
April, 2016

Analysis of x86 Application and System Programs
via Machine-Code Verification

Department of Computer Science
The University of Texas at Austin

1 University Way, M/S C0500
Austin, TX 78712-0233

hunt@cs.utexas.edu  
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann

/27

Introduction

2Introduction

Motivation: Increase the reliability of programs used in the industry

Approach: Machine-code verification for x86 platforms
-We are developing a formal x86 model in ACL2 for code analysis.
-We are vetting our tools on commercial-sized problems.

Today, we talk about our ongoing work in formal verification of software,
and present our plans to verify supervisor-level code in the immediate
future.

Objective: Emulate an operating system, like FreeBSD, along with the
programs running on it, and prove properties about kernel code

/27

Ecosystem

3Introduction

Our group has significant collaboration with the government and industry.

Our own research includes:
- Development of core technologies
- Application of these technologies in different domains
- Validation of commercial processor designs at Centaur and Oracle

(10+ developers, 30+ users)

/27

Project Overview

4Introduction

Goal: Build robust tools to increase software reliability

‣ Verify critical properties of application and system programs

‣ Correctness with respect to behavior, security, & resource usage

Plan of Action:

1. Build a formal, executable x86 ISA model using

2. Develop a machine-code analysis framework based on this model

3. Employ this framework to verify application and system programs

/27

Contributions

5Introduction

A new tool: General-purpose analysis framework for x86 machine-code
‣ Accurate x86 ISA reference

Reasoning strategies: Insight into low-level code verification in general
‣ Build effective lemma libraries

Program verification taking memory management into account:
‣ Properties of x86 memory-management data structures
‣ Analysis of programs, including low-level system & ISA features

Foundation for future research:
‣ Target for verified/verifying compilers
‣ Resource usage guarantees
‣ Information-flow analysis
‣ Ensuring process isolation

/276

Outline

๏ Motivation

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

๏ Accessing Source Code + Documentation

/27

Model Development

7Model Development

Obtaining the x86 ISA Specification

/27

Model Development

7Model Development

Obtaining the x86 ISA Specification

~3400 pages

/27

All AMD manuals: ~3000 pages

Model Development

7Model Development

Obtaining the x86 ISA Specification

~3400 pages

/27

All AMD manuals: ~3000 pages

Model Development

7Model Development

Obtaining the x86 ISA Specification

~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

/27

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Vol. 3A 5-7

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications

5-8 Vol. 3A

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to insure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

Figure 5-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Vol. 3A 5-7

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications

5-8 Vol. 3A

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to insure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

Figure 5-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment

Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an

INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

Model Development

8

Focus: 64-bit sub-mode of Intel’s IA-32e mode

Model Development

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Vol. 3A 5-7

PROTECTION

The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that
use only 2 of the 4 possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the
following three types of privilege levels:
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The processor changes the CPL when program
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently
when accessing conforming code segments. Conforming code segments can be accessed from any privilege
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment.
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running
at a CPL of 0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code
segment is 0, only programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program
or task can be at and still be able to access the call gate. (This is the same access rule as for a data
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or
1 cannot access the segment.

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications

5-8 Vol. 3A

PROTECTION

— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is,
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa.
The RPL can be used to insure that privileged code does not access a segment on behalf of an application
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register.
The checks used for data access differ from those used for transfers of program control among code segments;
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS
To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege
levels and each attempting to access the same data segment.

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than
the DPL of data segment E. A code segment B procedure can also access data segment E using segment
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line),
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector

Figure 5-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment

Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an

INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

Vol. 2C B-1

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base

(SIB) byte (if required)
• a displacement and an immediate data field (if required)

The following sections discuss this format.

