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Customer Interactions on Amazon.com
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Query Auto-completion
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Query Auto-completion

Query-autocomplete is integral to the Amazon search
experience, and leads to a substantial number of search
requests

Challenge:

Respond faster than > 100MM customers typing
Respond to all customer requests
Serve different types of customers and shopping missions

Shopping for Thanksgiving deals on Amazon.com
Searching for Music on Amazon Music
Watching Man in the High Castle in Prime Video
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Memory-based Approach

Memorize what customers type!

Suggestions computed from search behavior

Aggregate several days of search logs
Generate prefixes for each query
Rank prefix suggestion pairs
Retain top suggestions

Store prefix-suggestions pairs in RODB

Problem:

Memorizing typed queries do not generalize
No suggestion is given for unseen prefixes (potentially
leading to unseen queries)
Many prefixes have no completion using RODB approach
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Example

The prefix “queen size sheet”:
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Example

No completion provided for prefix: “queen size blue cot”
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Example - Using Deep Learning

Deep learning(DL) model is able to generate unseen queries

DL model learnt that “cotton sheets” is likely to follow this
prefix and the context “queen size” and “blue”
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Example - Using Deep Learning

Can help customers find the product and make purchases.
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Probabilistic language Model

We can do query completion if we know the probability
P(prefix → query)

P(mic → key mouse)=0.25

P(mic → cro sd card)=0.36 → Top candidate

P(mic → hael kors handbags)=0.08

P(mic → key bluetooth laser fidget
spinner)=0.001

P(any prefix → any completed query )

Extremely large space, need to decompose
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Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)· · ·
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Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)P(mick→ e)· · ·
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Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)P(mick→ e)P(micke→ y)
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Conditional Probability

Probability of completed query under prefix
P (prefix→ query)

P (mic→ key) = P (mic→ k)P (mick→ e)P (micke→ y)

= Π P (next character|current prefix)

What model to use?

Exploit recent success in Deep Learning: seq2seq models!
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Things we can do with Recurrent Neural Networks

Handwriting Recognition Translation

Question answering Speech Recognition
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Recurrent Neural Networks (RNN)

RNN with activation function φ:

h(t) = φ(Wh(t−1) +Mx(t) + b) (1)

ŷ(t) = Y h(t)

Note:
Parameters Θ = {W,M, b, Y } are shared at all time steps

Input xi = {x(1)i , x
(2)
i , . . . x

(T )
i } is fed sequentially

Output ŷi = {ŷ(1)i , ŷ
(2)
i , . . . ŷ

(T )
i } evaluated at each time step

Loss is measured as: L(X,Y ; Θ) = 1
N

∑N
i=1 `(yi, ŷi)
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Loss Functions

Given dataset {xi, yi}Ni=1, the loss is measured as:

L(X,Y ; Θ) =
1

N

N∑
i=1

`(yi, ŷi)

For regression problems, ` could be squared loss:

`(yi, ŷi) =
1

T

T∑
t=1

∥∥∥y(t)
i − ŷ

(t)
i

∥∥∥2

For classification problems, ` could be cross entropy loss:

`(yi, ŷi) =
1

T

T∑
t=1

KL(y
(t)
i ||softmax(ŷ

(t)
i ))
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Learning the Parameters: Gradient descent

To minimize loss L(Θ) =
∑N

i=1 `(yi; ŷi), we can conduct
gradient descent to update parameters
θ ∈ Θ = {W (t), b(t)}Tt=1:

θ ← θ − η

N

∑
i∈[N ]

∂`

∂θ
(yi; ŷi)

Problem: Even one iteration is too expensive for huge N
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Stochastic Gradient Descent (SGD)

SGD to train a neural network:

A minibatch B ⊂ [N ] is sampled.

Each parameter θ ∈ {W (t), b(t)}Tt=1 is updated using an
estimate of the gradient:

θ ← θ − η

|B|
∑
i∈B

∂`

∂θ
(yi; ŷi)

Step size η is usually selected by line search or heuristics
like Adam (Kingma et al. 2014).
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RNN: forward propagation

Forward propagation:

Evaluate activations
h(t) = φ(Wh(t−1) +Mx(t) + b), t = 1, . . . , T

Evaluate ŷ(t) = Y h(t), t = 1, . . . , T
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RNN: backward propagation

Gradients propagate back “through time”:
∂h(t)

∂W = h(t−1) ◦ diag(φ′t);
∂h(t)

∂h(t−1) = W>diag(φ′t)

Backpropagation:

∂`

∂h(t)
∝ Πt+1

i=TW
>diag(φ′i)

Hence, gradients can easily “explode” or “vanish”

