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Machine Learning Applications

Link prediction

LinkedIn.

gene-gene network

fMRI

Image classification

Spam classification

How to develop machine learning algorithms that scale to massive
datasets?
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Divide & Conquer Method

Divide original (large) problem into smaller instances

Solve the smaller instances

Obtain solution to original problem by combining these solutions
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Divide & Conquer Method
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Three Examples in Machine Learning
classification using kernel SVM

dimensionality reduction for social network analysis
learning graphical model structure
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Divide & Conquer Kernel SVM
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Linear Support Vector Machines (SVM)

SVM is a widely used classifier.

Given:

Training data points x1, · · · , xn.
Each x i ∈ Rd is a feature vector:
Consider a simple case with two classes: yi ∈ {+1,−1}.

Goal: Find a hyperplane to separate these two classes:
if yi = 1, wT x i ≥ 1− ξi ; yi = −1, wT x i ≤ −1 + ξi .
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Support Vector Machines (SVM)

Given training data x1, · · · , xn ∈ Rd with labels yi ∈ {+1,−1}.
SVM primal problem:

min
w ,ξ

1

2
wTw + C

n∑
i=1

ξi

s.t. yi (w
T x i ) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , n,

SVM dual problem:

min
α

1

2
αTQα−eTα,

s.t. 0 ≤ αi ≤ C , for i = 1, . . . , n,

where Qij = yiyjx
T
i x j and e = [1, . . . , 1]T .

At optimum: w =
∑n

i=1 αiyix i ,
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Support Vector Machines (SVM)

What if the data is not linearly separable?
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Support Vector Machines (SVM)

What if the data is not linearly separable?

Solution: map data x i to higher dimensional(maybe infinite) feature
space ϕ(xi ), where the classes are linearly separable.

Kernel trick: K (x i , x j) = ϕ(x i )
Tϕ(x j).

Various types of kernels:

Gaussian kernel: K (x , y) = e−γ‖x−y‖
2
2 ;

Linear kernel: K (x , y) = xT y ;
Polynomial kernel: K (x , y) = (γxT y + c)d .

Solve the dual problem for SVM.
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Linear vs. Nonlinear SVM

UCI Forest Cover dataset (transform to binary version):
Predicting forest cover type from cartographic features:

(Elevation, slope, soil type, . . . )
464,810 training samples, 54 features
Transform to binary problem: Lodgepole Pine vs. the rest 6 types

Training Time Prediction Time Prediction Accuracy

Liblinear 3.6 secs 1x 76.35%

LibSVM
1 day 78862x 96.15%

(Gaussian kernel)

Figure from (Blackard and Dean, 1999)Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data



Kernel SVM

Recently, (Fernández-Delgado et al., 2014) evaluated 179 classifiers
from 17 families using 121 UCI data sets.

Kernel SVM is the second best classifier (slightly outperformed by
random forest)

Table from (Fernández-Delgado et al., 2014)
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Scalability for kernel SVM

Challenge for solving kernel SVMs:

Space: O(n2);
Training Time: O(n3).
Prediction Time: O(n̄d)
(n̄: number of support vectors)

Our solution: Divide-and-Conquer SVM (DC-SVM)

Training Time Prediction Time Prediction Accuracy

Liblinear 3.6 secs 1x 76.35%

LibSVM 1 day 78862x 96.15%

DC-SVM (early) 10 mins 308x 96.12%

DC-Pred++ 6 mins 18.8x 95.19%
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DC-SVM with a single level – divide step

Partition α into k subsets {V1, . . . ,Vk}.
Solve each subproblem independently:

min
α(i)

1

2
(α(i))

TQ(i ,i)α(i) − eTα(i),

s.t. 0 ≤ α(i) ≤ C ,

Approximate solution for the whole problem:

ᾱ = [ᾱ(1), . . . , ᾱ(k)].

Space complexity for k subproblems:
O(n2)→ O(n2/k2).