B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H
and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on legacy prefixes.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4

NOTE:

* The Reg Field may be used as an
opcode extension field (TTT) and as a
way to encode diagnostic registers
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode

/27

Model Development

9Model Development

Under active development: an x86 ISA model in ACL2

➡ Instruction Semantic
Functions: specify the effect
of each instruction

➡ Step Function: fetches,
decodes, and executes one
instruction

➡ x86 State: specifies the
components of the ISA
(registers, flags, memory)

Optimized for
reasoning
efficiency

Optimized for
execution
efficiency

Layered modeling approach mitigates
the trade-off between reasoning and
execution efficiency [ACL2’13]

/27

Model Validation

10Model Development

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

/27

Current Status: x86 ISA Model

11

• The x86 ISA model supports 400+ instructions, including some floating-
point and supervisor-mode instructions

‣ Can execute almost all user-level programs emitted by GCC/LLVM
‣ Successfully co-simulated a contemporary SAT solver on our model
‣ Successfully simulated a supervisor-mode zero-copy program

• IA-32e paging for all page configurations (4K, 2M, 1G)

• Segment-based addressing

• Lines of Code: ~85,000 (not including blank lines)

• Simulation speed*:

‣ ~3.3 million instructions/second (paging disabled)
‣ ~330,000 instructions/second (with 1G pages)

Model Development: Current Status * Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz

/2712

Outline

๏ Motivation

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

๏ Accessing Source Code + Documentation

/27

Building a Lemma Database

13Machine-Code Analysis Framework

• Semantics of the program is given by the effect it has on the machine
state.

• The database should include lemmas about reads from and writes to
the machine state, along with the interactions between these
operations.

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

1. read instruction from mem

2. read flags

3. write new value to pc

/27

Building a Lemma Database

14Machine-Code Analysis Framework

• System data structures, like the paging structures, are extremely
complicated.

• Correct operation of a system heavily depends upon such structures.

• We need to prove lemmas that can aid in proving the following kinds of
critical properties:
- Processes are isolated from each other.
- Page tables, including access rights, are set up correctly.

/27

Address Translations

/27
SEGMENTATION

Segment
 Selector

Logical Address

Offset

Address Translations

/27

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Address Translations

/27

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

Control Register
has the base address
of these structures.

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

Control Register
has the base address
of these structures.

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

Control Register
has the base address
of these structures.

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

Control Register
has the base address
of these structures.

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations

a

a

a

a

a
accessed
flag

/27
IA-32e PAGING (4K page)

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

SEGMENTATION

Segment
 Selector

Logical Address

Offset

Linear Addr.

Segment

CR3

PML4E

PDPTE

PDE

PTE

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

4K Page

Control Register
has the base address
of these structures.

Address Translations

a

a

a

a d

a
accessed
flag d

dirty
flag

/27

Current Status: Analysis Framework

16Machine-Code Analysis Framework

• Automatically generate and prove many lemmas about reads and writes

• Libraries to reason about (non-)interference of memory regions

• Proved general lemmas about paging data structure traversals

/2717

Outline

๏ Motivation

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

๏ Accessing Source Code + Documentation

/27

Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55 push %rbp
48 89 e5 mov %rsp,%rbp
89 7d fc mov %edi,-0x4(%rbp)
8b 7d fc mov -0x4(%rbp),%edi
8b 45 fc mov -0x4(%rbp),%eax
c1 e8 01 shr $0x1,%eax
25 55 55 55 55 and $0x55555555,%eax
29 c7 sub %eax,%edi
89 7d fc mov %edi,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 f8 add %edi,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 04 shr $0x4,%edi
01 f8 add %edi,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 e8 18 shr $0x18,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
5d pop %rbp
c3 retq

/27

Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55 push %rbp
48 89 e5 mov %rsp,%rbp
89 7d fc mov %edi,-0x4(%rbp)
8b 7d fc mov -0x4(%rbp),%edi
8b 45 fc mov -0x4(%rbp),%eax
c1 e8 01 shr $0x1,%eax
25 55 55 55 55 and $0x55555555,%eax
29 c7 sub %eax,%edi
89 7d fc mov %edi,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 f8 add %edi,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 04 shr $0x4,%edi
01 f8 add %edi,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 e8 18 shr $0x18,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
5d pop %rbp
c3 retq

int popcount_32 (unsigned int v)
{
 // From Sean Anderson’s Bit-Twiddling Hacks
 v = v - ((v >> 1) & 0x55555555);
 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 return(v);
}

