Inverse Eigenvalue Problems in Wireless Communications

Inderjit S. Dhillon Robert W. Heath Jr. Mátyás Sustik Joel A. Tropp

The University of Texas at Austin

۲

Thomas Strohmer

The University of California at Davis

Introduction

- Matrix construction problems arise in theory of wireless communication
- Many papers have appeared in IEEE Trans. on Information Theory
- >>> We view these constructions as *inverse eigenvalue problems*
 - Provides new insights
 - Suggests new tools for solution
 - Offers new and interesting inverse eigenvalue problems

References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999; Ulukus-Yates 2001; Rose 2001; Viswanath-Anantharam 2002; Anigstein-Anantharam 2003; . . .]

Code-Division Multiple Access (CDMA)

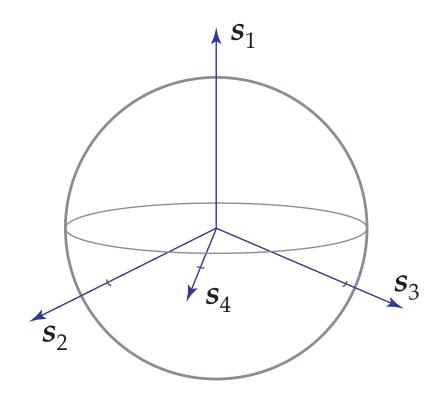
- A CDMA system allows many users to share a wireless channel
- \blacktriangleright Channel is modeled as a vector space of dimension d
- So Each of N users receives a unit-norm signature vector s_k (N > d)
- \blacktriangleright Each user's information is encoded in a complex number b_k
- \blacktriangleright In each transmission interval, a user sends $b_k s_k$
- so Each user may have a different power level w_k
- ▶ Base station receives superposition $\sum_{k=1}^{N} b_k \sqrt{w}_k s_k + v$, where v is additive noise
- So The base station must extract all b_k from the *d*-dimensional noisy observation

Reference: [Viterbi 1995]

Example

Ø

Intuition: the signature vectors should be well separated for the system to perform well



$$\frac{1}{3} \begin{bmatrix} 0 & 0 & \sqrt{6} & -\sqrt{6} \\ 0 & 2\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\ 3 & -1 & -1 & -1 \end{bmatrix}$$

Optimal CDMA Signatures

For clarity, suppose the noise is a white, Gaussian random process

Form the weighted signature matrix

$$X = \begin{bmatrix} \sqrt{w_1} \, s_1 & \sqrt{w_2} \, s_2 & \dots & \sqrt{w_N} \, s_N \end{bmatrix}$$

One performance measure is total weighted squared correlation (TWSC)

TWSC(X)
$$\stackrel{\text{def}}{=} \|X^*X\|_{\text{F}}^2 = \sum w_j w_k |\langle s_j, s_k \rangle|^2$$

So Minimizing TWSC is (often) equivalent to finding X for which

$$XX^* = \frac{\sum w_k}{d} I_d$$
 and $\operatorname{diag} (X^*X) = (w_1, \dots, w_N)$

Thus X is row-orthogonal with specified column norms References: [Rupf-Massey 1994; Vishwanath-Anantharam 1999, 2002]

Connection with Tight Frames

 (\boldsymbol{b})

So An α -tight frame is a collection $\{x_k\}$ of N vectors in \mathbb{C}^d such that

$$\sum_{k=1}^N |\langle m{y}, m{x}_k
angle|^2 = lpha ~ \|m{y}\|_2^2$$
 for all $m{y}$ in \mathbb{C}^d

- $\sim \alpha$ -tight frames generalize orthonormal systems
- Designing tight frames with specified norms = Designing optimal
 CDMA signatures under white noise
- Tight frames also arise in signal processing, harmonic analysis, physics,

Spectral Properties of Tight Frames

- So The frame synthesis matrix is defined as $X \stackrel{\text{def}}{=} \begin{bmatrix} x_1 & \dots & x_N \end{bmatrix}$
- Observe that the tight frame condition can be written

$$rac{oldsymbol{y}^*(oldsymbol{X}oldsymbol{X}^*)oldsymbol{y}}{oldsymbol{y}^*oldsymbol{y}}=lpha \qquad ext{ for all }oldsymbol{y} ext{ in }\mathbb{C}^d$$

- Four equivalent definitions of a tight frame:
 - \blacktriangleright The rows of X are orthogonal
 - \blacktriangleright The *d* singular values of *X* are identical
 - So The *d* non-zero eigenvalues of X^*X are identical
 - So The Gram matrix X^*X is a scaled rank-d orthogonal projector

Structural Constraints on Frame Vectors

Prescribed Euclidean norms

This is the CDMA signature design problem

Low peak-to-average-power ratio

Some of each vector should have similar moduli

- > Low cross-correlations $|\langle x_j, x_k
 angle|$ between each pair
 - >>> Vectors in tight frames can have large pairwise correlations
 - ▹ Preferable for all vectors to be well separated
- Solution Components drawn from a finite alphabet
 - Fundamental problem in communications engineering
 - \checkmark One common alphabet is $\mathscr{A}=\{(\pm 1\pm i)/\sqrt{2}\}$

50

50.

