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Introduction
0

[] Matrix construction problems arise in theory of wireless communication
[] Many papers have appeared in /[EEE Trans. on Information Theory

[ We view these constructions as inverse eigenvalue problems

[] Provides new insights
[] Suggests new tools for solution
[] Offers new and interesting inverse eigenvalue problems

References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999;
Ulukus-Yates 2001: Rose 2001; Viswanath-Anantharam 2002;

Anigstein-Anantharam 2003; . . . |
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Code-Division Multiple Access (CDMA)
0

A CDMA system allows many users to share a wireless channel
Channel is modeled as a vector space of dimension d

Each of N users receives a unit-norm signature vector s; (N > d)
Each user’s information is encoded in a complex number by,

In each transmission interval, a user sends b sy

Each user may have a different power level wy

I Y Y O B

Base station receives superposition ), by \/w, s + v, where v is
additive noise

[]

The base station must extract all b from the d-dimensional noisy
observation

Reference: [Viterbi 1995]
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Example
N

[ Intuition: the signature vectors should be well separated for the system
to perform well

A S

=
S
5
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Optimal CDMA Signatures
[]
[ For clarity, suppose the noise is a white, Gaussian random process

L] Form the weighted signature matrix

XZ[MSl \/FQSQ \/WSN}

1 One performance measure is total weighted squared correlation (TWSC)

def

TWSC(X) 2 [ X*X |2 = 3 w; wy, (85, s8]

1 Minimizing TWSC is (often) equivalent to finding X for which

XX*:Zdwk I, and  diag (X*X) = (w1, ..., wy)

L] Thus X is row-orthogonal with specified column norms

References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999, 2002]
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Connection with Tight Frames
n

] An a-tight frame is a collection {x;} of N vectors in C? such that

(y, )| =a|lyl;  forallyin C?

)=

k=1

[] a-tight frames generalize orthonormal systems

] Designing tight frames with specified norms = Designing optimal
CDMA signatures under white noise

[] Tight frames also arise in signal processing, harmonic analysis, physics,
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Spectral Properties of Tight Frames
n

def

[ The frame synthesis matrix is defined as X = |1 ... xn|

[] Observe that the tight frame condition can be written

y* (XX*)y
y*y

= « for all y in C?

I Four equivalent definitions of a tight frame:

[] The rows of X are orthogonal

[] The d singular values of X are identical

[I The d non-zero eigenvalues of X*X are identical

[] The Gram matrix X*X is a scaled rank-d orthogonal projector
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Structural Constraints on Frame Vectors

[]

] Prescribed Euclidean norms
[] This is the CDMA signature design problem
[l Low peak-to-average-power ratio
[] Components of each vector should have similar moduli
[l Low cross-correlations |(x;, x)| between each pair
[] Vectors in tight frames can have large pairwise correlations
[] Preferable for all vectors to be well separated
[ Components drawn from a finite alphabet
[ Fundamental problem in communications engineering
] One common alphabet is o7 = {(£1 +i)/v/2}
...
...
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Inverse Singular Value Problems

[]

L]

Let .¥ be a collection of “structured” d x N matrices

L]

Let 2 be the collection of d x N matrices with singular values
01y...,0¢

Find a matrix in the intersection of . and 2

If problem is not soluble, find a matrix in . that is closest to 2" with

1 [

respect to some norm

L]

General numerical approaches are available

[]

Inverse eigenvalue problems defined similarly for the N x N Gram
matrix

References: [Chu 1998, Chu-Golub 2002]
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Algorithms
]

Finite-step methods

[] Useful for simple structural constraints
[] Fast and easy to implement
L] Always succeed

Alternating projection methods

[] Good for more complicated structural constraints

[] Slow but easy to implement
LI May fail

Projected gradient or coordinate-free Newton methods

I Difficult to develop; not good at repeated eigenvalues
[ Fairly fast but hard to implement
(] May fail
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Finite-Step Methods
0

[] Goal: construct tight frame X with squared column norms wq, ..., wy
(] Equivalent to Schur-Horn Inverse Eigenvalue Problem

[] Gram matrix X*X has diagonal w1, ..., wyn

(] Gram matrix has d non-zero eigenvalues, all equal to ) wy/d

[ Diagonal must majorize eigenvalues: 0 < w; < > wy/d for all j

Basic ldea

[] Start with diagonal matrix of eigenvalues
1 Apply sequence of (N — 1) plane rotations [Chan-Li 1983]

