
Divide & Conquer Methods for Large-Scale Data Analysis

Inderjit S. Dhillon
Dept of Computer Science

UT Austin

International Conference on Machine Learning and Applications
Detroit, MI
Dec 4, 2014

Joint work with C.-J. Hsieh and S. Si

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Machine Learning Applications

Link prediction

LinkedIn.

gene-gene network

fMRI

Image classification

Spam classification

How to develop machine learning algorithms that scale to massive
datasets?

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Divide & Conquer Method

Divide original (large) problem into smaller instances

Solve the smaller instances

Obtain solution to original problem by combining these solutions

Problem	

split / merge

split / merge

split / merge

Subproblem	

Compute	

Subproblem	

Compute	

Subproblem	

Subproblem	

Compute	

Subproblem	

Compute	

Subproblem	

merge sort

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Divide & Conquer Method

Strategy:

D1	

D2	

D3	

D11	

D12	

D21	

D22	

D23	

D31	

D33	

D32	

D34	

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Three Examples in Machine Learning
classification using kernel SVM

dimensionality reduction for social network analysis
learning graphical model structure

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Divide & Conquer Kernel SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Linear Support Vector Machines (SVM)

SVM is a widely used classifier.

Given:

Training data points x1, · · · , xn.
Each x i ∈ Rd is a feature vector:
Consider a simple case with two classes: yi ∈ {+1,−1}.

Goal: Find a hyperplane to separate these two classes:
if yi = 1, wT x i ≥ 1− ξi ; yi = −1, wT x i ≤ −1 + ξi .

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Support Vector Machines (SVM)

Given training data x1, · · · , xn ∈ Rd with labels yi ∈ {+1,−1}.
SVM primal problem:

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (w
T x i) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , n,

SVM dual problem:

min
α

1

2
αTQα−eTα,

s.t. 0 ≤ αi ≤ C , for i = 1, . . . , n,

where Qij = yiyjx
T
i x j and e = [1, . . . , 1]T .

At optimum: w =
∑n

i=1 αiyix i ,

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Support Vector Machines (SVM)

Given training data x1, · · · , xn ∈ Rd with labels yi ∈ {+1,−1}.
SVM primal problem:

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (w
T x i) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , n,

SVM dual problem:

min
α

1

2
αTQα−eTα,

s.t. 0 ≤ αi ≤ C , for i = 1, . . . , n,

where Qij = yiyjx
T
i x j and e = [1, . . . , 1]T .

At optimum: w =
∑n

i=1 αiyix i ,

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Support Vector Machines (SVM)

What if the data is not linearly separable?

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Support Vector Machines (SVM)

What if the data is not linearly separable?

Solution: map data x i to higher dimensional(maybe infinite) feature
space ϕ(xi), where the classes are linearly separable.

Kernel trick: K (x i , x j) = ϕ(x i)
Tϕ(x j).

Various types of kernels:

Gaussian kernel: K (x , y) = e−γ‖x−y‖
2
2 ;

Linear kernel: K (x , y) = xT y ;
Polynomial kernel: K (x , y) = (γxT y + c)d .

Solve the dual problem for SVM.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Linear vs. Nonlinear SVM

UCI Forest Cover dataset (transform to binary version):
Predicting forest cover type from cartographic features:

(Elevation, slope, soil type, . . .)
464,810 training samples, 54 features
Transform to binary problem: Lodgepole Pine vs. the rest 6 types

Training Time Prediction Time Prediction Accuracy

Liblinear 3.6 secs 1x 76.35%

LibSVM
1 day 78862x 96.15%

(Gaussian kernel)

Figure from (Blackard and Dean, 1999)Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Kernel SVM

Recently, (Fernández-Delgado et al., 2014) evaluated 179 classifiers
from 17 families using 121 UCI data sets.

Kernel SVM is the second best classifier (slightly outperformed by
random forest)

Table from (Fernández-Delgado et al., 2014)

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Scalability for kernel SVM

Challenge for solving kernel SVMs:

Space: O(n2);
Training Time: O(n3).
Prediction Time: O(n̄d)
(n̄: number of support vectors)

Our solution: Divide-and-Conquer SVM (DC-SVM)

Training Time Prediction Time Prediction Accuracy

Liblinear 3.6 secs 1x 76.35%

LibSVM 1 day 78862x 96.15%

DC-SVM (early) 10 mins 308x 96.12%

DC-Pred++ 6 mins 18.8x 95.19%

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with a single level – divide step

Partition α into k subsets {V1, . . . ,Vk}.
Solve each subproblem independently:

min
α(i)

1

2
(α(i))

TQ(i ,i)α(i) − eTα(i),

s.t. 0 ≤ α(i) ≤ C ,

Approximate solution for the whole problem:

ᾱ = [ᾱ(1), . . . , ᾱ(k)].