/27

Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

Program Verification

55 push %rbp
48 89 e5 mov %rsp,%rbp
89 7d fc mov %edi,-0x4(%rbp)
8b 7d fc mov -0x4(%rbp),%edi
8b 45 fc mov -0x4(%rbp),%eax
c1 e8 01 shr $0x1,%eax
25 55 55 55 55 and $0x55555555,%eax
29 c7 sub %eax,%edi
89 7d fc mov %edi,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 f8 add %edi,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 04 shr $0x4,%edi
01 f8 add %edi,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 e8 18 shr $0x18,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
5d pop %rbp
c3 retq

RAX = popcount(input)

specification function

popcount(x):

if (x <= 0) then
 return 0
else
 lsb := x & 1
 x := x >> 1
 return (lsb + popcount(x))
endif

unsigned int
int popcount_32 (unsigned int v)
{
 // From Sean Anderson’s Bit-Twiddling Hacks
 v = v - ((v >> 1) & 0x55555555);
 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 return(v);
}

/27

Application Program #2: word-count

19Program Verification

• Proved the functional correctness of a word-count program that reads
input from the user using read system calls. System calls are non-
deterministic for application programs. [FMCAD’14]

55 push %rbp
48 89 e5 mov %rsp,%rbp
48 83 ec 20 sub $0x20,%rsp
c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
c7 45 e8 00 00 00 00 movl $0x0,-0x18(%rbp)
c7 45 ec 00 00 00 00 movl $0x0,-0x14(%rbp)
c7 45 f0 00 00 00 00 movl $0x0,-0x10(%rbp)
c7 45 f4 00 00 00 00 movl $0x0,-0xc(%rbp)
e8 90 ff ff ff callq <_gc>
…
05 01 00 00 00 add $0x1,%eax
89 45 f0 mov %eax,-0x10(%rbp)
e9 00 00 00 00 jmpq <_main+0xb8>
e9 6e ff ff ff jmpq <_main+0x2b>
31 c0 xor %eax,%eax
48 83 c4 20 add $0x20,%rsp
5d pop %rbp
c3 retq

/27

Application Program #2: word-count

19Program Verification

• Proved the functional correctness of a word-count program that reads
input from the user using read system calls. System calls are non-
deterministic for application programs. [FMCAD’14]

55 push %rbp
48 89 e5 mov %rsp,%rbp
48 83 ec 20 sub $0x20,%rsp
c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
c7 45 e8 00 00 00 00 movl $0x0,-0x18(%rbp)
c7 45 ec 00 00 00 00 movl $0x0,-0x14(%rbp)
c7 45 f0 00 00 00 00 movl $0x0,-0x10(%rbp)
c7 45 f4 00 00 00 00 movl $0x0,-0xc(%rbp)
e8 90 ff ff ff callq <_gc>
…
05 01 00 00 00 add $0x1,%eax
89 45 f0 mov %eax,-0x10(%rbp)
e9 00 00 00 00 jmpq <_main+0xb8>
e9 6e ff ff ff jmpq <_main+0x2b>
31 c0 xor %eax,%eax
48 83 c4 20 add $0x20,%rsp
5d pop %rbp
c3 retq

 ncSpec(offset, str, count):

 if (well-formed(str) && offset < len(str)) then
 c := str[offset]
 if (c == EOF) then
 return count
 else
 count := (count + 1) mod 2^32
 ncSpec(1 + offset, str, count)
 endif
 endif Functional Correctness Theorem: Values

computed by specification functions on standard
input are found in the expected memory locations
of the final x86 state.

