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Introduction
❦

❧ Matrix construction problems arise in theory of wireless communication

❧ Many papers have appeared in IEEE Trans. on Information Theory

❧ We view these constructions as inverse eigenvalue problems

❧ Provides new insights

❧ Suggests new tools for solution

❧ Offers new and interesting inverse eigenvalue problems

References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999;

Ulukus-Yates 2001; Rose 2001; Viswanath-Anantharam 2002;

Anigstein-Anantharam 2003; . . . ]
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Code-Division Multiple Access (CDMA)
❦

❧ A CDMA system allows many users to share a wireless channel

❧ Channel is modeled as a vector space of dimension d

❧ Each of N users receives a unit-norm signature vector sk (N > d)
❧ Each user’s information is encoded in a complex number bk

❧ In each transmission interval, a user sends bk sk

❧ Each user may have a different power level wk

❧ Base station receives superposition
∑N

k=1 bk
√

wk sk + v, where v is

additive noise

❧ The base station must extract all bk from the d-dimensional noisy

observation

Reference: [Viterbi 1995]
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Example
❦

❧ Intuition: the signature vectors should be well separated for the system

to perform well
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Optimal CDMA Signatures
❦

❧ For clarity, suppose the noise is a white, Gaussian random process

❧ Form the weighted signature matrix

X =
[√

w1 s1
√

w2 s2 . . .
√

wN sN

]
❧ One performance measure is total weighted squared correlation (TWSC)

TWSC(X ) def= ‖X ∗X‖2
F =

∑
wj wk |〈sj, sk〉|2

❧ Minimizing TWSC is (often) equivalent to finding X for which

XX ∗ =
∑

wk

d
Id and diag (X ∗X ) = (w1, . . . , wN)

❧ Thus X is row-orthogonal with specified column norms

References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999, 2002]
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Connection with Tight Frames
❦

❧ An α-tight frame is a collection {xk} of N vectors in Cd such that

N∑
k=1

|〈y,xk〉|2 = α ‖y‖2
2 for all y in Cd

❧ α-tight frames generalize orthonormal systems

❧ Designing tight frames with specified norms ≡ Designing optimal

CDMA signatures under white noise

❧ Tight frames also arise in signal processing, harmonic analysis, physics,

. . .
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Spectral Properties of Tight Frames
❦

❧ The frame synthesis matrix is defined as X
def=

[
x1 . . . xN

]
❧ Observe that the tight frame condition can be written

y∗(XX ∗)y
y∗y

= α for all y in Cd

❧ Four equivalent definitions of a tight frame:

❧ The rows of X are orthogonal

❧ The d singular values of X are identical

❧ The d non-zero eigenvalues of X ∗X are identical

❧ The Gram matrix X ∗X is a scaled rank-d orthogonal projector
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Structural Constraints on Frame Vectors
❦

❧ Prescribed Euclidean norms

❧ This is the CDMA signature design problem

❧ Low peak-to-average-power ratio

❧ Components of each vector should have similar moduli

❧ Low cross-correlations |〈xj,xk〉| between each pair

❧ Vectors in tight frames can have large pairwise correlations

❧ Preferable for all vectors to be well separated

❧ Components drawn from a finite alphabet

❧ Fundamental problem in communications engineering

❧ One common alphabet is A = {(±1± i)/
√

2}
❧ . . .

❧ . . .
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Inverse Singular Value Problems
❦

❧ Let S be a collection of “structured” d×N matrices

❧ Let X be the collection of d×N matrices with singular values

σ1, . . . , σd

❧ Find a matrix in the intersection of S and X

❧ If problem is not soluble, find a matrix in S that is closest to X with

respect to some norm

❧ General numerical approaches are available

❧ Inverse eigenvalue problems defined similarly for the N ×N Gram

matrix

References: [Chu 1998, Chu-Golub 2002]
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Algorithms
❦

Finite-step methods
❧ Useful for simple structural constraints

❧ Fast and easy to implement

❧ Always succeed

Alternating projection methods
❧ Good for more complicated structural constraints

❧ Slow but easy to implement

❧ May fail

Projected gradient or coordinate-free Newton methods
❧ Difficult to develop; not good at repeated eigenvalues

❧ Fairly fast but hard to implement

❧ May fail
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Finite-Step Methods
❦