Space complexity for k subproblems:
O(n2)→ O(n2/k2).

Time complexity for k subproblems:
O(n3)→ O(n3/k2).

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with a single level – conquer step

Use ᾱ to initialize a global coordinate
descent solver.

Converges quickly if

(1) ‖ᾱ−α∗‖ is small.
(2) Support vectors in α∗ are correctly
identified in ᾱ.

Question: how to find a partitioning that
satisfies both?

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Data Partitioning

Theorem 1

For a given partition π, the corresponding ᾱ satisfies

0 ≤ f (ᾱ)− f (α∗) ≤ (1/2)C 2D(π),

where D(π) =
∑

i ,j :π(x i)6=π(x j) |K (x i , x j)|.

Want a partition which

(1) Minimizes D(π).
(2) Has balanced cluster sizes (for efficient training).

Use kernel kmeans (but slow).

Two step kernel kmeans:

Run kernel kmeans on a subset of samples with size m� n.
Identify the clusters for the rest of data.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Demonstration of the bound

Covertype dataset with 10000 samples and γ = 32 (best in cross
validation).

Our data partition scheme leads to a good approximation to the global
solution α∗.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Quickly identifying support vectors

Divide-and-conquer scheme helps to quickly identify support vectors.

Theorem 2

If ᾱi = 0 and

∇i f̄ (ᾱ) > CD(π)(1 +
√
nKmax/

√
σnD(π)),

where Kmax = maxi K (x i , x i), then x i will not be a support vector of the
whole problem (i.e., α∗i = 0).

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore we run DC-SVM with multiple levels.

Data Division

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore we run DC-SVM with multiple levels.

Data Division

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the leaf
level problems.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the
intermediate
level problems.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the
original problem.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Early Prediction

Prediction using the l-th level solution

faster training time; the prediction accuracy is close to or even better
than the global SVM solution.

Prediction: sign(
∑

i∈Vπ(x)
yiαiK (x i , x)).

Prediction time reduced from O(d(#SV)) to O(d(#SV)/k)

Covtype (k = 256): 78862x → 308x

Still not fast enough for real-time applications!

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Illustrative Toy Example

Two Circle Data: each circle is a class; separable by kernel kmeans.

1st cluster 2nd cluster

DC-SVM (early) RBF SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Illustrative Toy Examples

Two Circle Data: each circle is a class; separable by kernel kmeans.

1st cluster 2nd cluster

DC-SVM (early) RBF SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Illustrative Toy Examples

Two Circle Data: not separable by kernel kmeans

1st cluster 2nd cluster 3rd cluster

4th cluster DC-SVM (early) RBF SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Illustrative Toy Examples

Two Circle Data: not separable by kernel kmeans

1st cluster 2nd cluster 3rd cluster

4th cluster DC-SVM (early) RBF SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Methods included in comparisons

DC-SVM: our proposed method for solving the global SVM problem.

DC-SVM (early): our proposed method with early stopping (at 64 clusters).

LIBSVM (Chang and Lin, 2011)

Cascade SVM (Graf et al., 2005)

Fastfood (Le et al., 2013)

LaSVM (Bordes et al., 2005)

LLSVM (Zhang et al., 2012)

SpSVM (Keerthi et al., 2006)

LTPU (Moody and Darken., 1989)

Budgeted SVM (Wang et al., 2012; Djuric et al., 2013)

AESVM (Nandan et al., 2014)

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Results with Gaussian kernel.

webspam covtype mnist8m
n = 2.8× 105, d = 254 n = 4.65× 105, d = 54 n = 8× 106, d = 784

C = 8, γ = 32 C = 32, γ = 32 C = 1, γ = 2−21

time(s) acc(%) time(s) acc(%) time(s) acc(%)

DC-SVM (early) 670 99.13 672 96.12 10287 99.85

DC-SVM 10485 99.28 11414 96.15 71823 99.93
LIBSVM 29472 99.28 83631 96.15 298900 99.91

LaSVM 20342 99.25 102603 94.39 171400 98.95

CascadeSVM 3515 98.1 5600 89.51 64151 98.3

LLSVM 2853 97.74 4451 84.21 65121 97.64

FastFood 5563 96.47 8550 80.1 14917 96.5

SpSVM 6235 95.3 15113 83.37 121563 96.3

LTPU 4005 96.12 11532 83.25 105210 97.82

Budgeted SVM 2194 98.94 3839 87.83 29266 98.8

AESVM 3027 98.90 3821 87.03 16239 96.6

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Results with Gaussian kernel

