
Orthogonal Eigenvectors and Gram-Schmidt

Inderjit S. Dhillon

The University of Texas at Austin

Beresford N. Parlett

The University of California at Berkeley

Joint GAMM-SIAM Conference on Applied Linear Algebra

University of Düsseldorf, Germany

July 25, 2006



One of FOUR main papers on this work

Algorithm MR3 or MRRR

Acronym for Multiple Relatively Robust Representations
Accurate but turgid title
Jim Demmel has a more catchy title...

Guiding Principle: No Gram-Schmidt
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What this talk will not do

Roundoff Error Analysis

Theorems, Proofs

Performance Numbers

Stick closely to the paper
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Diagonal of the Inverse

Let J be a tridiagonal that is irreducible and invertible

Not necessarily symmetric

Perform triangular factorization “down” and “up” (no pivoting)

J = L+D+U+ = U−D−L−

D+ are “forward” pivots while D− are “backward” pivots

Is there a relation between D+ and D−?

Beautiful identity:

D+ + D− = diag (J) + diag (J−1)−1
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FOUR New Ideas

Replace the tridiagonal with a bidiagonal

Shift close to clusters, but with differential transforms

Twist, again with differential transforms

Analyze with a Representation Tree



Difficulties

All eigenvalues of T are easily computed in O(n2) time

Given λ̂, inverse iteration computes the eigenvector:

(T − λ̂I)xi+1 = xi, i = 0, 1, 2, . . .

Costs O(n) per iteration

Typically, 1-3 iterations are enough

BUT, inverse iteration only guarantees

‖T v̂ − λ̂v̂‖ = O(ε‖T‖)



Fundamental Limitations

Gap Theorem :

sin ∠(v, v̂) ≤ ‖T v̂ − λ̂v̂‖
Gap(λ̂)

Gap(λ̂) can be small : 26664 1 ε1

ε1 1 ε2

ε2 1 ε3

ε3 1

37775

When eigenvalues are close, independently computed eigenvectors WILL
NOT be mutually orthogonal



Example from Quantum Chemistry

Symmetric positive definite eigenproblem, n = 966

Occurs in Møller-Plesset theory in the modeling of biphenyl

Eigenvalue Distribution:
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Example from Quantum Chemistry

Plot of Absgap(i) = log10(min(λi+1 − λi, λi − λi−1)/‖T‖) versus i :
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Plot of Relgap(i) = log10(min(λi+1 − λi, λi − λi−1)/|λi|) versus i :
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First Steps

Factor T = LDLT

Compute eigenvalues of LDLT — by dqds or bisection

For each eigenvalue λ, compute eigenvector by inverse iteration



Computing Eigenvector #1

λ̂1 = 4.1338 × 10−08, λ̂2 = 4.3417 × 10−08, λ̂3 = 4.5 . . . × 10−08

Factor T1 = LDLT − λ̂1I = L+D+LT
+ = U−D−UT

− (up & down)

Compute γ(i) = D+(i) + D−(i) − T1(i, i)
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Solve T1z1 = γrer, where γr = mink |γk|
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Computing Eigenvector #2

λ̂1 = 4.1338 × 10−08, λ̂2 = 4.3417 × 10−08, λ̂3 = 4.5 . . . × 10−08

Factor T2 = LDLT − λ̂2I = L+D+LT
+ = U−D−UT

− (up & down)

Compute γ(i) = D+(i) + D−(i) − T2(i, i)
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Solve T2z2 = γrer, where γr = mink |γk|
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Accuracy of the vectors

|zT
1 z2| < 2ε

Residual norms are < ε‖T‖

In general,

mink |γk| ≈ ε|λ̂|

Dot Product between two vectors ∝ ε|λ̂|
Gap

If two eigenvalues share d leading digits, then dot product ≈ 10dε
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Smaller Relative Gaps

λ̂280 to λ̂303 are :
0.2852950617

0.2877656004

...

0.2901068244

0.2901514166

0.2901480490

Some eigenvalues agree in 5 digits
Compute new shifted representations:

LDL
T
− 0.2852950617I = L1D1L

T

1
L1D1L

T

1
− 0.4855354851 × 10

−02
I = L2D2L

T

2

0.60738244647 × 10
−15

0.24705386756 × 10−02

...

