Orthogonal Eigenvectors and Gram-Schmidt

Inderjit S. Dhillon
The University of Texas at Austin

Beresford N. Parlett
The University of California at Berkeley

Joint GAMM-SIAM Conference on Applied Linear Algebra
University of Düsseldorf, Germany
July 25, 2006
One of FOUR main papers on this work

Algorithm MR^3 or MRRR
- Acronym for Multiple Relatively Robust Representations
- Accurate but turgid title
- Jim Demmel has a more catchy title...

Guiding Principle: No Gram-Schmidt
interest very close to 0. The middle part of this paper presents the relevant error analysis. Although essential for our results, this analysis will be indigestible for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input \(L, D \) and the output twisted factors suffice to give the exact relation.
Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error analysis. Although essential for our results, this analysis will be indigestible for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input L, D and the output twisted factors suffice to give the exact relation.

What this talk will not do
Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the **relevant error analysis**. Although **essential** for our results, this analysis will be **indigestible** for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input \(L, D \) and the output twisted factors suffice to give the exact relation.

What this talk will not do

- **Roundoff Error Analysis**
Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error analysis. Although essential for our results, this analysis will be indigestible for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input L, D and the output twisted factors suffice to give the exact relation.

What this talk will not do

- Roundoff Error Analysis
- Theorems, Proofs
Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error analysis. Although essential for our results, this analysis will be indigestible for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input L, D and the output twisted factors suffice to give the exact relation.

What this talk will not do

- Roundoff Error Analysis
- Theorems, Proofs
- Performance Numbers
Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error analysis. Although essential for our results, this analysis will be indigestible for most readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry of the input L, D and the output twisted factors suffice to give the exact relation.

What this talk will not do

- Roundoff Error Analysis
- Theorems, Proofs
- Performance Numbers
- Stick closely to the paper
Diagonal of the Inverse

- Let J be a tridiagonal that is irreducible and invertible
- Not necessarily symmetric
Let J be a tridiagonal that is irreducible and invertible

- Not necessarily symmetric
- Perform triangular factorization “down” and “up” (no pivoting)

\[J = L_+ D_+ U_+ = U_- D_- L_- \]

- D_+ are “forward” pivots while D_- are “backward” pivots
Diagonal of the Inverse

Let J be a tridiagonal that is irreducible and invertible

Not necessarily symmetric

Perform triangular factorization “down” and “up” (no pivoting)

$$J = L_+ D_+ U_+ = U_- D_- L_-$$

D_+ are “forward” pivots while D_- are “backward” pivots

Is there a relation between D_+ and D_-?
Diagonal of the Inverse

Let J be a tridiagonal that is irreducible and invertible

Not necessarily symmetric

Perform triangular factorization “down” and “up” (no pivoting)

$$J = L_+ D_+ U_+ = U_- D_- L_-$$

D_+ are “forward” pivots while D_- are “backward” pivots

Is there a relation between D_+ and D_-?

Beautiful identity:

$$D_+ + D_- = \text{diag}(J) + \text{diag}(J^{-1})^{-1}$$
FOUR New Ideas
FOUR New Ideas

Replace the tridiagonal with a bidiagonal
FOUR New Ideas

- Replace the tridiagonal with a bidiagonal
- Shift close to clusters, but with differential transforms
FOUR New Ideas

- Replace the tridiagonal with a bidiagonal
- Shift close to clusters, but with differential transforms
- Twist, again with differential transforms
FOUR New Ideas

- Replace the tridiagonal with a bidiagonal
- Shift close to clusters, but with differential transforms
- Twist, again with differential transforms
- Analyze with a Representation Tree
Difficulties

- All eigenvalues of T are easily computed in $O(n^2)$ time
- Given $\hat{\lambda}$, inverse iteration computes the eigenvector:

$$
(T - \hat{\lambda}I)x_{i+1} = x_i, \quad i = 0, 1, 2, \ldots
$$

- Costs $O(n)$ per iteration
- Typically, 1-3 iterations are enough

BUT, inverse iteration only guarantees

$$
\|T\hat{v} - \hat{\lambda}\hat{v}\| = O(\varepsilon\|T\|)
$$
Fundamental Limitations

Gap Theorem:

\[
\sin \angle (v, \hat{v}) \leq \frac{\|T \hat{v} - \hat{\lambda} \hat{v}\|}{\text{Gap}(\hat{\lambda})}
\]

Gap(\hat{\lambda}) can be small:

\[
\begin{bmatrix}
1 & \varepsilon_1 \\
\varepsilon_1 & 1 & \varepsilon_2 \\
\varepsilon_2 & 1 & \varepsilon_3 \\
\varepsilon_3 & 1
\end{bmatrix}
\]

