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Networks in Applications

Web graphs

Collaboration and citation networks

Social networks (Facebook, MySpace, LiveJournal, ...)

Call graph networks (SKT, AT&T)

Networks in Bioinformatics

...
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Graphs

Graph G = (V, E),
V is a set of vertices, and
E is a set of edges between vertices.

The adjacency matrix A = [aij ] of G is given by

aij = wij if there is an edge between vertex i and j

aij = 0 otherwise

Undirected graph then A is symmetric

Directed graph then A is non-symmetric
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Link Prediction Problem

Consider a social network that evolves with time,

· · · −→ A(t−2) −→ A(t−1) −→ A(t) ?−→ At+1
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Q: Can we predict links that will form at time step t + 1?
A: Many models exist, e.g. common neighbors, the Katz measure, etc.

Inderjit S. Dhillon University of Texas at Austin Fast and Accurate Low Rank Approximation of Massive Graphs



Link prediction with multiple sources of information

In most cases, we have a social network between users

4Dave

3Carol

2 Bob

1 Alice

5
Eve

But also additional sources of information

Other types of links between users, e.g. family ties, affiliations

User profiles, demographic information

Blog postings by users, movie ratings, etc

· · ·
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Affiliation recommendation/prediction

Consider a users × affiliations network
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7 Cryptography
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Affiliation recommendation

We want to suggest groups/affiliations to users
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Affiliation recommendation given a social network

Suppose we additionally have a social network:
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Can the social network help to improve affiliation recommendations?
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Challenges

Huge number of users and/or affiliations, e.g. Facebook, MySpace,
Orkut, LiveJournal

Multiple sources of information

Need scalable algorithms and “accurate” predictions
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Tools and Methods
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Path based methods for link prediction

No. of common neighbors can be computed as:

Pcn = A2

Yields no. of paths of length 2 between any two vertices

Katz measure and truncated Katz measure

Pkatz = βA + β2A2 + β3A3 + · · · =
∞∑
i=1

βiAi = (I − βA)−1 − I

Pt-katz = βA + β2A2 + · · ·+ βkAk =
k∑

i=1

βiAi

A3 gives no. of paths of length 3, A4 is no. of paths of length 4, & so on
Small β penalizes paths with larger lengths
Large β amplifies paths with larger lengths
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A social network and its adjacency matrix

4Dave

3Carol

2 Bob

1 Alice

5
Eve

A =


0 1 1 1 1
1 0 0 1 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0
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Link prediction based on common neighbors

No. of common neighbors is given by A2

Carol: common neighbor predicts links to Bob, Dave and Eve (in red).

4Dave

3Carol

2 Bob

1 Alice

5
Eve

A2 =


4 1 0 1 0
1 2 1 1 1
0 1 1 1 1
1 1 1 2 1
0 1 1 1 1
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Link prediction based on Katz measure

K (A, β) = βA + β2A2 + β3A3 + · · · = (I − βA)−1 − I

With β = 0.4
Top two predictions for Carol are to Bob and Dave (in red)
Katz score between Carol & Eve is smaller than other scores (in green)

4Dave

3Carol

2 Bob

1 Alice

5
Eve

K (A, 0.4) =


∗ ∗ ∗ ∗ ∗
∗ ∗ 1.8 ∗ 1.8
∗ 1.8 ∗ 1.8 1.1
∗ ∗ 1.8 ∗ 1.8
∗ 1.8 1.1 1.8 ∗
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After a few time steps....
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0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 1 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1 0
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Common Neighbors

All possible predictions in red, based on common neighbors.

Possible recommendation: top two highest scores
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A2 =



2 1 1 2 0 0 0 0 0
1 3 2 1 0 1 0 0 0
1 2 3 1 0 1 0 0 0
2 1 1 3 1 0 1 1 1
0 0 0 1 1 0 1 1 1
0 1 1 0 0 5 1 1 2
0 0 0 1 1 1 2 2 1
0 0 0 1 1 1 2 2 1
0 0 0 1 1 2 1 1 3
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Katz measure

Katz(A, β) =
∞∑
i=1

βiAi = (I − βA)−1 − I , β < |λi | ∀ i

With β = 1/3 top three Katz scores are the X ’s
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ X ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ X ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ X X ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ X ∗ ∗ ∗ ∗ ∗
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Importance of low rank approximations

Enables scalability

Can filter out noise

Introduces interpretable features...