0.4811762683 × 10−02

0.4852987244 × 10
−02

0.4855354851 × 10
−02

−0.4459216793 × 10
−04

−0.3367607591 × 10
−05

−0.1463151420 × 10−17



The computed vectors

λ̂ = −0.4459216793× 10−04
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The computed vectors

λ̂ = −0.3367607591× 10−05

0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

i

log
10

(|g
am

ma
|)

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

i

z



The computed vectors

λ̂ = −0.1463151420× 10−17
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Maximum Dot Product < 3ε.



Key Idea 1 — Replace the tridiagonal with a bidiagonal

Bidiagonal Factorization

T −→ LDLT



Key Idea 1 — Replace the tridiagonal with a bidiagonal

Bidiagonal Factorization

T −→ LDLT

Relative condition number

relcond(λ) =
vT L|D|LT v

vT LDLT v



Key Idea 1 — Replace the tridiagonal with a bidiagonal

Bidiagonal Factorization

T −→ LDLT

Relative condition number

relcond(λ) =
vT L|D|LT v

vT LDLT v

Seminal 1991 Demmel-Kahan paper (SIAG/LA Prize)
Small relative changes in the entries of a bidiagonal cause small
relative changes in all its singular values



Key Idea 1 — Replace the tridiagonal with a bidiagonal

Bidiagonal Factorization

T −→ LDLT

Relative condition number

relcond(λ) =
vT L|D|LT v

vT LDLT v

Seminal 1991 Demmel-Kahan paper (SIAG/LA Prize)
Small relative changes in the entries of a bidiagonal cause small
relative changes in all its singular values

L and D almost always define the small eigenvalues of LDLT to high
relative accuracy

Even in the face of element growth!
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Key Idea 2 — Shift close to clusters

Connection between residuals and orthogonality. Let

r = Ax − xλ̂ 6= 0, s = Ay − yµ̂ 6= 0,

Then
xT y(µ̂ − λ̂) = yT r − xT s

Suppose, by some miracle, ‖r‖ ≤ ε1|λ̂| and ‖s‖ ≤ ε2|µ̂|, then

|xT y| ≤ max(ε1, ε2)
,

|λ̂ − µ̂|
|λ̂| + |µ̂|

Thus, orthogonality depends on the relative separation

Relative Gaps can be made larger by shifting

LDLT − ξI = L̃D̃L̃T

Different representations for different clusters!
Essential to use differential transforms



Differential Transforms

LDLT − λ̂I = L+D+LT
+

Simple qd : D+(1) := d1 − λ̂

for i = 1, n − 1

L+(i) := (dili)/D+(i)

D+(i + 1) := dil
2
i + di+1 − L+(i)dili − λ̂

end for

?

Differential qd : s1 := −λ̂

for i = 1, n − 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − λ̂

end for

D+(n) := sn + dn



Key Idea 3 — Twist, again with differential transformations

Godunov et al. [1985], Fernando [1995]

Compute the appropriate Twisted Factorization :

LDLT − λ̂I = NrDrNT
r ,

where Nr =

26666666666664

x

x x

. .

x x© x

. .

x x

x x

x

37777777777775

Solve for z, NrDrNT
r z = γrer ( ⇒ NT

r z = er ) :

z(i) =
8><>: 1, i = r,

−L+(i) · z(i + 1), i = r − 1, . . . , 1,

−U−(i − 1) · z(i − 1), i = r + 1, . . . , n.
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Key Idea 4 — Representation Tree

Eigenvalues: ε, 1 +
√

ε, 1 + 2
√

ε, 2

Extra representation needed at σ = 1:

LpDpLT
p − I = L0D0LT

0

Following Representation Tree captures the steps of the algorithm:
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Caveats

BLAS
Complexity is O(nk) to compute k eigenpairs

However, all operations are BLAS 1

Closest competitor D&C — O(n3), but BLAS 3

Very tight eigenvalue clusters
C. Vömel’s torture tests
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Wilkinson’s Matrix W
+
21

λ20 and λ21 are identical to working precision

Form new representation:

LpDpLT
p − λ̂21I = L0D0LT

0

Roundoff to the rescue:

λ20(L0D0LT
0 ) & λ21(L0D0LT

0 ) — no digits in common!

−7.28 × 10−14 & −1.22 × 10−15

Computed Eigenvectors v̂20 and v̂21 (inner product is 1.0 × 10−16):
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Caveats

BLAS
Complexity is O(nk) to compute k eigenpairs

However, all operations are BLAS 1

Closest competitor D&C — O(n3), but BLAS 3

Very tight eigenvalue clusters

C. Vömel’s torture tests — 5 copies of W+
101 with glue of

√
ε

Required a tweak — Perturb base representation
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