❧ Goal: construct tight frame X with squared column norms w1, . . . , wN

❧ Equivalent to Schur-Horn Inverse Eigenvalue Problem

❧ Gram matrix X ∗X has diagonal w1, . . . , wN

❧ Gram matrix has d non-zero eigenvalues, all equal to
∑

wk/d

❧ Diagonal must majorize eigenvalues: 0 ≤ wj ≤
∑

wk/d for all j

Basic Idea
❧ Start with diagonal matrix of eigenvalues

❧ Apply sequence of (N − 1) plane rotations [Chan-Li 1983] 1
1

0

 7−→

 0.4000 0.4323 −0.2449
0.4323 0.7000 0.1732

−0.2449 0.1732 0.9000


❧ Extract the frame X with rank-revealing QR [Golub-van Loan 1996]
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Finite-Step Methods
❦

Equal Column Norms

❧ Start with arbitary Hermitian matrix whose trace is
∑

wk

❧ Apply (N − 1) plane rotations [Bendel-Mickey 1978, GvL 1996] 0.6911 1.1008 −1.0501
1.1008 1.8318 −0.9213

−1.0501 −0.9213 −0.5229

 7−→

 0.6667 −1.4933 −0.5223
−1.4933 0.6667 1.4308
−0.5223 1.4308 0.6667


❧ Extract the frame X with rank-revealing QR factorization

One-Sided Methods

❧ Can use Davies-Higham method [2000] to construct tight frames with

equal column norms directly

❧ We have extended Chan-Li to construct tight frames with arbitrary

column norms directly [TDH 2003, DHSuT 2003]
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Alternating Projections
❦

❧ Let S be the collection of matrices that satisfy the structural constraint

❧ Let X be the collection of α-tight frames

❧ Begin with an arbitrary matrix

❧ Find the nearest matrix that satisfies the structural constraint

❧ Find the nearest matrix that satisfies the spectral constraint. . .

S

X
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Literature on Alternating Projections
❦

Theory

❧ Subspaces [J. Neumann 1933; Diliberto-Straus 1951; Wiener 1955; . . . ]

❧ Convex sets [Cheney-Goldstein 1959]

❧ Descent algorithms [Zangwill 1969; R. Meyer 1976; Fiorot-Huard 1979]

❧ Corrected [Dykstra 1983; Boyle-Dykstra 1985; Han 1987]

❧ Information divergences [Csiszár-Tusnády 1984]

❧ Recent surveys [Bauschke-Borwein 1996; Deutsch 2001]

Practice

❧ Signal recovery and restoration [Landau-Miranker 1961; Gerchberg

1973; Youla-Webb 1982; Cadzow 1988; Donoho-Stark 1989; . . . ]

❧ Schur-Horn IEP [Chu 1996]

❧ Nearest symmetric diagonally dominant matrix [Raydan-Tarazaga 2000]

❧ Nearest correlation matrix [Higham 2002]
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Nearest Frames & Gram Matrices
❦

❧ To implement the alternating projection, one must compute the tight

frame or tight frame Gram matrix nearest a given matrix

❧ For analytic simplicity, we use the Frobenius norm

Theorem 1. Suppose that Z has polar decomposition RΘ. The matrix Θ

is a tight frame nearest to Z . If Z has full rank, the nearest matrix is

unique.

Theorem 2. Let Z be a Hermitian matrix, and let the columns of U be

an orthonormal basis for an eigenspace associated with the d algebraically

largest eigenvalues. Then UU∗ is a rank-d orthogonal projector closest to

Z . The nearest projector is unique if and only if λd(Z ) > λd+1(Z ).

References: [Horn-Johnson 1985]
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Nearest Matrix with Specified Column Norms
❦

❧ Consider the structural constraint set

S = {S ∈ Cd×N : ‖sk‖2
2 = wk}

Proposition 1. Let Z be an arbitrary matrix. A matrix in S is closest to

Z if and only if

sk =
{

wk zk/ ‖zk‖2 for zk 6= 0 and
wk uk for zk = 0,

where uk is an arbitrary unit vector. If the columns of Z are all non-zero,

then the solution to the nearness problem is unique.
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Convergence for Fixed Column Norms
❦

Theorem 3. [THSt 2003] Suppose that S0 has full rank and non-zero

columns. Perform an alternating projection between S and X . The

sequence of iterates either converges in norm to a full-rank fixed point of

the algorithm or it has a continuum of accumulation points that are all

full-rank fixed points of the algorithm.

Theorem 4. [THSt 2003] The full-rank stationary points of the

alternating projection between S and X are precisely the full-rank

matrices in S whose columns are all eigenvectors of SS∗. That is,

SS∗S = SΛ where Λ is diagonal and positive.