For example, with the spectral approximation A ≈ V ΛV T,

Ak ≈ (VDV T)k = (VDV T)(V DV T) · · · (VDV T) = VDkV T
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Link predictors with low rank approximations

With spectral approximation,

A ≈ V ΛV T

Common neighbor,

Pcn = A2, Pcn-lr = V Λ2V T

Katz measure,

Pkatz = (I − βA)−1 − I =
∞∑
i=1

βiAi Pt-katz =
k∑

i=1

βiAi

Pkatz-lr = V
(
(I − βΛ)−1 − I

)
V T Pt-katz-lr =

k∑
i=1

βiV ΛiV T
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Generalized Katz, evolving graphs and model learning

Replace β in truncated Katz with α1, . . . , αk

Pt-katz =
k∑

i=1

βiAi ⇒ Pgt-katz =
k∑

i=1

αiA
i

Social network graphs are evolving....

A adjacency matrix at time step t1

B adjacency matrix at time step t2 > t1

Usually B = A + ∆

Learn αi from snapshots A and B

min
αi

∥∥∥ k∑
i=1

αiA
i − B

∥∥∥
F

or rather min
αi

∥∥∥( k∑
i=1

αiA
i − B

)
·M
∥∥∥

F

where Mij = 0 if Aij = 1 and Bij = 1, otherwise Mij = 1
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Link prediction with multiple sources(networks)

Paths with edges in A:

i
A−→ j

A−→ k , A2

Paths with edges in B:

i
B−→ j

B−→ k , B2

Hybrid paths with edges in A and B:

i
B−→ j

A−→ k, BA

A
i j k

B B

A
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Link prediction with multiple sources(networks)

In general, utilizing single source and hybrid source paths of maximum
length lmax involves terms from

(I + A + B + C )lmax

Compare with truncated Katz
Linear combination in terms of {A, A2, · · · , Almax}
Linear combination in terms of

{A, B, C , A2, B2, C 2, AB, AC , BA, BC , CA, CB} lmax = 2

Weights learned using “Hierarchical sparsity regularization”
Utilizing multiple sources can improve link prediction
Experiments with Arxiv and CiteSeer data
Sources include:

1 author × author collaboration network
2 paper × paper citation network
3 author × paper network
4 author × author networks based on similarities of abstracts, titles and

keywords.
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Affiliation recommendation

4Dave
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Affiliation recommendation given a social network

A is the affiliation network, S is the social network

Method 1: Low rank approximation of A

Method 2: Low rank approximations of the combined matrix

C =

[
λS A
AT 0

]
≈
[

V1

V2

]
Λ
[
V T

1 V T
2

]
,

where λ controls amount of influence of the social network.

Predictions based on V1ΛV T
2
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Affiliation recommendation given a social network

Method 3: Katz or truncated Katz measure on the combined matrix

Pkatz = βC + β2C 2 + · · ·

Pt-katz = βC + β2C 2 + · · ·+ βlC l

Predictions are based on the (1,2) block (corresponding to A in C ), e.g.

P
(1,2)
t-katz = βA + β2λSA + β3λ2(S2A + AATA)

We can use both low rank approach and Katz measure approach.

Method 4: Common subspace to approximate A and S

A ≈ QDAV T, S ≈ QDSQT

Q spans dominant subspaces of both A and S
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Graph Clustering/Community Detection
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Graph Partitioning/Clustering

In many applications, goal is to partition/cluster nodes of a graph:

High School Friendship Network

[James Moody. American Journal of Sociology, 2001]
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Graph Partitioning/Clustering

In many applications, goal is to partition/cluster nodes of a graph:

The Internet

[The Internet Mapping Project, Hal Burch and Bill Cheswick, Lumeta Corp, 1999]
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Graph clustering

Cluster vertices V into c disjoint sets Vi ,

V = ∪c
i=1Vi and Vi ∩ Vj = ∅ i 6= j

Objective functions for clustering

RCut = min
V1,...,Vc

c∑
i=1

links(Vi ,VnVi )

|Vi |
(Chan et al. 1994)

NCut = min
V1,...,Vc

c∑
i=1

links(Vi ,VnVi )

degree(Vi )
(Shi and Malik 2000)

KLObj = min
V1,...,Vc

c∑
i=1

links(Vi ,VnVi )

|Vi |
s.t. |Vi | = |Vj | (Kernighan and Lin 1970)