Specification for counting the # of
characters in str:

/2720Program Verification

Other properties verified using our machine-code framework:

• Resource Usage:
‣ Program and its stack are disjoint for all inputs.
‣ Irrespective of the input, program uses a fixed amount of memory.

• Security:
‣ Program does not modify unintended regions of memory.

Application Program #2: word-count

/2721Program Verification

System Program: zero-copy

xl0

Linear
Memory

xl1

xp

Physical
Memory

Specification:
Copy data x from virtual memory location l0 to
disjoint linear memory location l1.

Verification Objective:
After a successful copy, l0 and l1 contain x.

Implementation:
Include the copy-on-write technique: l0 and l1
can be mapped to the same physical memory
location p.

‣ Modifications to address mapping
‣ Access control management

/2722Program Verification

System Program: zero-copy

xl0

Linear
Memory

xl1

xp

Physical
Memory

Proved that the implementation of a zero-copy
program meets the specification of a simple
copy operation.

For simplicity, marking of paging structures
during their traversal was turned off, i.e., no
accessed and dirty bit updates were allowed for
this proof.

We are currently porting this proof over to a more
accurate x86 model, which characterizes updates
to accessed and dirty bits as well.

/2723

Outline

๏ Motivation

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

๏ Accessing Source Code + Documentation

/27

Future Work

24Future Work

• Run a 64-bit FreeBSD kernel on our x86 ISA model
- This involves identifying and implementing relevant instructions, call

gates, supporting task management, etc.

• Develop lemma libraries to reason about kernel code
- This involves developing automated reasoning infrastructure for page

table walks, access rights, etc.

• Identify and prove critical invariants in kernel code
- This includes proving the correctness of context switches, privilege

escalations, etc.

We look forward to collaborating with the community!

/27

Conclusion

25Conclusion

It is essential to state and prove properties related to behavior, security,
and resource usage; bug-hunting can only take us so far. This task is
within the scope of mechanized theorem proving, as is evidenced by
its use by our collaborators in the government and the industry to prove
complex properties about complex systems.

Although full verification of all software is the ultimate goal, the focus
for the coming years is to create islands of trust, i.e., parts of the system
for which complex properties have been formally verified.

/27

Accessing Source Code + Documentation

26Source Code + Documentation

The x86isa project is available under BSD 3-Clause
license as a part of the ACL2 Community Books project.

Go to https://github.com/acl2/acl2/
and see books/projects/x86isa/README for details.

www.cs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2____X86ISA

Also, documentation and user’s manual is
available online at

https://github.com/acl2/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

/27

Some Publications

• Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann.
Abstract Stobjs and Their Application to ISA Modeling
In ACL2 Workshop, 2013

• Shilpi Goel and Warren A. Hunt, Jr.
Automated Code Proofs on a Formal Model of the x86
In Verified Software: Theories, Tools, Experiments (VSTTE), 2013

• Shilpi Goel, Warren A. Hunt, Jr., Matt Kaufmann, and Soumava Ghosh.
 Simulation and Formal Verification of x86 Machine-Code Programs That Make System Calls

In Formal Methods in Computer-Aided Design (FMCAD), 2014

• Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann.
 Engineering a Formal, Executable x86 ISA Simulator for Software Verification
 To appear in Provably Correct Software (ProCoS), 2015

27

/27

Extra Slides

/2729

Verification Effort vs. Verification Utility

System-level ModeProgrammer-level Mode

- Verification of application
programs

- Linear memory address space
(264 bytes)

- Assumptions about correctness of
OS operations

- Verification of system programs

- Physical memory address space
(252 bytes)

- No assumptions about OS
operations

Task 3 | Program Verification | Effort vs. Utility

/27

Motivation: x86 Machine-Code Verification

30Motivation

• Why not high-level code verification?