Problem: Long-range dependencies cannot be captured
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Sigmoid Activation Function

Sigmoid function
σ(z) = 1/(1 + e−z) has
gradient:

σ′(z) = σ(z)(1− σ(z))

=
1

ez + e−z + 2

|z| large ⇒ vanishing
gradients

Solution indicated:
constrain size of each h

Figure: Sigmoid activation
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Activation Functions: Vanishing Gradients

Saturated activation
functions (esp. sigmoid or
tanh) ⇒ vanishing
gradients

Absolute value of input is
large for saturated
activations ⇒ vanishing
gradients

Solution indicated:
constrain size of each h

Figure: Common activation
functions and their derivatives.
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Existing Architectural Solutions

Long Short-Term Memory (LSTM):

Figure: One node of LSTM.
(Colah 2015)

f (t) =σg(Ufx
(t) +Wfh

(t−1) + bf )

i(t) =σg(Uix
(t) +Wih

(t−1) + bi)

o(t) =σg(Uox
(t) +Woh

(t−1) + bo)

c̃(t) =σc(Ucx
(t) +Wch

(t−1) + bc)

c(t) =f (t) ∗ c(t−1) + i(t) ∗ c̃(t)

h(t) =o(t) ∗ σh(c(t))

Avoid long-term dependency issues by “forget-gates”
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Existing Architectural Solutions

Gated Recurrent Unit (GRU):

Figure: One node of GRU. (Cho,
et al. (2014))

z(t) = σg(Uzx
(t) +Wzh

(t−1) + bz)

r(t) = σg(Urx
(t) +Wrh

(t−1) + br)

h̃(t) = σh(Uhx
(t) +Wh(r(t) ∗ h(t−1)) + bh)

h(t) = (1− z(t)) ∗ h(t−1) + z(t) ∗ h̃(t)
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Existing Solutions

Gradient Clipping (Pascanu et al. 2013)

Initialization with identity/orthogonal matrix (Le, Jaitly &
Hinton 2015)
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Existing Solutions

Solution: Keep W>W = I

1 uRNN (Arjovsky et al., 2016)

W ∈ Cn×n is product of reflection, diagonal, and Fourier
transform matrices

2 Full-Capacity uRNN (Wisdom et al., 2016)
3 unitary RNN (Hyland & Ratsch , 2017)

Allow W ∈ Cn×n to span the whole unitary group

4 oRNN (orthogonal RNN) (Mhammedi et al., 2017)

Allow W to span the whole orthogonal space by using
Householder reflectors

Problem: lose expressive power
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Existing Solutions

Solution: encourage orthogonality

1 factorized RNN (Vorontsov et al. 2017)

Parameterize W = UΣV >, encourage Σ to be close to 1,
and update U, V by Cayley transform

2 Parseval networks (Cisse et al. 2017)

Regularize with ‖I −W>W‖2F

Problem: high time complexity

Question: How to solve the gradient vanishing/exploding
problem with full expressive power and high efficiency?
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Large-Scale LSTMs in Action
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Google Neural Machine Translation Architecture

Eight-layer bidirectional LSTM with Attention (Johnson
et. al., 2016)

For each language pair: 1024 nodes (hidden dimension), 8
LSTM layers with a total of 255M parameters.

Total training time is on the scale of weeks, on up to 100
GPUs.
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Spectral Parameterization

An illustration of the parameterization process:
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Spectral Parameterization

Maintain SVD of transition matrix:

W = UΣV >

Parameterize U, V by products of Householder reflectors:

Hk(u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.

U ←
∏k1
k=nHk(uk)

V ←
∏k2
k=nHk(vk)
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Spectral Parameterization

Proposed parametrization:

Mk1,k2 :(Rk1 × ...× Rn)× (Rk2 × ...× Rn)× (Rn) 7→ Rn×n(
{ui}ni=k1

)
,
(
{vi}ni=k2

)
, (σ) 7→

Hn(un)...Hk1(uk1)︸ ︷︷ ︸
U

diag(σ)︸ ︷︷ ︸
Σ

Hk2(vk2)...Hn(vn)︸ ︷︷ ︸
V >

. (2)

Singular values are explicit:
Mk1,k2({ui}ni=k1 , {vi}

n
i=k2

, σ) is an n× n real matrix with
singular values σ.

Full expressivity: The image of M1,1 is the set of n× n
real matrices.

Orthogonal expressivity: The image of Mk1,k2 covers
the set of n× n orthogonal matrices if k1 + k2 ≤ n+ 2.
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Spectral RNN: RNN with SVD parameterization

In Spectral RNN , we parametrize the transition matrix
W ∈ Rn×n using m1 +m2 Householder reflectors.

