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Introduction

Computational Medicine — Quantitative approach to understanding,

>
detecting and treating diseases
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» Need to understand and control biological processes involved in human

diseases via systemic measurements and computational analyses
Calzolari D, Bruschi S, Coquin L, Schofield J, Feala JD, et al. (2008) Search Algorithms as a Framework for the Optimization of

Drug Combinations. PLoS Comput Biol 4(12): 1000249




Medical Genetics

» Analysis begins at the level of genes — study of human genetics & its
application to medical care

» Eventual goals: Gene therapy for cure — personalized medicine

SNPs
mRNA
Proteins

P(X| disease) |

P(X | normal)

X=observations on L

Parts and measurements Topology of parts Statistical disease model

Winslow, Raimond L., et al. "Computational medicine: translating models to clinical care." Science Translational Medicine 4.158 (2012)




Gene Networks

»  Multiple genes collectively influence the likelihood of developing many
common and complex diseases.
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» Important to understand how genes interact with each other (co-
expression gene networks)

Xiao, X. et al., 2014. Multi-tissue analysis of co-expression networks by Higher-Order generalized singular value decomposition identifies
functionally coherent transcriptional modules. PLoS Genetics 10 (1), e1004006+.




Predicting gene-disease links

» Goal: Discover human gene-disease associations

» Biologists prefer a short list of potentially relevant genes for further
studies



Gene Network

» Functional interactions between genes (e.g. HumanNet)




Gene-Phenotype Networks
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»  “Orthologous” phenotypes in other model species can shed light on gene
functions and in turn disease-causing genes




The Prediction Problem
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Other data sources: Genomic data
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» Abundant expression data available (sources such as BioGPS)

» Co-expression reveals gene function modules (“Eigengenes”)

Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC
systems biology, 1(1), 54.




Other data sources: Text data

»  Descriptions of diagnosis, clinical features and management in text
articles provide information on diseases

» Represent diseases by document term frequencies

Text data on diseases

(e.g. OMIM web pages)
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Other data sources: Co-morbidity

»  Similarity network between diseases
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»  Similarities can be computed from data available on diseases (such as
text, symptoms, drug responses, etc)



Problem Formulation
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» We want to predict “missing” associations denoted by ?



The Netflix Problem

NETELIX

Netflix Prize

Home Rules Leaderboard Update

Congratulations!

The Netfix Prnze sought to substantially
mprove the accuracy of predictions
about how much someone s gong to
enjoy @ movie based on ther movie
oreferences.

On September 21, 2008 we awarded the
$1M Grang Prze to team "BellKor's
Pragmatic Cnaos”. Read about ther
algonthm, checkout team scores on the
and join the discussions on

We applaud all the contnbutors to this
quest, which improves our aodity to
connect peopie 1o the movies they love.




Inductive Matrix Completion
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Inductive Matrix Completion
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Inductive Matrix Completion
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Inductive Matrix Completion

OMIM pages :
= pages latent EGBRS Disease

tf-idf <,':| similarities
o => 0.12 0.17
ACH

NF2
0.31

Microarray

Orthologous
phenotypes™ <

oz T RA
O _~::1- =
q -
A‘AA

Gene network

Natarajan N, Dhillon IS. Inductive Matrix Completion for Predicting Gene-Disease Associations. To appear in Bioinformatics, 2014.




Results on OMIM data

— Inductive Matrix Completion
—— CATAPULT

Biased Matrix Completion
—— ProDiGe [Mordelet et al. 2011]
- - -Katz
----- LEML [Yu et al. 2014]
----- Matrix Completion (baseline)

o
N
\

o
—

P(hidden gene among genes looked at)

0 20 40 60 80 100
Number of genes looked at

1. Online Mendelian Inheritance in Man: www.omim.org

2. F. Mordelet and J.-P. Vert. ProDiGe: PRioritization Of Disease Genes with multitask machine learning from positive and unlabeled
examples. BMC Bioinformatics 2011.

3. Yu, Hsiang-Fu, Prateek Jain, and Inderjit S. Dhillon: Large-scale Multi-label Learning with Missing Labels. ICML 2014.
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Positive-Unlabeled Learning

» The prediction problem gives rise to a novel machine learning problem
called “PU learning” —- learning in the absence of negative examples

» Methods such as “biased SVM” and “biased matrix completion” shown to
perform well empirically

» Can analyze theoretically using
random noise models

» For biased matrix completion, we can show

Theorem: Let P be the “noise rate”. With probability at least 1 - 6, solution X to
the biased matrix completion is “close” to the true (n x n) matrix Y:
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Conclusions

» Informatics for Computational Medicine is crucial
» Need novel statistical techniques —

» Analysis of extremely high-dimensional data from high-throughput studies
» Learning from diverse information sources

» Interpretable computational models

» Can obtain better gene-disease associations than state-of-the-art