Spectral clustering can be expensive for massive graphs
Fast clustering algorithms without eigenvector computations

GRACLUS (Dhillon et al. 2007) and METIS (Karypis and Kumar 1999)
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Clustering example: arXiv data graph condMat

# of clust edges in clust # of vertices # of edges relative error
10 (graclus) 79.8 % 21,363 182,628 45.0
10 (metis) 77.9 % 21,363 182,628 47.0

A =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc


Inderjit S. Dhillon University of Texas at Austin Fast and Accurate Low Rank Approximation of Massive Graphs



Motivation: main idea through an example

A =

[
A11 0

0 A22

]
Let σ1(A22) < σk(A11) and ŪkΣ̄k V̄ T

k ≈ A11

A ≈ UkΣkV T
k =

[
ŪkΣ̄k V̄ T

k 0
0 0

]
No information from A22 is extracted.
Approximate each block: ŪkΣ̄k V̄ T

k ≈ A11 and ÛkΣ̂k V̂ T
k ≈ A22

A ≈
[

Ūk 0

0 Ûk

] [
Σ̄k 0

0 Σ̂k

] [
V̄k 0

0 V̂k

]T

,
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Main idea continued

A =

[
A11 A12

A21 A22

]
Compute a low rank approximation of each diagonal block

UiSiiV
T
i ≈ Aii Ui , Vi orthonormal

Approximate now

A =

[
A11 A12

A21 A22

]
≈
[

U1 0
0 U2

] [
S11 S12

S21 S22

] [
V1 0
0 V2

]T

where
Sij = UT

i AijVj
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Low rank vs clustered low-rank

Low rank: A ≈ UΣV T

Clustered low rank: A ≈
[

U1 0
0 U2

] [
S11 S12

S21 S22

] [
V1 0
0 V2

]T

Observe diag(U1,U2, · · · ,Uc) and has the same memory usage as U

Experiments show that most of U is contained in diag(U1,U2, · · · ,Uc)

Similarly of V and diag(V1,V2, · · · ,Vc)
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Algorithm: Clustered low rank approximation

Input: An m ×m adjacency matrix A of a graph, number of clusters c
Output: Clustered low rank approximation of A
1: Cluster the graph into c clusters
2: Compute a low rank approximation of each cluster

UiSiVi ≈ Aii

3: Extend the cluster-wise approximations, into an approximation for the
entire matrix A

Sij = UT
i AijVj
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Different low rank approximations

Deterministic methods — truncated SVD using ARPACK, PROPACK,
SVDPACK.

Stochastic methods

Y = AΩ or Y = (AAT )qAΩ

where q is small (1,2 or 3), and Ω is a random matrix (standard
Gaussian). An approximation is obtained with

A ≈ Â = PY A = Y (Y T Y )−1Y T A

where PY is an orthogonal projection onto the range space of Y
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Deterministic error bound—preliminaries

For any partitioning

A =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc


and any Y (i) form

Y =

Y (1)

. . .

Y (c)

 PY =

PY (1)

. . .

PY (c)


PY and each PY (i) are orthogonal projectors
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Deterministic clustered error bound

The approximation error is given by

‖A− Â‖ = ‖A− PY A‖ = ‖(I − PY )A‖

Theorem

‖(I − PY )A‖2F ≤
c∑

i ,j=1

‖(I − PY (i))Aij‖2F
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Introduce variables

Assume we have c clusters

A =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc


Generate

Y (i) = AiiΩ
(i)

Y (i) = (AiiA
T
ii )qAiiΩ

(i)

using random Ω(i)

Y =

Y (1)

. . .

Y (c)

 PY =

PY (1)

. . .