1 [ 0.4000 0.4323 —0.2449
1 — 0.4323 0.7000  0.1732
I 0 | | —0.2449 0.1732  0.9000

[ Extract the frame X with rank-revealing QR [Golub-van Loan 1996]
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Finite-Step Methods
0

Equal Column Norms

[] Start with arbitary Hermitian matrix whose trace is > wy
(1 Apply (N — 1) plane rotations [Bendel-Mickey 1978, GvL 1996]

0.6911  1.1008 —1.0501 | C 0.6667 —1.4933 —0.5223 ]
1.1008  1.8318 —0.9213 | — | —1.4933 0.6667  1.4308
- —1.0501 —0.9213 —0.5229 | - —0.5223 14308  0.6667

[] Extract the frame X with rank-revealing QR factorization

One-Sided Methods

[1 Can use Davies-Higham method [2000] to construct tight frames with
equal column norms directly

[] We have extended Chan-Li to construct tight frames with arbitrary
column norms directly [TDH 2003, DHSuT 2003]

Inverse Eigenvalue Problems in Wireless Communications 12



Alternating Projections
]

L] Let .% be the collection of matrices that satisfy the structural constraint
(] Let 2 be the collection of a-tight frames

(] Begin with an arbitrary matrix

] Find the nearest matrix that satisfies the structural constraint

[] Find the nearest matrix that satisfies the spectral constraint. . .

X T,
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Literature on

Alternating Projections
]

Theory

I Y I B

Practice

Subspaces [J. Neumann 1933; Diliberto-Straus 1951; Wiener 1955; . . . |
Convex sets [Cheney-Goldstein 1959]

Descent algorithms [Zangwill 1969; R. Meyer 1976; Fiorot-Huard 1979]
Corrected [Dykstra 1983; Boyle-Dykstra 1985; Han 1987]

Information divergences [Csiszar-Tusnady 1984]

Recent surveys [Bauschke-Borwein 1996; Deutsch 2001]

] Signal recovery and restoration [Landau-Miranker 1961; Gerchberg
1973; Youla-Webb 1982; Cadzow 1988; Donoho-Stark 1989; . . . ]

1 Schur-Horn IEP [Chu 1996
[] Nearest symmetric diagona

lly dominant matrix [Raydan-Tarazaga 2000]

[ ] Nearest correlation matrix

Higham 2002]
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Nearest Frames & Gram Matrices
0

[] To implement the alternating projection, one must compute the tight
frame or tight frame Gram matrix nearest a given matrix
L] For analytic simplicity, we use the Frobenius norm

Theorem 1. Suppose that Z has polar decomposition R©. The matrix ©
IS a tight frame nearest to Z. If Z has full rank, the nearest matrix is
unique.

Theorem 2. Let Z be a Hermitian matrix, and let the columns of U be
an orthonormal basis for an eigenspace associated with the d algebraically
largest eigenvalues. Then UU* is a rank-d orthogonal projector closest to
Z. The nearest projector is unique if and only if \g(Z) > Agi1(Z).

References: [Horn-Johnson 1985]
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Nearest Matrix with Specified Column Norms
0

[] Consider the structural constraint set

S ={S € CPN: sy = wi}

Proposition 1. Let Z be an arbitrary matrix. A matrix in . is closest to
Z if and only if

o — b wr zk/ ||zl for z, # 0 and
k W W for z;, = 0,

where wy, is an arbitrary unit vector. If the columns of Z are all non-zero,
then the solution to the nearness problem is unique.
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Convergence for Fixed Column Norms
n

Theorem 3. [THSt 2003] Suppose that Sy has full rank and non-zero
columns. Perform an alternating projection between . and 2 . The
sequence of iterates either converges in norm to a full-rank fixed point of
the algorithm or it has a continuum of accumulation points that are all
full-rank fixed points of the algorithm.

Theorem 4. [THSt 2003] The full-rank stationary points of the

alternating projection between . and X are precisely the full-rank
matrices in . whose columns are all eigenvectors of S5*. That is,

55*S = SA where A is diagonal and positive.