When eigenvalues are close, independently computed eigenvectors WILL NOT be mutually orthogonal.
Symmetric positive definite eigenproblem, $n = 966$

Occurs in Møller-Plesset theory in the modeling of biphenyl

Eigenvalue Distribution:

LAPACK “clusters” — numbered 1, . . . , 939 and smaller ones
Example from Quantum Chemistry

Plot of $\text{Absgap}(i) = \log_{10}\left(\min(\lambda_{i+1} - \lambda_i, \lambda_i - \lambda_{i-1})/||T||\right)$ versus i :

Plot of $\text{Relgap}(i) = \log_{10}\left(\min(\lambda_{i+1} - \lambda_i, \lambda_i - \lambda_{i-1})/|\lambda_i|\right)$ versus i :
First Steps

- Factor $T = LDL^T$
- Compute eigenvalues of LDL^T — by dqds or bisection
- For each eigenvalue λ, compute eigenvector by inverse iteration
Computing Eigenvector #1

\(\hat{\lambda}_1 = 4.1338 \times 10^{-08}, \hat{\lambda}_2 = 4.3417 \times 10^{-08}, \hat{\lambda}_3 = 4.5 \ldots \times 10^{-08} \)

Factor \(T_1 = LDL^T - \hat{\lambda}_1 I = L_+ D_+ L_+^T = U_- D_- U_-^T \) (up & down)

Compute \(\gamma(i) = D_+(i) + D_-(i) - T_1(i, i) \)

Solve \(T_1 z_1 = \gamma_r e_r \), where \(\gamma_r = \min_k |\gamma_k| \)
Computing Eigenvector #2

- $\hat{\lambda}_1 = 4.1338 \times 10^{-08}$, $\hat{\lambda}_2 = 4.3417 \times 10^{-08}$, $\hat{\lambda}_3 = 4.5\ldots \times 10^{-08}$
- Factor $T_2 = LDL^T - \hat{\lambda}_2 I = L_+ D_+ L_+^T = U_- D_- U_-^T$ (up & down)
- Compute $\gamma(i) = D_+(i) + D_-(i) - T_2(i, i)$

Solve $T_2z_2 = \gamma_r e_r$, where $\gamma_r = \min_k |\gamma_k|$
Accuracy of the vectors

- $|z_1^T z_2| < 2\varepsilon$
- Residual norms are $< \varepsilon \|T\|$.

In general,

- $\min_k |\gamma_k| \approx \varepsilon |\hat{\lambda}|$
- Dot Product between two vectors $\propto \frac{\varepsilon |\hat{\lambda}|}{\text{Gap}}$
- If two eigenvalues share d leading digits, then dot product $\approx 10^d \varepsilon$
Smaller Relative Gaps

\[\hat{\lambda}_{280} \text{ to } \hat{\lambda}_{303} \text{ are:} \]

- 0.2852950617
- 0.2877656004
- ...
- 0.2901068244
- 0.2901514166
- 0.2901480490

Some eigenvalues agree in 5 digits
Smaller Relative Gaps

\(\hat{\lambda}_{280} \) to \(\hat{\lambda}_{303} \) are:

\[
0.2852950617 \\
0.2877656004 \\
\vdots \\
0.2901068244 \\
0.2901514166 \\
0.2901480490
\]

Some eigenvalues agree in 5 digits

Compute new shifted representations:

\[
LDL^T - 0.2852950617I = L_1D_1L_1^T
\]

\[
0.60738244647 \times 10^{-15} \\
0.24705386756 \times 10^{-02} \\
\vdots \\
0.4811762683 \times 10^{-02} \\
0.4852987244 \times 10^{-02} \\
0.4855354851 \times 10^{-02}
\]
Smaller Relative Gaps

\[\hat{\lambda}_{280} \text{ to } \hat{\lambda}_{303} \text{ are:} \]

\[
0.2852950617 \\
0.2877656004 \\
\vdots \\
0.2901068244 \\
0.2901514166 \\
0.2901480490
\]

- Some eigenvalues agree in 5 digits
- Compute new shifted representations:

\[
LDL^T - 0.2852950617I = L_1D_1L_1^T \\
0.60738244647 \times 10^{-15} \\
0.24705386756 \times 10^{-02} \\
\vdots \\
0.4811762683 \times 10^{-02} \\
0.4852987244 \times 10^{-02} \\
0.4855354851 \times 10^{-02}
\]

\[
L_1D_1L_1^T - 0.4855354851 \times 10^{-02}I = L_2D_2L_2^T \\
-0.4459216793 \times 10^{-04} \\
-0.3367607591 \times 10^{-05} \\
-0.1463151420 \times 10^{-17}
\]
The computed vectors

\[\hat{\lambda} = -0.4459216793 \times 10^{-04} \]
The computed vectors

\[\hat{\lambda} = -0.3367607591 \times 10^{-05} \]
The computed vectors

\[\hat{\lambda} = -0.1463151420 \times 10^{-17} \]