Time complexity for k subproblems:
O(n3)→ O(n3/k2).
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DC-SVM with a single level – conquer step

Use ᾱ to initialize a global coordinate
descent solver.

Converges quickly if

(1) ‖ᾱ−α∗‖ is small.
(2) Support vectors in α∗ are correctly
identified in ᾱ.

Question: how to find a partitioning that
satisfies both?
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Data Partitioning

Theorem 1

For a given partition π, the corresponding ᾱ satisfies

0 ≤ f (ᾱ)− f (α∗) ≤ (1/2)C 2D(π),

where D(π) =
∑

i ,j :π(x i )6=π(x j ) |K (x i , x j)|.

Want a partition which

(1) Minimizes D(π).
(2) Has balanced cluster sizes (for efficient training).

Use kernel kmeans (but slow).

Two step kernel kmeans:

Run kernel kmeans on a subset of samples with size m� n.
Identify the clusters for the rest of data.
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Demonstration of the bound

Covertype dataset with 10000 samples and γ = 32 (best in cross
validation).

Our data partition scheme leads to a good approximation to the global
solution α∗.
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Quickly identifying support vectors

Divide-and-conquer scheme helps to quickly identify support vectors.

Theorem 2

If ᾱi = 0 and

∇i f̄ (ᾱ) > CD(π)(1 +
√
nKmax/

√
σnD(π)),

where Kmax = maxi K (x i , x i ), then x i will not be a support vector of the
whole problem (i.e., α∗i = 0).
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DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore we run DC-SVM with multiple levels.

Data Division
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DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the leaf
level problems.
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DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the
intermediate
level problems.

Inderjit S. Dhillon Dept of Computer Science UT Austin Divide & Conquer Methods for Big Data



DC-SVM with multiple levels

A tradeoff in choosing k (number of partitions):

Small k ⇒ smaller ‖ᾱ−α∗‖ but need more time to solve subproblems.
Large k ⇒ larger ‖ᾱ−α∗‖ but less time to solve subproblems.

Therefore propose to run DC-SVM with multiple levels.

Solve the
original problem.
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Early Prediction

Prediction using the l-th level solution

faster training time; the prediction accuracy is close to or even better
than the global SVM solution.

Prediction: sign(
∑

i∈Vπ(x)
yiαiK (x i , x)).

Prediction time reduced from O(d(#SV )) to O(d(#SV )/k)

Covtype (k = 256): 78862x → 308x

Still not fast enough for real-time applications!
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Illustrative Toy Example

Two Circle Data: each circle is a class; separable by kernel kmeans.

1st cluster 2nd cluster

DC-SVM (early) RBF SVM
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Illustrative Toy Examples

Two Circle Data: each circle is a class; separable by kernel kmeans.

1st cluster 2nd cluster

DC-SVM (early) RBF SVM
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Illustrative Toy Examples

Two Circle Data: not separable by kernel kmeans

1st cluster 2nd cluster 3rd cluster

4th cluster DC-SVM (early) RBF SVM
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Illustrative Toy Examples

Two Circle Data: not separable by kernel kmeans

1st cluster 2nd cluster 3rd cluster

4th cluster DC-SVM (early) RBF SVM
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Methods included in comparisons

DC-SVM: our proposed method for solving the global SVM problem.

DC-SVM (early): our proposed method with early stopping (at 64 clusters).