PY (c)


Inderjit S. Dhillon University of Texas at Austin Fast and Accurate Low Rank Approximation of Massive Graphs



Stochastic error bounds in the clustered setting

Theorem

E‖(I − PY )A‖F ≤
c∑

i=1

(
1 +

ki

pi + 1

)1/2

‖Σ(i)
2 ‖F +

c∑
i ,j=1, i 6=j

‖Aij‖2F

E‖(I − PY )A‖2 ≤
c∑

i=1

((
1 +

√
ki√

pi − 1

)
‖Σ(i)

2 ‖2 +
e
√

ki + pi

pi
‖Σ(i)

2 ‖F

)

+
c∑

i ,j=1, i 6=j

‖Aij‖22

Aii ≈ U(i)Σ(i)(V (i))T = U(i)

[
Σ

(i)
1 0

0 Σ
(i)
2

] [
V

(i)
1 V

(i)
2

]T
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Experimental Results
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Google web matrix—performance comparison

434,818 vertices; 3,419,124 edges

Edges within clusters: 98.2%, 97.8%, 97.6%; graph is highly clusterable

“Ranks” are k = 20, 50, 100, 150, 200.
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LiveJournal graph

3,828,682 vertices; 65,825,429 edges

Edges within clusters: 76.9%, 69.3%, 66.3%; graph not highly clusterable

“Ranks” are k = 20, 50, 100, 150, 200.
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Image segmentation graph

Here we use the normalized adjacency matrix:

10,000 vertices; 1,091,910 edges

Edges within clusters: 77.5%, 70.4%; graph not highly clusterable
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Testbed of Social Networks

Network Date # nodes # links # added links % added links

4/14/2007 1,990,149 41,302,536 – –
Flickr 4/25/2007 1,990,149 42,056,754 754,218 1.8%

5/6/2007 1,990,149 42,879,714 822,960 1.9%

02/16/2009 1,770,961 83,663,478 – –
LiveJournal 03/4/2009 1,770,961 84,413,542 750,064 0.8%

04/03/2009 1,770,961 85,713,766 1,300,224 1.5%

12/11/2008 2,137,264 90,333,122 – –
MySpace 1/11/2009 2,137,264 90,979,264 646,142 0.7%

2/14/2009 2,137,264 91,648,716 669,452 0.7%

# clusters avg size % intra links % inter links

Flickr 18 110,563 71.8% 28.2%
LiveJournal 17 106,241 72.5% 27.5%
MySpace 17 125,721 51.9% 48.1%
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Link prediction evaluation — have to sample

Introduce the sets

E = {(i , j) | Aij = 1}, “old links”

N = {(i , j) | Aij = 0 & Bij = 1}, newly formed links

Z = {(i , j) | Aij = 0 & Bij = 0}, no links between vertices i and j

Concrete example (MySpace): A is 2.1M × 2.1M matrix with

|E| ≈ 0.0020%, |N | ≈ 1.46 · 10−5%, |Z| ≈ 99.998%

Training Randomly sample 100,000 links from N and 500,000 links
from Z, true ratio 1 to 6.8M

Testing Randomly sample testing subsets from N and Z, compute
corresponding scores, and predict links on highest scores.

Predictions Generic predictor in factored form

P = V̄ D̄V̄ T

we can compute Pij for any ij
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Performance of link predictors

1 Compute scores for 100k positive & 500k negative links (600k total)

2 Sort the scores

3 For a given threshold consider all scores above this threshold as
predictions of friendships

4 Plot false positive rate (FPR) vs false negative rate (FNR) for a range
of threshold values

FPR =
#of incorrectly predicted friend links

#of non-friend pairs

FNR =
#of missed friend links

#of new friend links

5 Each threshold value gives one point in the plot
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Link prediction results on LiveJournal

Lower-left better; “-c” indicates clustering is involved
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Clustering improves both Katz measures and Common neighbors method
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Link prediction results on Flickr

Lower-left better; “-c” indicates clustering is involved
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Best method “SL-c” Spectral learning with clustering (not in this talk)
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Affiliation recommendation on Youtube data

Upper-left is better
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Clear improvement in performance by utilizing the social network (for both
truncated Katz and latent factors model (LFM)).
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Affiliation recommendation on Youtube data

Upper-left is better
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Best two methods: truncated Katz measure using Common Subspaces and
truncated Katz measure using latent factors model and clustering.
Clustering gives a substantial boost in performance (compare “pink” with
“red square”)
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Summary and Conclusions

Clustered low rank approximation

Improved quality of approximation with identical memory consumption
faster than state-of-the-art (PROPACK, SVDPACK, ARPACK). Note:
clustering time included.

Prediction methods

Katz and CN using graph embedding
Generalized truncated Katz

Utilizing multiple sources improves link prediction

Utilizing social network improves affiliation recommendation

Improved and scalable computation of proximity measures & link
predictions with clustered low rank approximation

Fruitful to combine clustering structure with low rank approximation
framework
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