- Maximum Dot Product $< 3\varepsilon$.
Key Idea 1 — Replace the tridiagonal with a bidiagonal

Bidirectional Factorization

\[T \rightarrow LDL^T \]
Key Idea 1 — Replace the tridiagonal with a bidiagonal

- Bidiagonal Factorization

\[T \rightarrow LDL^T \]

- Relative condition number

\[
\text{relcond}(\lambda) = \frac{v^T L |D| L^T v}{v^T LDL^T v}
\]
Key Idea 1 — Replace the tridiagonal with a bidiagonal

- Bidiagonal Factorization
 \[T \rightarrow LDL^T \]

- Relative condition number
 \[\text{relcond}(\lambda) = \frac{v^T L|D|L^Tv}{v^T LDL^Tv} \]

- Seminal 1991 Demmel-Kahan paper (SIAG/LA Prize)
 - Small relative changes in the entries of a bidiagonal cause small relative changes in all its singular values
Key Idea 1 — Replace the tridiagonal with a bidiagonal

- Bidiagonal Factorization
 \[T \rightarrow LDL^T \]

- Relative condition number
 \[
 \text{relcond}(\lambda) = \frac{v^T L |D| L^T v}{v^T LDL^T v}
 \]

- Seminal 1991 Demmel-Kahan paper (SIAG/LA Prize)
 - Small relative changes in the entries of a bidiagonal cause small relative changes in all its singular values

- \(L \) and \(D \) almost always define the small eigenvalues of \(LDL^T \) to high relative accuracy
 - Even in the face of element growth!
Key Idea 2 — Shift close to clusters

Connection between residuals and orthogonality. Let

\[r = Ax - x\hat{\lambda} \neq 0, \quad s = Ay - y\hat{\mu} \neq 0, \]
Key Idea 2 — Shift close to clusters

- Connection between residuals and orthogonality. Let

\[r = Ax - x \hat{\lambda} \neq 0, \quad s = Ay - y \hat{\mu} \neq 0, \]

- Then

\[x^T y (\hat{\mu} - \hat{\lambda}) = y^T r - x^T s \]
Key Idea 2 — Shift close to clusters

Connection between residuals and orthogonality. Let

\[r = Ax - x\hat{\lambda} \neq 0, \quad s = Ay - y\hat{\mu} \neq 0, \]

Then

\[x^T y(\hat{\mu} - \hat{\lambda}) = y^T r - x^T s \]

Suppose, by some miracle, \(\|r\| \leq \varepsilon_1|\hat{\lambda}| \) and \(\|s\| \leq \varepsilon_2|\hat{\mu}| \), then
Key Idea 2 — Shift close to clusters

Connection between residuals and orthogonality. Let

\[r = Ax - x\hat{\lambda} \neq 0, \quad s = Ay - y\hat{\mu} \neq 0, \]

Then

\[x^T y(\hat{\mu} - \hat{\lambda}) = y^T r - x^T s \]

Suppose, by some miracle, \(\|r\| \leq \varepsilon_1|\hat{\lambda}| \) and \(\|s\| \leq \varepsilon_2|\hat{\mu}| \), then

\[|x^T y| \leq \max(\varepsilon_1, \varepsilon_2) \left/ \frac{|\hat{\lambda} - \hat{\mu}|}{|\hat{\lambda}| + |\hat{\mu}|} \right. \]

Thus, orthogonality depends on the relative separation
Key Idea 2 — Shift close to clusters

- Connection between residuals and orthogonality. Let

$$r = Ax - x\hat{\lambda} \neq 0, \quad s = Ay - y\hat{\mu} \neq 0,$$

- Then

$$x^T y(\hat{\mu} - \hat{\lambda}) = y^T r - x^T s$$

- Suppose, by some miracle, \(\|r\| \leq \varepsilon_1|\hat{\lambda}|\) and \(\|s\| \leq \varepsilon_2|\hat{\mu}|\), then

$$|x^T y| \leq \max(\varepsilon_1, \varepsilon_2) \left/ \frac{|\hat{\lambda} - \hat{\mu}|}{|\hat{\lambda}| + |\hat{\mu}|} \right.$$

- Thus, orthogonality depends on the relative separation

- Relative Gaps can be made larger by shifting

$$LDL^T - \xi I = \tilde{L}\tilde{D}\tilde{L}^T$$

- Different representations for different clusters!

