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@ One of FOUR main papers on this work

@ Algorithm MR® or MRRR
@ Acronym for Multiple Relatively Robust Representations
@ Accurate but turgid title
@ Jim Demmel has a more catchy title...

@ Guiding Principle: No Gram-Schmidt



@ Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error
analysis. Although essential for our results, this analysis will be indigestible for most
readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry
of the input L, D and the output twisted factors suffice to give the exact relation.
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@ Excerpt from the Introduction

interest very close to 0. The middle part of this paper presents the relevant error
analysis. Although essential for our results, this analysis will be indigestible for most
readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry
of the input L, D and the output twisted factors suffice to give the exact relation.

@ What this talk will not do
@ Roundoff Error Analysis
@ Theorems, Proofs
@ Performance Numbers

@ Stick closely to the paper
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Diagonal of the Inverse

Let J be a tridiagonal that is irreducible and invertible

Not necessarily symmetric

Perform triangular factorization “down” and “up” (no pivoting)
J=Ly D, Uy =U_D_L_

D are “forward” pivots while D_ are “backward” pivots

Is there a relation between Dy and D_7?

Beautiful identity:

Dy + D_ = diag (J) + diag (J_l)_l
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@ FOUR New ldeas
@ Replace the tridiagonal with a bidiagonal
@ Shift close to clusters, but with differential transforms
@ Twist, again with differential transforms

@ Analyze with a Representation Tree



Difficulties

@ All eigenvalues of T are easily computed in O(n?) time
@ Given ), inverse iteration computes the eigenvector:
(T — M1 = x;, i=0,1,2,...
@ Costs O(n) per iteration
@ Typically, 1-3 iterations are enough

@ BUT, inverse iteration only guarantees

T —Ao| = Ol|T])



Fundamental Limitations

Gap Theorem :

T/\ _ A/\
sin Z(v,0) < |79 AXUH

Gap(\)

Gap(\) can be small :
. _
e1 1 &9
eg 1 €3
! ez 1

When eigenvalues are close, independently computed eigenvectors WILL
NOT be mutually orthogonal



Example from Quantum Chemistry

@ Symmetric positive definite eigenproblem, n = 966
@ Occurs in Mgller-Plesset theory in the modeling of biphenyl

@ Eigenvalue Distribution:
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@ LAPACK “clusters” — numbered 1, ...,939 and smaller ones



Example from Quantum Chemistry

Plot of Absgap(i) = loglo(min()\zqu — A, A\ — )\Z'_l)/HT‘ ) Versus i .

Eigenvalue Index

Plot of Relgap(i) = loglo(min()\zqu — A, A\ — Az’—l)/|>\z’|) Versus i .
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First Steps

@ FactorT = LDL?
@ Compute eigenvalues of LDL? — by dqds or bisection

@ For each eigenvalue )\, compute eigenvector by inverse iteration



Computing Eigenvector #1

@ )\ =4.1338x 1078, Ny =4.3417x 10798, A\g =4.5... x 107
@ FactorTy = LDLY —\I=LyDiLY =U_D_UZ (up & down)
@ Compute (i) = Dy (¢) + D— (i) — T1(i,1)

log10(|gamma])

@ Solve Ty z1 = yrer, Where v, = miny, ||

pl




Computing Eigenvector #2

@ )\ =4.1338x 1078, Ny =4.3417x 10798, A\g =4.5... x 107
@ Factor 7y = LDLY — Mol = Ly D+ LY = U_D_UZ (up & down)
@ Compute (i) = D4 (¢) + D_ (i) — Ta(i,1)

log10(|gamma])

@ Solve Thze = yrer, Where v, = miny, ||

0000000



Accuracy of the vectors

@ |2f 23| < 2¢

@ Residual norms are < ¢||T||

In general,
@ ming |v,| = e[A|

||

@ Dot Product between two vectors Gap

@ If two eigenvalues share d leading digits, then dot product ~ 10%
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Smaller Relative Gaps

Q 5\280 to 5\303 are .
0.2852950617
0.2877656004

0.2901068244
0.2901514166
0.2901480490

@ Some eigenvalues agree in 5 digits
@ Compute new shifted representations:

LDLT —0.2852950617] = L1 D1LY | L1D1LT —0.4855354851 x 107921 = LoDy LT

0.60738244647 x 10— 1°

0.24705386756 x 1092
—0.4459216793 x 1094

—0.3367607591 x 10—9%

—02
UHESELIG2683 U —0.1463151420 x 1017

0.4852987244 x 1002
0.4855354851 x 1002




The computed vectors

@ )= —0.4459216793 x 1094

I
700 800 900 1000




The computed vectors

@ )= —0.3367607591 x 1072

1 1 1 1 1 1 1 1 1
(o) 100 200 300 400 500 600 700 800 900 1000
i



The computed vectors

@ )= —0.1463151420 x 10~ 17

I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000
i

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
i

@ Maximum Dot Product < 3e.
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Key Idea 1 — Replace the tridiagonal with a bidiagonal