❧ Each fixed point may be identified as union of tight frames for mutually

orthogonal subspaces of Cd [Ulukus-Yates 2001; Benedetto-Fickus

2002; Anigstein-Anantharam 2003]
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Alternating Projections vs. Ulukus-Yates
❦

❧ Other algorithms have been proposed for constructing tight frames with

specified column norms, eg. [Ulukus-Yates 2001]
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Alternating Projections vs. Ulukus-Yates
❦
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Peak-to-Average-Power Ratio
❦

❧ In communications applications, it is practical for the vectors to have

components with similar moduli

❧ Define the peak-to-average-power ratio of a vector v in Cd to be

PAR(v) def=
maxj |vj|2∑

j |vj|2 /d

❧ Note that 1 ≤ PAR(v) ≤ d

❧ The lower extreme corresponds to equal-modulus vectors

❧ The upper bound occurs only for scaled canonical basis vectors
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The PAR Constraint
❦

❧ Let ρ be the maximum allowable PAR

❧ Suppose the frame vectors have norms w1, . . . , wN

❧ The constraint set becomes

S = {S ∈ Cd×N : PAR(sk) ≤ ρ and ‖sk‖2
2 = wk}

Constraint set
for one column

z
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Optimal Grassmannian Frames
❦

❧ An interesting (and difficult) problem is to construct a unit-norm tight

frame with minimally correlated vectors

❧ For any d×N matrix Z with unit-norm columns

max
m6=n

|〈zj,zk〉| ≥

√
N − d

d (N − 1)
.

❧ The matrices that meet the bound are called optimal Grassmannian

(tight) frames

❧ Each pair of columns has identical cross-correlation |〈zj,zk〉|
❧ They do not exist for most combinations of d and N

❧ Closely related to “packings in Grassmannian manifolds”

References: [Conway-Hardin-Sloane 1996; StH 2003, SuTDH 2003]
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Constructing Optimal Grassmannian Frames
❦

❧ Let µ =
√

(N − d)/(d(N − 1))
❧ Consider the constraint sets

S = {S ∈ CN×N : S = S∗; diag S = e; |sjk| ≤ µ}

X = {X ∈ CN×N : X = X ∗; λ(X ) = (N/d, . . . , N/d︸ ︷︷ ︸
d

, 0, . . . , 0)}

❧ Any matrix in S ∩X is an optimal Grassmannian frame

❧ Empirically, an alternating projection between S and X appears to

find optimal Grassmannian frames when they exist

Reference: [TDHSt 2003, DHSST 2003]
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Tight Frames vs. Grassmannian Frames
❦

Tight frame:

X =

24 −0.6669 −0.3972 0.9829 0.1984 0.5164 −0.3540
0.6106 0.4999 −0.0761 0.5205 0.4776 −0.9341
0.4272 −0.7696 0.1676 0.8305 −0.7108 −0.0470

35

X
∗
X =

26666664

1.0000 0.2414 −0.6303 0.5402 −0.3564 −0.3543
0.2414 1.0000 −0.5575 −0.4578 0.5807 −0.2902

−0.6303 −0.5575 1.0000 0.2947 0.3521 −0.2847
0.5402 −0.4578 0.2947 1.0000 −0.2392 −0.5954

−0.3564 0.5807 0.3521 −0.2392 1.0000 −0.5955
−0.3543 −0.2902 −0.2847 −0.5954 −0.5955 1.0000

37777775

Grassmannian frame:

X =

24 −0.1619 −0.6806 0.1696 0.3635 −0.4757 0.3511
0.6509 0.1877 −0.4726 0.2428 −0.5067 −0.0456

−0.2239 0.0391 −0.4978 −0.5558 −0.1302 0.6121

35

X
∗
X =

26666664

1.0000 0.4472 −0.4472 0.4472 −0.4472 −0.4472
0.4472 1.0000 −0.4472 −0.4472 0.4472 −0.4472

−0.4472 −0.4472 1.0000 0.4472 0.4472 −0.4472
0.4472 −0.4472 0.4472 1.0000 −0.4472 −0.4472

−0.4472 0.4472 0.4472 −0.4472 1.0000 −0.4472
−0.4472 −0.4472 −0.4472 −0.4472 −0.4472 1.0000

37777775
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Conclusions
❦

❧ Wireless is a timely application
❧ It yields inverse eigenvalue problems and matrix nearness problems
❧ Tight frames generalize orthogonal bases and have other applications
❧ The linear algebra community may be able to contribute significantly
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