 - Essential to use differential transforms
Differential Transforms

\[LDL^T - \hat{\lambda} I = L_+ D_+ L_+^T \]

Simple qd:

\[D_+(1) := d_1 - \hat{\lambda} \]

for \(i = 1, n - 1 \)

\[L_+(i) := (d_i l_i) / D_+(i) \]

\[D_+(i + 1) := d_i l_i^2 + d_{i+1} - L_+(i) d_i l_i - \hat{\lambda} \]

end for

Differential qd:

\[s_1 := -\hat{\lambda} \]

for \(i = 1, n - 1 \)

\[D_+(i) := s_i + d_i \]

\[L_+(i) := (d_i l_i) / D_+(i) \]

\[s_{i+1} := L_+(i) l_i s_i - \hat{\lambda} \]

end for

\[D_+(n) := s_n + d_n \]
Key Idea 3 — Twist, again with differential transformations

- Godunov et al. [1985], Fernando [1995]
- Compute the appropriate Twisted Factorization:

\[
LDL^T - \hat{\lambda} I = N_r D_r N_r^T,
\]

where \(N_r = \)

\[
\begin{bmatrix}
\times & \times & \times & & \\
\times & \times & \times & & \\
& & \ddots & \times & \times \\
& & \times & \times & \\
& & & \times & \\
& & & & \times
\end{bmatrix}
\]

- Solve for \(z \), \(N_r D_r N_r^T z = \gamma_r e_r \) (\(\Rightarrow N_r^T z = e_r \)):

\[
z(i) = \begin{cases}
1, & i = r, \\
-L_+(i) \cdot z(i + 1), & i = r - 1, \ldots, 1, \\
-U_-(i - 1) \cdot z(i - 1), & i = r + 1, \ldots, n.
\end{cases}
\]
Key Idea 4 — Representation Tree

Eigenvalues: $\varepsilon, 1 + \sqrt{\varepsilon}, 1 + 2\sqrt{\varepsilon}, 2$
Key Idea 4 — Representation Tree

Eigenvalues: \(\varepsilon, 1 + \sqrt{\varepsilon}, 1 + 2\sqrt{\varepsilon}, 2 \)

Extra representation needed at \(\sigma = 1 \): \[
L_p D_p L_p^T - I = L_0 D_0 L_0^T
\]
Key Idea 4 — Representation Tree

- Eigenvalues: \(\varepsilon, 1 + \sqrt{\varepsilon}, 1 + 2\sqrt{\varepsilon}, 2 \)

- Extra representation needed at \(\sigma = 1 \):

\[
L_p D_p L_p^T - I = L_0 D_0 L_0^T
\]

- Following **Representation Tree** captures the steps of the algorithm:
Caveats

- BLAS
 - Complexity is $O(nk)$ to compute k eigenpairs
 - However, all operations are BLAS 1
 - Closest competitor D&C — $O(n^3)$, but BLAS 3

- Very tight eigenvalue clusters
 - C. Vömel’s torture tests
\(W_{21}^+ \)

\[\lambda_{20} \text{ and } \lambda_{21} \text{ are identical to working precision} \]
Wilkinson’s Matrix W_{21}^+

- λ_{20} and λ_{21} are identical to working precision
- Form new representation:

$$L_p D_p L_p^T - \hat{\lambda}_{21} I = L_0 D_0 L_0^T$$
Wilkinson’s Matrix W_{21}^+

- λ_{20} and λ_{21} are identical to working precision
- Form new representation:

$$L_p D_p L_p^T - \hat{\lambda}_{21} I = L_0 D_0 L_0^T$$

- Roundoff to the rescue:

$$\lambda_{20} (L_0 D_0 L_0^T) \& \lambda_{21} (L_0 D_0 L_0^T) \quad \text{— no digits in common!}$$

$$-7.28 \times 10^{-14} \& -1.22 \times 10^{-15}$$
Wilkinson’s Matrix W_{21}^+

- λ_{20} and λ_{21} are identical to working precision
- Form new representation:
 \[
 L_p D_p L_p^T - \hat{\lambda}_{21} I = L_0 D_0 L_0^T
 \]
- Roundoff to the rescue:
 \[
 \lambda_{20}(L_0 D_0 L_0^T) \quad \& \quad \lambda_{21}(L_0 D_0 L_0^T) \quad \text{— no digits in common!}
 \]
 \[
 -7.28 \times 10^{-14} \quad \& \quad -1.22 \times 10^{-15}
 \]
- Computed Eigenvectors \hat{v}_{20} and \hat{v}_{21} (inner product is 1.0×10^{-16}):
Caveats

- **BLAS**
 - Complexity is $O(nk)$ to compute k eigenpairs
 - However, all operations are BLAS 1
 - Closest competitor D&C — $O(n^3)$, but BLAS 3

- Very tight eigenvalue clusters
 - C. Vömel’s torture tests — 5 copies of W_{101}^+ with glue of $\sqrt{\varepsilon}$
 - Required a tweak — Perturb base representation