Can select m1 and m2 to balance expressive power versus
time/space complexity. (Full expressivity if m1 = m2 = n)

Can do both forward and backward propagation in
O(n(m1 +m2)) time. (RNN: O(n2))

Can explicitly control the singular values. For example,

σi = σ∗ + 2r(sigmoid(σ̂i)− 0.5), i ∈ [n] (3)

⇒ σi ∈ [σ∗ − r, σ∗ + r]. Usually σ∗ is set to 1 and r � 1.
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Forward propagation

Only aspect different from regular RNN in forward
propagation is computation of Wh(t−1):

Wh(t) =Hn(un)...Hn−m1+1(un−m1+1)diag(σ)

Hn−m2+1(vn−m2+1)...Hn(vn)h(t)

Can be done efficiently through m1 +m2 inner products
and vector additions. For each reflector:

Hk(uk)h =

(
In −

2ûkû
>
k

û>k ûk

)
h = h− 2

û>k h

û>k ûk
ûk
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Backward propagation

Let L({ui}, {vi}, σ,M, Y, b) be the loss or objective
function, C(t) = Wh(t), Σ̂ = diag(σ̂). Given ∂L

∂C(t) , we define:

∂L

∂u
(t)
k

:=

[
∂C(t)

∂u
(t)
k

]>
∂L

∂C(t)
;
∂L

∂v
(t)
k

:=

[
∂C(t)

∂v
(t)
k

]>
∂L

∂C(t)
;

∂L

∂Σ(t)
:=

[
∂C(t)

∂Σ(t)

]>
∂L

∂C(t)
;
∂L

∂Σ̂(t)
:=

[
∂Σ(t)

∂Σ̂(t)

]>
∂L

∂Σ(t)
;

∂L

∂h(t−1)
:=

[
∂C(t)

∂h(t−1)

]>
∂L

∂C(t)

Back propagation for Spectral RNN requires ∂C(t)

∂u
(t)
k

, ∂C(t)

∂v
(t)
k

,

∂C(t)

∂Σ̂(t)
and ∂C(t)

∂h(t−1) .
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Backward propagation

Partial gradients can be computed iteratively (ĥ := Hk(uk)h
and g := ∂L

∂ĥ
):

∂L

∂h
=

[
∂ĥ

∂h

]>
∂L

∂ĥ
=

(
In −

2ûkû
>
k

û>k ûk

)
g = g − 2

û>k g

û>k ûk
ûk

∂L

∂ûk
=

[
∂ĥ

∂ûk

]>
∂L

∂ĥ
= −2

(
û>k h

û>k ûk
In +

1

û>k ûk
hû>k − 2

û>k h

(û>k ûk)
2
ûkû

>
k

)
g

= −2
û>k h

û>k ûk
g − 2

û>k g

û>k ûk
h+ 4

û>k h

û>k ûk

û>k g

û>k ûk
ûk

Thus backward propagation can also be done in
O((m1 +m2)n) time.
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Extension to Non-square matrices

For any real matrix W ∈ Rm×n (assume m < n) with
reduced SVD:

W = U(Σ|0)(VL|VR)> = UΣV >L

where U ∈ Rm×m, Σ ∈ diag(Rm),VL ∈ Rn×m.
There exist un, ..., uk1

and vn, ..., vk2
s.t.

U = Hm
m(um)...Hm

k1
(uk1), V = Hn

n(vn)...Hn
k2

(vk2
).

SVD parameterization for any matrix:

Mm,n
k1,k2

:(Rk1 × ...× Rm)× (Rk2 × ...× Rn)× (Rmin(m,n)) 7→ Rm×n(
{ui}mi=k1

)
,
(
{vi}mi=k2

)
, (σ) 7→(

Hm
m(um) · · ·Hm

k1
(uk1

)
)

(Σ)
(
Hn

k2
(vk2

) · · ·Hn
n(vn)

)
.

Can be applied to any Deep MLP (offers an alternative to
Residual Networks)
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Singular Value Gating

GRU/LSTM → input output gates:

Apply directly on input/output hidden vectors:

h(t) = h̃(t) ◦ σg(Wgh
(t−1) + Ugx

(t) + bg)

Screens out unimportant information

Gated Spectral RNN → singular value gates:

Apply gating units to singular values of transition matrix

Σg = Σ ◦ σg(Wgh
(t−1) + Ugx

(t) + bg)

h(t) = σh(UΣgV
Th(t−1) + Uhx

(t) + bh)

Screens out unimportant principal components
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Direct conclusions from the gradients

For Spectral RNN, recall Gradient for activations is:

∂h(T )

∂h(t0)
=

∏
T≥t≥t0

∂h(t)