@ Bidiagonal Factorization

T — LDLT
@ Relative condition number
T T
v" L|D|L" v
relcond()\) =
( ) vI'LDLT v

@ Seminal 1991 Demmel-Kahan paper (SIAG/LA Prize)

@ Small relative changes in the entries of a bidiagonal cause small
relative changes in all its singular values

@ L and D almost always define the small eigenvalues of LDL?! to high
relative accuracy

@ Even in the face of element growth!
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Connection between residuals and orthogonality. Let
r=Azx —a\#£0, s=Ay—yp#0,

Then
sty =N =ylr—a’s

Suppose, by some miracle, ||r|| < e1|\| and ||s|| < 2|/, then

54
\wTy] < max(sl,sg)/ |A 'LLA|
Al + |4

Thus, orthogonality depends on the relative separation



Key Idea 2 — Shift close to clusters

Connection between residuals and orthogonality. Let

r=Azx —a\#£0, s=Ay—yp#0,

Then
sty =N =ylr—a’s

Suppose, by some miracle, ||r|| < e1|\| and ||s|| < 2|/, then

X — i
A+ |4

2! y| < max(eq,e2)

Thus, orthogonality depends on the relative separation

Relative Gaps can be made larger by shifting

~ o~ o~

LDLY —¢r=LDLY

Different representations for different clusters!
@ Essential to use differential transforms



Differential Transforms

T 3 T
oLt - i1 = LyD,LY

Simple qd :

A

Di(1) := dy — A

fori=1,n—-1
Li(i) = (dil;)/D+(3)
Dy(i+1) = dili +dip1 — Ly ()d;l;

A

— A

end for
l

Differential qd :

$1 = —A
fori=1,n-1
D4 (1) == s; +d;
Ly (i) = (dil;)/D+(2)
si41 = Ly (i)lis; — A
end for
Di(n) := sn+dn




Key Idea 3 — Twist, again with differential transformations

@ Godunov et al. [1985], Fernando [1995]
@ Compute the appropriate Twisted Factorization :

LDLY — X\ = N.D,N/!,

where N, =
X X
X X
i X
@ Solve for z, NTDTN?zZVTer(iN;‘Fz:eT):
(1, i=r,
2() = & —Li(i)-2(i+ 1), i=r—1,....1,
| —U-(i—1)2(: - 1), i=r—+1,...,n.



Key Idea 4 — Representation Tree

@ Eigenvalues: ¢, 1 + /e, 1 4+ 24/¢, 2



Key Idea 4 — Representation Tree

@ Eigenvalues: ¢, 1 + /e, 1 4+ 24/¢, 2

@ Extra representation needed at o = 1:

LpyDpL: —1 = LoDoL{



Key Idea 4 — Representation Tree

@ Eigenvalues: ¢, 1 + /e, 1 4+ 24/¢, 2

@ Extra representation needed at o = 1:
LpyDpL: —1 = LoDoL{

@ Following Representation Tree captures the steps of the algorithm:

Q{Lp,Dp},{l,Z,SA}D

€ 1 2

(NP A1) <<{L07Do}7{2739 (NS ALY, {4})

Ve NG

{NSY,Az),{2}) {NSY A3}, {3})




Caveats

@ BLAS
@ Complexity is O(nk) to compute k eigenpairs
@ However, all operations are BLAS 1
@ Closest competitor D&C — O(n?), but BLAS 3

@ Very tight eigenvalue clusters
@ C. VOmel's torture tests
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Wilkinson’s Matrix .,

Aop and Ao are identical to working precision
Form new representation:

LpDpL, — A1l = LoDoLg
Roundoff to the rescue:

)\QO(LODOLOT) & Ao (LODOLOT) — no digits in common!
~7.28x 107" & —1.22x 107"

Computed Eigenvectors 959 and 957 (inner product is 1.0 x 107 19):




Caveats

@ BLAS
@ Complexity is O(nk) to compute k eigenpairs
@ However, all operations are BLAS 1
@ Closest competitor D&C — O(n?), but BLAS 3

@ Very tight eigenvalue clusters
@ C.Vomel's torture tests — 5 copies of W, with glue of /&
@ Required a tweak — Perturb base representation
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