Time vs Prediction Accuracy

Covtype dataset MNIST dataset

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Results with Gaussian kernel

covtype prediction accuracy MNIST8m prediction accuracy

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Results with grid of C , γ

Total time on the grid of parameters C , γ:

C = 2−10, 2−6, 21, 26, 210

γ = 2−10, 2−6, 21, 26, 210

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Fast Prediction for Kernel SVM

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Prediction for SVM

Linear SVM: y = sign(wT x + b); O(d).

Kernel SVM: y = sign(
∑n

i=1 αiK (x , x i)); O(d(#SV)).

DC-SVM with early prediction: y = sign(
∑

i∈Vπ(x)
αiK (x , x i));

O(d(#SV /k)).

DC-Pred++: O(dt); t � #SV /k

Goal: achieve kernel SVM’s accuracy using linear SVM prediction time.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-SVM with Nyström Approximation

DC-SVM with early prediction

Drawback: still too many support vectors in each block

Use Nyström approximation within each block

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Nyström Kernel Approximation

Goal: rank-m approximation G̃ to kernel matrix G based on landmark
points u1, . . . , um.

G ≈ G̃ = CWCT .

Perform prediction on a new point x given the model α:n∑
i=1

αi K̃ (x , x i) = x̃TWCTα = x̃Tβ

where x̃ = [K (x , u1), . . . ,K (x , um)]T .

The main computation is to form x̃ .
Time complexity for prediction: O(md).

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Improvements over Traditional Nyström Approximation

Traditional Nyström Approximation emphasizes kernel approximation
error ‖G − G̃‖F .

We are interested in model approximation error ‖α∗ − ᾱ‖.
Use α-weighted kmeans centroids as the landmark points.

Add pseudo landmark points for faster prediction.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

DC-Pred++

Training:

Prediction:

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Kernel SVM Results

Dataset Metric DC-Pred++ LDKL kmeans Nyström AESVM Liblinear

Letter Prediction Time 12.8x 29x 140x 1542x 1x
n = 12, 000 Accuracy 95.90% 95.78% 87.58% 80.97% 73.08%

CovType Prediction Time 18.8x 35x 200x 3157x 1x
n = 522, 910 Accuracy 95.19% 89.53% 73.63% 75.81% 76.35%

USPS Prediction Time 14.4x 12.01x 200x 5787x 1x
n = 7291 Accuracy 95.56% 95.96% 92.53% 85.97% 83.65%

Webspam Prediction Time 20.5x 23x 200x 4375x 1x
n = 280, 000 Accuracy 98.4% 95.15% 95.01% 98.4% 93.10%

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Social Network Analysis

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Social Networks

Nodes: individual actors (people or groups of people)

Edges: relationships (social interactions) between nodes

Example: Karate Club Network:2 CHAPTER 1. OVERVIEW

27

15

23

10 20

4

13

16

34

31

14

12

18

17

30

33

32

9

2

1

5

6

21

24

25

3

8

22

11

7

19

28

29

26

Figure 1.1: The social network of friendships within a 34-person karate club [421].

The imagery of networks has made its way into many other lines of discussion as well:

Global manufacturing operations now have networks of suppliers, Web sites have networks

of users, and media companies have networks of advertisers. In such formulations, the

emphasis is often less on the structure of the network itself than on its complexity as a large,

diffuse population that reacts in unexpected ways to the actions of central authorities. The

terminology of international conflict has come to reflect this as well: for example, the picture

of two opposing, state-supported armies gradually morphs, in U.S. Presidential speeches, into

images of a nation facing “a broad and adaptive terrorist network” [296], or “at war against

a far-reaching network of violence and hatred” [328].

1.1 Aspects of Networks

How should we think about networks, at a more precise level, so as to bring all these issues

together? In the most basic sense, a network is any collection of objects in which some pairs

of these objects are connected by links. This definition is very flexible: depending on the

setting, many different forms of relationships or connections can be used to define links.