Inverse Singular Value Problems

 (\boldsymbol{b})

- \checkmark Let $\mathscr S$ be a collection of "structured" $d\times N$ matrices
- So Let \mathscr{X} be the collection of $d \times N$ matrices with singular values $\sigma_1, \ldots, \sigma_d$
- $\, \bigstar \,$ Find a matrix in the intersection of ${\mathscr S}$ and $\, {\mathscr X} \,$
- If problem is not soluble, find a matrix in $\mathscr S$ that is closest to $\mathscr X$ with respect to some norm
- Seneral numerical approaches are available
- Inverse eigenvalue problems defined similarly for the $N\times N$ Gram matrix

References: [Chu 1998, Chu-Golub 2002]

Algorithms

Finite-step methods

- Useful for simple structural constraints
- Fast and easy to implement
- Always succeed

Alternating projection methods

- Solution Section Secti
- Slow but easy to implement
- 🔈 May fail

Projected gradient or coordinate-free Newton methods

- Difficult to develop; not good at repeated eigenvalues
- Fairly fast but hard to implement
- 🔈 May fail

Finite-Step Methods

- Sol: construct tight frame X with squared column norms w_1, \ldots, w_N
- Equivalent to Schur-Horn Inverse Eigenvalue Problem
 - Solution Section X^*X has diagonal w_1, \ldots, w_N
 - \blacktriangleright Gram matrix has d non-zero eigenvalues, all equal to $\sum w_k/d$
 - ▷ Diagonal must majorize eigenvalues: $0 \le w_j \le \sum w_k/d$ for all j

Basic Idea

- Start with diagonal matrix of eigenvalues
- ▷ Apply sequence of (N-1) plane rotations [Chan-Li 1983]

$$\begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.4000 & 0.4323 & -0.2449 \\ 0.4323 & 0.7000 & 0.1732 \\ -0.2449 & 0.1732 & 0.9000 \end{bmatrix}$$

Extract the frame X with rank-revealing QR [Golub-van Loan 1996]

Finite-Step Methods

Equal Column Norms

- Start with arbitary Hermitian matrix whose trace is $\sum w_k$
- ▷ Apply (N-1) plane rotations [Bendel-Mickey 1978, GvL 1996]

ſ	0.6911	1.1008	-1.0501 -		0.6667	-1.4933	-0.5223
	1.1008	1.8318	-0.9213	\longmapsto	-1.4933	0.6667	1.4308
	-1.0501	-0.9213	-0.5229		-0.5223	1.4308	0.6667

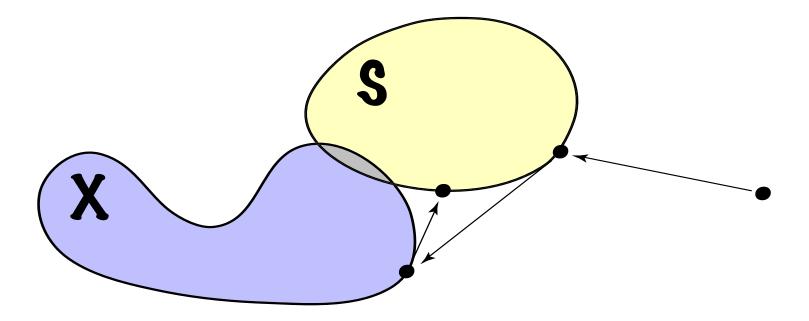
 \blacktriangleright Extract the frame X with rank-revealing QR factorization

One-Sided Methods

- Can use Davies-Higham method [2000] to construct tight frames with equal column norms directly
- Solumine Section 5.4 We have extended Chan-Li to construct tight frames with arbitrary column norms directly [TDH 2003, DHSuT 2003]

Alternating Projections

- \blacktriangleright Let $\mathscr S$ be the collection of matrices that satisfy the structural constraint
- \checkmark Let $\mathscr X$ be the collection of $\alpha\text{-tight}$ frames
- Begin with an arbitrary matrix
- So Find the nearest matrix that satisfies the structural constraint
- ▹ Find the nearest matrix that satisfies the spectral constraint. . .



