safely

Order . .
i j

memory
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Write-over-Write Theorem: #1
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Write-over-Write Theorem: #2

Program visibility of writes
Order

i

memory
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Write-over-Write Theorem: #2

Program visibility of writes
Order :
1
R
Wi(y)
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Write-over-Write Theorem: #2

Program visibility of writes
Order
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Write-over-Write Theorem: #2
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Preservation Theorems

i

memory

reading from a valid x86 state

valid-address-p(i) A

valid-x86-p(x86)
=

valid-value-p( LSS ) A
valid-x86-p(x86)
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Preservation Theorems

i
memory
reading from a valid x86 state writing to a valid x86 state
valid-address-p(1i) A valid-address-p(1i) A
valid-x86-p(x86) valid-value-p(x) A
= valid-x86-p(x86)
valid-value-p( LSS ) A =
valid-x86-p(x86) valid-x86-p( fALLL )
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Verification Effort vs. Verification Utility

System-level Mode

User Space
(Ring 3)

FreeBSD read system call D 2l 2

save user state

, SYSCALL
semantics

MOV %rbx, %rax -

Kernel Space
(Ring 0)

SYSRET

restore user state

Programmer-level Mode

Task 3 | Program Verification | Effort vs. Utility
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Programmer-level Mode: Model Validation

Application Programs

(A Operating System

x86 ISA + SYSCALL model

Logical Execution
Mode Mode

\
/ B ‘\‘
; )
\\ J
\. /

Task A: Validate the logical mode against the execution mode

Task B: Validate the execution mode against the processor +
system call service provided by the OS
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Programmer-level Mode: Execution Mode

A Common Lisp Distribution

T
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Programmer-level Mode: Execution and Reasoning

Execution Mode Logical Mode

env env'

ENV ENV'
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Verification Landscape

Verification Tools: high degree
of manual

state . effort
explosion \/

limited pro\l;lem can be

analysis applied to
capabilities ‘Model Interactive large systems

______________________________________________________________________ theorem \V4

Static & provers coupled|  Interactive

...............................................................................

dynamic SAT & SMT  |with automatic étheorem
analyzers solvers ~ |tools provers

Automatic Interactive
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