LIBSVM (Chang and Lin, 2011)

Cascade SVM (Graf et al., 2005)

Fastfood (Le et al., 2013)

LaSVM (Bordes et al., 2005)

LLSVM (Zhang et al., 2012)

SpSVM (Keerthi et al., 2006)

LTPU (Moody and Darken., 1989)

Budgeted SVM (Wang et al., 2012; Djuric et al., 2013)

AESVM (Nandan et al., 2014)
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Results with Gaussian kernel.

webspam covtype mnist8m
n = 2.8× 105, d = 254 n = 4.65× 105, d = 54 n = 8× 106, d = 784

C = 8, γ = 32 C = 32, γ = 32 C = 1, γ = 2−21

time(s) acc(%) time(s) acc(%) time(s) acc(%)

DC-SVM (early) 670 99.13 672 96.12 10287 99.85

DC-SVM 10485 99.28 11414 96.15 71823 99.93
LIBSVM 29472 99.28 83631 96.15 298900 99.91

LaSVM 20342 99.25 102603 94.39 171400 98.95

CascadeSVM 3515 98.1 5600 89.51 64151 98.3

LLSVM 2853 97.74 4451 84.21 65121 97.64

FastFood 5563 96.47 8550 80.1 14917 96.5

SpSVM 6235 95.3 15113 83.37 121563 96.3

LTPU 4005 96.12 11532 83.25 105210 97.82

Budgeted SVM 2194 98.94 3839 87.83 29266 98.8

AESVM 3027 98.90 3821 87.03 16239 96.6
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Results with Gaussian kernel

Time vs Prediction Accuracy

Covtype dataset MNIST dataset
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Results with Gaussian kernel

covtype prediction accuracy MNIST8m prediction accuracy
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Results with grid of C , γ

Total time on the grid of parameters C , γ:

C = 2−10, 2−6, 21, 26, 210

γ = 2−10, 2−6, 21, 26, 210
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Fast Prediction for Kernel SVM
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Prediction for SVM

Linear SVM: y = sign(wT x + b); O(d).

Kernel SVM: y = sign(
∑n

i=1 αiK (x , x i )); O(d(#SV )).

DC-SVM with early prediction: y = sign(
∑

i∈Vπ(x)
αiK (x , x i ));

O(d(#SV /k)).

DC-Pred++: O(dt); t � #SV /k

Goal: achieve kernel SVM’s accuracy using linear SVM prediction time.
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DC-SVM with Nyström Approximation

DC-SVM with early prediction

Drawback: still too many support vectors in each block

Use Nyström approximation within each block
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Nyström Kernel Approximation

Goal: rank-m approximation G̃ to kernel matrix G based on landmark
points u1, . . . , um.

G ≈ G̃ = CWCT .

Perform prediction on a new point x given the model α:n∑
i=1

αi K̃ (x , x i ) = x̃TWCTα = x̃Tβ

where x̃ = [K (x , u1), . . . ,K (x , um)]T .

The main computation is to form x̃ .
Time complexity for prediction: O(md).
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Improvements over Traditional Nyström Approximation

Traditional Nyström Approximation emphasizes kernel approximation
error ‖G − G̃‖F .

We are interested in model approximation error ‖α∗ − ᾱ‖.
Use α-weighted kmeans centroids as the landmark points.

Add pseudo landmark points for faster prediction.
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DC-Pred++

Training:

Prediction:
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Kernel SVM Results

Dataset Metric DC-Pred++ LDKL kmeans Nyström AESVM Liblinear

Letter Prediction Time 12.8x 29x 140x 1542x 1x
n = 12, 000 Accuracy 95.90% 95.78% 87.58% 80.97% 73.08%

CovType Prediction Time 18.8x 35x 200x 3157x 1x
n = 522, 910 Accuracy 95.19% 89.53% 73.63% 75.81% 76.35%

USPS Prediction Time 14.4x 12.01x 200x 5787x 1x
n = 7291 Accuracy 95.56% 95.96% 92.53% 85.97% 83.65%

Webspam Prediction Time 20.5x 23x 200x 4375x 1x
n = 280, 000 Accuracy 98.4% 95.15% 95.01% 98.4% 93.10%
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Social Network Analysis
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Social Networks

Nodes: individual actors (people or groups of people)

Edges: relationships (social interactions) between nodes

Example: Karate Club Network:2 CHAPTER 1. OVERVIEW
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Figure 1.1: The social network of friendships within a 34-person karate club [421].

