
 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Future Microprocessor Verification Issues

Warren A. Hunt, Jr.

Department of Computer Sciences
1 University Station, M/S C0500

The University of Texas
Austin, TX 78712-0233

E-mail: hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Overview of the Talk

• Introduction and Position

• Future Challenges

• Research Directions

1

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Introduction and Position

• The application of formal methods to design projects varies widely, for many
practical reasons:

− size and importance of project,

− available tools and people,

− confidence of architects and managers in the available technology,

− degree of integration of formal methods tools in the tool flow,

− size of the company, and

− duration of the project.

• The use of formal methods represents a vexing management challenge, due
to the lack of available metrics to know when its use is efficient and sufficient.

2

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Cooperating FSMs and “Embedded” Specifications

Microprocessors are designed as many cooperating FSMs.

• Each FSM generally works as fast (eagerly) as possible.

• Specifications are annotated with all kinds of different information.

RTL Description & Annotations

Register
File

Cache
IU

FPU
Data
Path

Rotate

Control
Logic

CAM

TLB

enable = a & cntl[3];

reg1 <= b_bus + a_bus;
n = max(a, b);
cache[n] <= mem_bus;

reg[i] <= sel(enable, i_bus, data_in);

// b_bus[0] ~= a_bus[0];
// b > 0;
// Ax(cntl[1] \/ cntl[3]);
// fp_value(reg1) == fp_value(b_bus) + fp_value(a_bus)

// C1(reg1);

• Many tools (compilers, synthesis, simulators) operate on the RTL.

• Many scripts (Perl, TCL, sed) strip out pieces for other tools.

• There is no uniform, consistent, RTL/annotation-language.

3

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

A Possible Future

We envison a system called FMaAT (Formal Modeling and Analysis Tool).

• FMaAT needs to be able to read, compile, and “model build” the entire
design specification.

• The FMaAT system must, in all respects, operate in a hierarchical manner.

• FMaAT needs to contain all embedded annotations.

• FMaAT needs to be able to act as a database engine that allows every
design module and interface to be identified.

• FMaAT needs to be able to compute cones-of-influence, bus conflicts, im-
proper connections, and other user-definable queries.

• FMaAT must have a command-line interface. In a big design project, tools
are always “taped” together with scripting languages to overcome deficien-
cies in the design flow. FMaAT’s command-line interface should itself be
described formally.

4

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

A Possible Future, continued

• There has to be a way to re-run all checkers, simulators, etc., automatically
whenever there is any change to the design. Automatic regression verification
is a must.

• There must not be any way to get a false positive. There must be provisions
for ensure vacuity checking for analysis requests.

• If possible, FMaAT should have some kind of analysis “coverage metrics”.

• A purely functional verification system is not sufficient. FMaAT must a
way to specify and verify non-functional properties such as:

− power requirements,

− circuit sizes,

−wire types,

− physical location data,

− environmental requirements, and

− other critical design properties.

5

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

A Possible Future, 2nd continued slide

• FMaAT must provide a means to write a truly rigorous high-level specifi-
cation.

• FMaAT must deal with a distributed design process. No project of a sig-
nificant size is all done in a single place.

• Finally, FMaAT must safely extensible; that is FMaAT should be no more
difficult to extend than Emacs, but FMaAT should impose a discipline that
ensures that extensions do not render existing checker and verifiers unsound.

A tool like FMaAT will require a much more general language than those
commercially available, such as Verilog and VHDL and their derivatives.

The limitations of the available languages are causing the specification problem
to actually become worse because designers are forced to record their design
properties as comments or in external files. System-C and System Verilog are
not a long-term answer; in fact, these languages are creating yet more problems.

6

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Research Problems

To make a system like FMaAT will require fundamental changes to the infras-
tructure of commercial design environment.

• New formally specified design and annotation languages need to be defined
that

− provide a semantically unified framework for designs and all associated
specifications; and

− provide mechanisms to represent all of the design “meta” data directly as
a part of the design specification.

• Typical two- and four-valued simulators need to be extended to symbolic
simulators.

• All of the analysis tools (e.g., equivalence and model checkers, (G)STE en-
gines, reachability analysis, theorem provers) must all read the same design
data and all follow the same semantics.

• A new suite of non-functional checkers (e.g., power) need to be developed.

7

 Hardware Verification & Big Theorems

 Warren A. Hunt, Jr. UTexas, CS Dept

Research Problems, continued

• Post-silicon design approaches need to be integrated into the formal design
process.

• Autonomic systems that automatically (re-)run all checkers and provers should
be automatically started any time any part of a design is changed.

• Formal approaches to (microprocessor) security need to be developed.

8