Literature on Alternating Projections

Theory

- Subspaces [J. Neumann 1933; Diliberto-Straus 1951; Wiener 1955; . . .]
- Convex sets [Cheney-Goldstein 1959]
- Descent algorithms [Zangwill 1969; R. Meyer 1976; Fiorot-Huard 1979]
- Sorrected [Dykstra 1983; Boyle-Dykstra 1985; Han 1987]
- Information divergences [Csiszár-Tusnády 1984]
- Recent surveys [Bauschke-Borwein 1996; Deutsch 2001]

Practice

- Signal recovery and restoration [Landau-Miranker 1961; Gerchberg 1973; Youla-Webb 1982; Cadzow 1988; Donoho-Stark 1989; . . .]
- Schur-Horn IEP [Chu 1996]
- Nearest symmetric diagonally dominant matrix [Raydan-Tarazaga 2000]
- Nearest correlation matrix [Higham 2002]

Nearest Frames & Gram Matrices

 (\boldsymbol{b})

To implement the alternating projection, one must compute the tight frame or tight frame Gram matrix nearest a given matrix

▹ For analytic simplicity, we use the Frobenius norm

Theorem 1. Suppose that Z has polar decomposition $R\Theta$. The matrix Θ is a tight frame nearest to Z. If Z has full rank, the nearest matrix is unique.

Theorem 2. Let Z be a Hermitian matrix, and let the columns of U be an orthonormal basis for an eigenspace associated with the d algebraically largest eigenvalues. Then UU^* is a rank-d orthogonal projector closest to Z. The nearest projector is unique if and only if $\lambda_d(Z) > \lambda_{d+1}(Z)$.

References: [Horn-Johnson 1985]

Nearest Matrix with Specified Column Norms

Solution Consider the structural constraint set

$$\mathscr{S} = \{ \mathbf{S} \in \mathbb{C}^{d \times N} : \|\mathbf{s}_k\|_2^2 = w_k \}$$

Proposition 1. Let Z be an arbitrary matrix. A matrix in \mathscr{S} is closest to Z if and only if

$$oldsymbol{s}_k = \left\{ egin{array}{cc} w_k \, oldsymbol{z}_k / \, \|oldsymbol{z}_k\|_2 & ext{for } oldsymbol{z}_k
eq oldsymbol{0} & ext{array} \ w_k \, oldsymbol{u}_k & ext{for } oldsymbol{z}_k = oldsymbol{0}, \ egin{array}{cc} ext{for } oldsymbol{z}_k
eq oldsymbol{0} & ext{for } oldsymbol{z}_k
eq oldsymbol{0}, \ egin{array}{cc} ext{for } oldsymbol{z}_k
eq oldsymbol{0}, \ eta & ext{for } oldsymbol{0}, \ eta & ext{for } oldsymbol{0}, \ eta & ext{for } oldsymbol{z}_k
eq oldsymbol{0}, \ eta & ext{for } e$$

where u_k is an arbitrary unit vector. If the columns of Z are all non-zero, then the solution to the nearness problem is unique.

Convergence for Fixed Column Norms

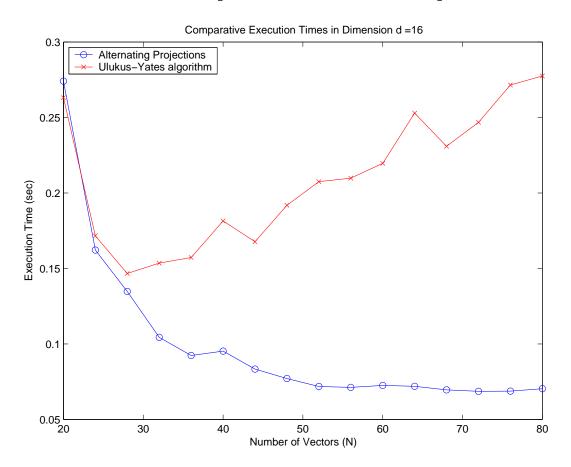
Theorem 3. [THSt 2003] Suppose that S_0 has full rank and non-zero columns. Perform an alternating projection between \mathscr{S} and \mathscr{X} . The sequence of iterates either converges in norm to a full-rank fixed point of the algorithm or it has a continuum of accumulation points that are all full-rank fixed points of the algorithm.