[] Each fixed point may be identified as union of tight frames for mutually
orthogonal subspaces of C¢ [Ulukus-Yates 2001; Benedetto-Fickus
2002; Anigstein-Anantharam 2003]
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Alternating Projections vs. Ulukus-Yates
N

[] Other algorithms have been proposed for constructing tight frames with
specified column norms, eg. [Ulukus-Yates 2001]

Comparative Execution Times in Dimension d =16
0.3

I
—©— Alternating Projections
—— Ulukus—Yates algorithm
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Alternating Projections vs. Ulukus-Yates

[]

Comparative Execution Times in Dimension d =64
18 T T T T T
—©— Alternating Projections
—— Ulukus—Yates algorithm
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Peak-to-Average-Power Ratio
i

[] In communications applications, it is practical for the vectors to have
components with similar moduli
1 Define the peak-to-average-power ratio of a vector v in C% to be

2
det MAX; [V

P

PAR(v)

[] Note that 1 < PAR(v) <d
[ The lower extreme corresponds to equal-modulus vectors
[] The upper bound occurs only for scaled canonical basis vectors
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The PAR Constraint
0

[] Let p be the maximum allowable PAR
[] Suppose the frame vectors have norms wq, ..., wy
[ The constraint set becomes

S ={Sc C»N :PAR(sp) < p and |s]|s = wi}

“\.Z

Constraint set
for one column

wi /p/d
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Optimal Grassmannian Frames
0

[ An interesting (and difficult) problem is to construct a unit-norm tight
frame with minimally correlated vectors
L] For any d x N matrix Z with unit-norm columns

Ty Y
ma ; .
men R = AN = 1)

[] The matrices that meet the bound are called optimal Grassmannian
(tight) frames
[l Each pair of columns has identical cross-correlation |(z;, zx)|

[] They do not exist for most combinations of d and NV
[] Closely related to “packings in Grassmannian manifolds”

References: [Conway-Hardin-Sloane 1996; StH 2003, SuTDH 2003]
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Constructing Optimal Grassmannian Frames
n

7 Let = /(N — d)/[d(N — 1))
[ 1 Consider the constraint sets

S ={SecCV*N:.:S=5* diagS=-e; |s;n] <pu}
2 ={XeCVN: X=X XX)=(N/d,...,N/d,0,...,0)}

~

d

(] Any matrix in . N % is an optimal Grassmannian frame
(] Empirically, an alternating projection between . and Z appears to
find optimal Grassmannian frames when they exist

Reference: [TDHSt 2003, DHSST 2003]

Inverse Eigenvalue Problems in Wireless Communications



Tight Frames vs. Grassmannian Frames

[]

Tight frame:

—0.6669
0.6106
0.4272

1.0000
0.2414
—0.6303
0.5402
—0.3564
—0.3543

—0.3972
0.4999
—0.7696

0.2414
1.0000
—0.5575
—0.4578
0.5807
—0.2902

Grassmannian frame:
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—0.1619
0.6509
—0.2239

1.0000
0.4472
—0.4472
0.4472
—0.4472
—0.4472

—0.6806
0.1877
0.0391

0.4472
1.0000
—0.4472
—0.4472
0.4472
—0.4472

0.9829
—0.0761
0.1676

—0.6303
—0.5575
1.0000
0.2947
0.3521
—0.2847

0.1696
—0.4726
—0.4978

—0.4472
—0.4472
1.0000
0.4472
0.4472
—0.4472

0.1984
0.5205
0.8305

0.5402
—0.4578
0.2947
1.0000
—0.2392
—0.5954

0.3635
0.2428
—0.5558

0.4472
—0.4472
0.4472
1.0000
—0.4472
—0.4472

0.5164
0.4776
—0.7108

—0.3564
0.5807
0.3521

—0.2392
1.0000

—0.5955

—0.4757
—0.5067
—0.1302

—0.4472
0.4472
0.4472

—0.4472
1.0000

—0.4472

—0.3540
—0.9341
—0.0470

—0.3543
—0.2902
—0.2847
—0.5954
—0.5955

1.0000

0.3511
—0.0456
0.6121

—0.4472
—0.4472
—0.4472
—0.4472
—0.4472

1.0000




Conclusions
0

[] Wireless is a timely application

] It yields inverse eigenvalue problems and matrix nearness problems

LI Tight frames generalize orthogonal bases and have other applications
[] The linear algebra community may be able to contribute significantly
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