Because of this flexibility, it is easy to find networks in many domains, including the ones

we’ve just been discussing. As a first example of what a network looks like, Figure 1.1 depicts

the social network among 34 people in a university karate club studied by the anthropologist

Wayne Zachary in the 1970s. The people are represented by small circles, with lines joining

the pairs of people who are friends outside the context of the club. This is the typical way

in which networks will be drawn, with lines joining the pairs of objects that are connected

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Multi-Scale Link Prediction

Combine predictions at each level to make final predictions

U(0)	

U1
(1)	

U2
(1)	

U1
(1)	

U2
(2)	

U3
(2)	

level 0	

 level 1	

 level 2	

Prediction Prediction Prediction

Final Prediction

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Experimental Results

Flickr dataset: 1.9M users & 42M links.

Test set: sampled 5K users.

Precision at top-100 & AUC results:

Method Prec AUC

Preferential Attachment 1.02 0.6981
Common Neighbor 7.08 0.8649
Adamic-Adar 7.29 0.8758
Random Walk w/ Restarts 5.49 0.7872
Logistic Regression* 2.54 0.7115

Katz 7.17 0.8429
MSLP-Katz 13.34 0.8924
MF 12.05 0.9078
MSLP-MF 13.07 0.9145

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Top−k

P
re

c
is

io
n

MSLP−Katz
MSLP−MF
Katz
CN
RWR

*using network-based features.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Learning Graphical Model Structure

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Sparse Inverse Covariance Estimation

Given: n i.i.d. samples {y1, . . . , yn}, y i ∼ N (µ,Σ),
Goal: Estimate the inverse covariance Θ = Σ−1.
The resulting optimization problem:

Θ = arg min
X�0

{
− log detX + tr(SX) + λ‖X‖1

}
= arg min

X�0
f (X),

where ‖X‖1 =
∑n

i ,j=1 |Xij | and S = 1
n

∑n
i=1(y i − µ̂)(y i − µ̂)T .

Regularization parameter λ > 0 controls the sparsity.
Real world example: graphical model which reveals the relationships
between Senators: (Figure from Banerjee et al, 2008)

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Divide-and-Conquer QUIC

How can we solve high dimensional problems?

Time complexity is O(p3), so computationally expensive to solve it
directly.

Solution: Divide & Conquer!

Θ∗ Θ from level-1 clusters Θ from level-2 clusters.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Performance of Divide & Conquer QUIC

(a) Time for Leukemia, p = 1, 255 (b) Time for Climate, p = 10, 512

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

Conclusions

Divide & Conquer approach for big data problems

Divide & Conquer Kernel SVM — fast training and fast prediction
Social Network Analysis: Multi-Scale Link Prediction
Sparse Inverse Covariance Estimation: Divide & Conquer QUIC

Interesting questions

What other data analysis problems can benefit from a divide & conquer
approach? Regression? Matrix completion? Multi-label learning?

What are the corresponding algorithms?

Theoretical/statistical guarantees?

Can one exploit the multiplicity of local and global models for better
prediction?

Parallelization? Needs dynamic load balancing, asynchronous parallelism.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

References

Divide and Conquer Kernel SVM

[1] C.-J. Hsieh, S. Si and I. S. Dhillon A Divide-and-Conquer Solver for Kernel Support Vector
Machines, ICML, 2014.

[2] S. Si, C.-J. Hsieh and I. S. Dhillon Memory Efficient Kernel Approximation, ICML, 2014.

[3] C.-J. Hsieh, S. Si and I. S. Dhillon Fast Prediction for Large-Scale Kernel Machines, NIPS,
2014.

Divide and Conquer Link-Prediction/Eigen-decomposition

[4] D. Shin, S. Si and I. S. Dhillon Multi-Scale Link Prediction, CIKM, 2012.

[5] S. Si, D. Shin, I. S. Dhillon and B. Parlett Multi-Scale Spectral Decomposition of Massive
Graphs, NIPS, 2014.

Divide and Conquer Sparse Inverse Covariance Estimation

[6] C.-J. Hsieh, M. Sustik I. S. Dhillon and P. Ravikumar Sparse Inverse Covariance Matrix
Estimation using Quadratic Approximation. NIPS, 2011.

[7] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar and A. Banerjee A Divide-and-Conquer Method for
Sparse Inverse Covariance Estimation, NIPS, 2012.

[8] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, and R. A. Poldrack BIG & QUIC: Sparse
Inverse Covariance Estimation for a Million Variables, NIPS, 2013.

[9] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar and S. Becker, and P. A. Olsen QUIC & DIRTY: A
Quadratic Approximation Approach for Dirty Statistical Models, NIPS, 2014.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data