Theorem 4. [THSt 2003] The full-rank stationary points of the alternating projection between \mathscr{S} and \mathscr{X} are precisely the full-rank matrices in \mathscr{S} whose columns are all eigenvectors of SS*. That is, $SS^*S = S\Lambda$ where Λ is diagonal and positive.

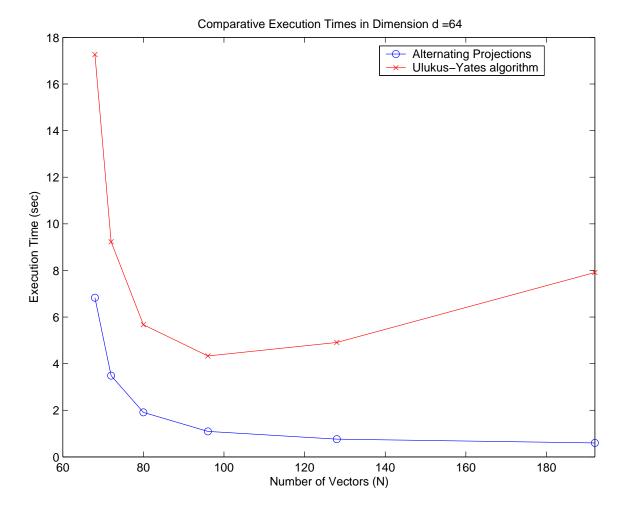
Each fixed point may be identified as union of tight frames for mutually orthogonal subspaces of C^d [Ulukus-Yates 2001; Benedetto-Fickus 2002; Anigstein-Anantharam 2003]

Alternating Projections vs. Ulukus-Yates

Other algorithms have been proposed for constructing tight frames with specified column norms, eg. [Ulukus-Yates 2001]



Alternating Projections vs. Ulukus-Yates



Inverse Eigenvalue Problems in Wireless Communications

Peak-to-Average-Power Ratio

- In communications applications, it is practical for the vectors to have components with similar moduli
- >> Define the *peak-to-average-power ratio* of a vector v in \mathbb{C}^d to be

$$ext{PAR}(oldsymbol{v}) \stackrel{ ext{def}}{=} rac{\max_{j} \left| v_{j}
ight|^{2}}{\sum_{j} \left| v_{j}
ight|^{2} / d}$$

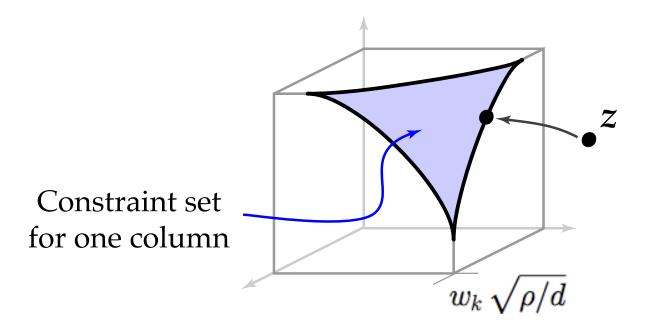
- ▷ Note that $1 \leq PAR(\boldsymbol{v}) \leq d$
 - The lower extreme corresponds to equal-modulus vectors
 - >> The upper bound occurs only for scaled canonical basis vectors

The PAR Constraint

Ø

- \blacktriangleright Let ρ be the maximum allowable PAR
- \blacktriangleright Suppose the frame vectors have norms w_1,\ldots,w_N
- The constraint set becomes

$$\mathscr{S} = \{ \boldsymbol{S} \in \mathbb{C}^{d \times N} : \operatorname{PAR}(\boldsymbol{s}_k) \le \rho \quad \text{and} \quad \|\boldsymbol{s}_k\|_2^2 = w_k \}$$



Optimal Grassmannian Frames

 (\mathfrak{G})

- An interesting (and difficult) problem is to construct a unit-norm tight frame with minimally correlated vectors
- So For any $d \times N$ matrix Z with unit-norm columns

$$\max_{m \neq n} |\langle \boldsymbol{z}_j, \boldsymbol{z}_k \rangle| \ge \sqrt{\frac{N-d}{d(N-1)}}.$$

- The matrices that meet the bound are called *optimal Grassmannian* (*tight*) *frames*
- >> Each pair of columns has identical cross-correlation $|\langle m{z}_j,m{z}_k
 angle|$
- \checkmark They do not exist for most combinations of d and N
- Closely related to "packings in Grassmannian manifolds"

References: [Conway-Hardin-Sloane 1996; StH 2003, SuTDH 2003]