The imagery of networks has made its way into many other lines of discussion as well:

Global manufacturing operations now have networks of suppliers, Web sites have networks

of users, and media companies have networks of advertisers. In such formulations, the

emphasis is often less on the structure of the network itself than on its complexity as a large,

diffuse population that reacts in unexpected ways to the actions of central authorities. The

terminology of international conflict has come to reflect this as well: for example, the picture

of two opposing, state-supported armies gradually morphs, in U.S. Presidential speeches, into

images of a nation facing “a broad and adaptive terrorist network” [296], or “at war against

a far-reaching network of violence and hatred” [328].

1.1 Aspects of Networks

How should we think about networks, at a more precise level, so as to bring all these issues

together? In the most basic sense, a network is any collection of objects in which some pairs

of these objects are connected by links. This definition is very flexible: depending on the

setting, many different forms of relationships or connections can be used to define links.

Because of this flexibility, it is easy to find networks in many domains, including the ones

we’ve just been discussing. As a first example of what a network looks like, Figure 1.1 depicts

the social network among 34 people in a university karate club studied by the anthropologist

Wayne Zachary in the 1970s. The people are represented by small circles, with lines joining

the pairs of people who are friends outside the context of the club. This is the typical way

in which networks will be drawn, with lines joining the pairs of objects that are connected
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Multi-Scale Link Prediction

Combine predictions at each level to make final predictions

U(0)	



U1
(1)	



U2
(1)	



U1
(1)	



U2
(2)	



U3
(2)	



level 0	

 level 1	

 level 2	



Prediction Prediction Prediction 

Final Prediction 
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Experimental Results

Flickr dataset: 1.9M users & 42M links.

Test set: sampled 5K users.

Precision at top-100 & AUC results:

Method Prec AUC

Preferential Attachment 1.02 0.6981
Common Neighbor 7.08 0.8649
Adamic-Adar 7.29 0.8758
Random Walk w/ Restarts 5.49 0.7872
Logistic Regression* 2.54 0.7115

Katz 7.17 0.8429
MSLP-Katz 13.34 0.8924
MF 12.05 0.9078
MSLP-MF 13.07 0.9145
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*using network-based features.
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Learning Graphical Model Structure
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Sparse Inverse Covariance Estimation

Given: n i.i.d. samples {y1, . . . , yn}, y i ∼ N (µ,Σ),
Goal: Estimate the inverse covariance Θ = Σ−1.
The resulting optimization problem:

Θ = arg min
X�0

{
− log detX + tr(SX ) + λ‖X‖1

}
= arg min

X�0
f (X ),

where ‖X‖1 =
∑n

i ,j=1 |Xij | and S = 1
n

∑n
i=1(y i − µ̂)(y i − µ̂)T .

Regularization parameter λ > 0 controls the sparsity.
Real world example: graphical model which reveals the relationships
between Senators: (Figure from Banerjee et al, 2008)
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Divide-and-Conquer QUIC

How can we solve high dimensional problems?

Time complexity is O(p3), so computationally expensive to solve it
directly.

Solution: Divide & Conquer!

Θ∗ Θ from level-1 clusters Θ from level-2 clusters.
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Performance of Divide & Conquer QUIC

(a) Time for Leukemia, p = 1, 255 (b) Time for Climate, p = 10, 512
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Conclusions

Divide & Conquer approach for big data problems

Divide & Conquer Kernel SVM — fast training and fast prediction
Social Network Analysis: Multi-Scale Link Prediction
Sparse Inverse Covariance Estimation: Divide & Conquer QUIC

Interesting questions

What other data analysis problems can benefit from a divide & conquer
approach? Regression? Matrix completion? Multi-label learning?

What are the corresponding algorithms?

Theoretical/statistical guarantees?

Can one exploit the multiplicity of local and global models for better
prediction?

Parallelization? Needs dynamic load balancing, asynchronous parallelism.
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