X High-level verification frameworks do not address compiler bugs

✓ Verified/verifying compilers can help

X But these compilers typically generate inefficient code

X Need to build verification frameworks for many high-level languages

X Sometimes, high-level code is unavailable

• Why x86?

✓ x86 is in widespread use — our approach will have immediate practical
application

/27

Building a Lemma Database

31Task 2 | Machine-Code Analysis Framework | Lemma Database

Three kinds of theorems:
‣ Read-over-Write Theorems
‣ Write-over-Write Theorems
‣ Preservation Theorems

/27

Read-over-Write Theorem: #1

32Task 2 | Machine-Code Analysis Framework | Lemma Database

y

memory

non-interference

Program
Order i j

/27

Read-over-Write Theorem: #1

32Task 2 | Machine-Code Analysis Framework | Lemma Database

y

Wi(x) memory

non-interference

Program
Order

x

i j

/27

Read-over-Write Theorem: #1

32Task 2 | Machine-Code Analysis Framework | Lemma Database

y

Wi(x)

Rj: y

memory

non-interference

Program
Order

x

i j

/27

Read-over-Write Theorem: #2

33Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

i

overlap

Program
Order

/27

Read-over-Write Theorem: #2

33Task 2 | Machine-Code Analysis Framework | Lemma Database

Wi(x) memory

x

i

overlap

Program
Order

/27

Read-over-Write Theorem: #2

33Task 2 | Machine-Code Analysis Framework | Lemma Database

Wi(x)

Ri: x

memory

x

i

overlap

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

i j

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

Wi(x)

i j

x

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

independent writes commute safely

Wi(x)

i j

x y

Wj(y)

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Program
Order

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

y

Program
Order

Program
Order

/27

Write-over-Write Theorem: #1

34Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

Wi(x)

x y

Program
Order

Program
Order

/27

Write-over-Write Theorem: #2

35Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

visibility of writes

i

Program
Order

/27

Write-over-Write Theorem: #2

35Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

visibility of writes

Wi(x)

i

x

Program
Order

/27

Write-over-Write Theorem: #2

35Task 2 | Machine-Code Analysis Framework | Lemma Database

memory

visibility of writes

Wi(x)

i

Wi(y)

y

Program
Order

/27

Write-over-Write Theorem: #2

35Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

y

Program
Order

Program
Order

/27

Write-over-Write Theorem: #2

35Task 2 | Machine-Code Analysis Framework | Lemma Database

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

Wi(y)

y

y

Program
Order

Program
Order

/27

valid-address-p(i) ⋀

valid-x86-p(x86)
⇒
valid-value-p() ⋀

valid-x86-p(x86)

Preservation Theorems

36Task 2 | Machine-Code Analysis Framework | Lemma Database

reading from a valid x86 state

Ri: x

memory

x

i

/27

valid-address-p(i) ⋀

valid-x86-p(x86)
⇒
valid-value-p() ⋀

valid-x86-p(x86)

Preservation Theorems

36Task 2 | Machine-Code Analysis Framework | Lemma Database

reading from a valid x86 state

Ri: x

writing to a valid x86 state

Wi(x)

valid-address-p(i) ⋀

valid-value-p(x) ⋀

valid-x86-p(x86)
⇒
valid-x86-p()

memory

x

i

/2737

Verification Effort vs. Verification Utility

Task 3 | Program Verification | Effort vs. Utility

/27

Programmer-level Mode: Model Validation

Task B: Validate the execution mode against the processor +
system call service provided by the OS

Task A: Validate the logical mode against the execution mode

/27

Programmer-level Mode: Execution Mode

/27

Programmer-level Mode: Execution and Reasoning

/27

Verification Landscape

Verification Tools:

Automatic Interactive

Static &
dynamic
analyzers

SAT & SMT
solvers

Model
checkers

Interactive
theorem
provers

Interactive
theorem
provers coupled
with automatic
tools

state
explosion
problem

high degree
of manual
effort

can be
applied to
large systems

limited
analysis
capabilities