Constructing Optimal Grassmannian Frames

- ▷ Let $\mu = \sqrt{(N-d)/(d(N-1))}$
- Consider the constraint sets

$$\mathscr{S} = \{ S \in \mathbb{C}^{N \times N} : S = S^*; \quad \text{diag } S = \mathbf{e}; \quad |s_{jk}| \le \mu \}$$
$$\mathscr{X} = \{ X \in \mathbb{C}^{N \times N} : X = X^*; \quad \boldsymbol{\lambda}(X) = (\underbrace{N/d, \dots, N/d}_{d}, 0, \dots, 0) \}$$

- \clubsuit Any matrix in $\mathscr{S}\cap\mathscr{X}$ is an optimal Grassmannian frame
- So Empirically, an alternating projection between \mathscr{S} and \mathscr{X} appears to find optimal Grassmannian frames when they exist

Reference: [TDHSt 2003, DHSST 2003]

Tight Frames vs. Grassmannian Frames

9

Tight frame:

<i>X</i> =	$\begin{bmatrix} -0.6669 \\ 0.6106 \\ 0.4272 \end{bmatrix}$	$-0.3972 \\ 0.4999 \\ -0.7696$	$0.9829 \\ -0.0761 \\ 0.1676$	$0.1984 \\ 0.5205 \\ 0.8305$	$0.5164 \\ 0.4776 \\ -0.7108$	$\begin{array}{c} -0.3540 \\ -0.9341 \\ -0.0470 \end{array} \right]$
$X^*X =$	$\begin{bmatrix} 1.0000 \\ 0.2414 \\ -0.6303 \\ 0.5402 \\ -0.3564 \\ -0.3543 \end{bmatrix}$	$\begin{array}{c} 0.2414 \\ 1.0000 \\ -0.5575 \\ -0.4578 \\ 0.5807 \\ -0.2902 \end{array}$	$-0.6303 \\ -0.5575 \\ 1.0000 \\ 0.2947 \\ 0.3521 \\ -0.2847$	$\begin{array}{r} 0.5402 \\ -0.4578 \\ 0.2947 \\ 1.0000 \\ -0.2392 \\ -0.5954 \end{array}$	$-0.3564 \\ 0.5807 \\ 0.3521 \\ -0.2392 \\ 1.0000 \\ -0.5955$	$\begin{array}{c} -0.3543 \\ -0.2902 \\ -0.2847 \\ -0.5954 \\ -0.5955 \\ 1.0000 \end{array}$

Grassmannian frame:

	-0.1619	-0.6806	0.1696	0.3635	-0.4757	0.3511
X =	0.6509	0.1877	-0.4726	0.2428	-0.5067	-0.0456
	-0.2239	0.0391	-0.4978	-0.5558	-0.1302	0.6121
	1.0000	0.4472	-0.4472	0.4472	-0.4472	-0.4472]
-	0.4472	1.0000	-0.4472	-0.4472	0.4472	-0.4472
$X^*X =$	-0.4472	-0.4472	1.0000	0.4472	0.4472	-0.4472
~ ~ =	0.4472	-0.4472	0.4472	1.0000	-0.4472	-0.4472
	-0.4472	0.4472	0.4472	-0.4472	1.0000	-0.4472
	-0.4472	-0.4472	-0.4472	-0.4472	-0.4472	1.0000

Inverse Eigenvalue Problems in Wireless Communications

Conclusions

 (\boldsymbol{b})

- ✤ Wireless is a timely application
- It yields inverse eigenvalue problems and matrix nearness problems
- Tight frames generalize orthogonal bases and have other applications
- >>> The linear algebra community may be able to contribute significantly

Papers

- [THSt] "Inverse eigenvalue problems, alternating minimization and optimal CDMA signature sequences." Proceedings of IEEE International Symposium on Information Theory. July 2003.
- [TDHSt] "CDMA signature sequences with low peak-to-average ratio via alternating minimization." To appear at Asilomar, November 2003.
- [TDH] "Finite-step algorithms for constructing optimal CDMA signature sequences." Submitted, April 2003.
- DHSuT] "Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum."
- [TDHSt] "An alternating projection method for designing structured tight frames." In preparation.
- SuTDH "Necessary conditions for existence of optimal Grassmannian frames." In preparation.
- [DHSST] "Grassmannian packings via alternating projections." In preparation.

For More Information. . .

 (\mathbf{O})

- Inderjit S. Dhillon <inderjit@cs.utexas.edu>
- Robert W. Heath Jr. <rheath@ece.utexas.edu>
- > Thomas Strohmer <strohmer@math.ucdavis.edu>
- Mátyás Sustik <sustik@cs.utexas.edu>
- Joel A. Tropp <jtropp@ices.utexas.edu>