∂h(t−1)
=

∏
T≥t≥t0

W>diag(φ′(h(t−1)))

Solves the exploding gradient problem:

‖W‖2 ≤ 1 + ε =⇒

∥∥∥∥∥∂h(T )

∂h(0)

∥∥∥∥∥ ≤ (1 + ε)T

Mitigates the vanishing gradient problem:

σmin(W ) ≥ 1− ε =⇒ σmin

(
∂h(T )

∂h(0)

)
≥ min |φ′|T (1− ε)T
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Spectral MLP

Generalization of MLP is bounded by its spectral Lipschitz
constant L for a T -layered network as in (Bartlett et al.
2017), or similarly bounded by ‖W‖T2 as in (Neyshabur et
al. 2017)

Spectral MLP guarantees L ≤ ‖W‖T ≤ (1 + ε)T , if we
control singular values s.t. ‖W‖2 ≤ 1 + ε
Generalization guarantee for recurrent neural network is
unclear yet in the literature

Weight matrices are Parseval tight frames =⇒ robustness
in predictions (Cisse et al. 2017)

Spectral MLP guarantees near orthogonal weight matrix,
namely tight frames
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Generalization Analysis

Generalization bound using PAC-Bayes (McAllester, 2003)
analysis on the following expected margin loss
(Neyshabur et al., 2017):

Definition (Expected Margin Loss)

For any distribution D and margin γ > 0, we define the
expected margin loss as:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ + max

j 6=y
fw(x)[j]

]
,

where fw(x)[y] is the probability of predicting y given input x
with weight w.
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Generalization Analysis: MLP

Generalization Bound (Neyshabur et al. 2017)

For any B, d, h > 0, let fw : Rn → Rk be a d-layered feedforward
neural network, where h is the upper bound on the number of
output units in each layer. If it satisfies:

Input x is bounded: ‖x‖ ≤ B, ∀x,

Activation φ is ReLU.

Then for any δ, γ > 0, with probability ≥ 1− δ over a training
set of size m, for any w = vec({W1,W2, · · ·Wd}), we have:

L0(fw) ≤ L̂γ(fw) +O

√B(w) + ln dm
δ

m

 ,

where B(w) = B2d2h ln(dh)

γ2
Πd
i=1‖Wi‖22

∑d
j=1

‖Wj‖2F
‖Wj‖22

.
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Generalization Analysis: RNN

Main Theorem (ours)

For any B, T, n > 0, let fw : Rn×T → Rn be a recurrent neural
network with T time steps. If it satisfies

Bounded input {x(1), x(2), · · ·x(T )}: ‖x(t)‖ ≤ B, ∀t ≤ T .

Shrinking activation φ:
‖φ(x)‖ ≤ ‖x‖, ‖φ(x)− φ(y)‖ ≤ ‖x− y‖,∀x, y.

Then, for any δ, γ > 0, with probability ≥ 1− δ over a training
set of size m, for any w = vec({W,M,Y }), we have:

L0(fw) ≤ L̂γ(fw) +O

(√
B(w) + ln m

δ

m

)
, where

B(w) = B2T4n ln(n)

γ2
max{‖W‖2T−2

2 , 1}max{‖M‖22, 1}max{‖Y ‖22, 1}‖w‖2,
and ‖w‖2 = ‖W‖2F + ‖Y ‖2F + ‖M‖2F .
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The Addition Task

Each input data includes two sequences

top sequence: values sampled uniformly from [0, 1]

bottom sequence: binary sequence with two 1’s and the
rest are 0

output: the dot product between the two sequences

Figure: The Addition Task from (Le et. al 2015).
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Addition Task: Results

Figure: RNNs on addition task with L layers & nh hidden dimension.
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Speech recognition task

Google speech command data set

65K training examples, each one a WAVE audio sampled to
be a vector of 3920 length
Twelve different labels: silence, unknown, “yes”, “no”,
“up”, “down”, “left”, “right”, “on”, “off”, “stop”, or “go”

Data preprocessing: Each instance is split into L pieces
and then fed into the RNN models piece by piece.
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Speech recognition task

Figure: Cross entropy loss with number of iterations and time with
temporal length L = 20 and 40
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Auto-Complete using RNNs

P (prefix→ query) = Π P (next character|current prefix)

All we need to know is P (next character|current prefix)!

Long short term memory(LSTM) unit

P (next character|current prefix) = softmax (Wht+1) ∈ R200
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Training the model

P (prefix→ query) = Π P (next character|current prefix)

Goal: model on P (next character|prefix)

Train to predict the next character for every query

Totally unsupervised, only need queries...

Learn the language model of queries from data
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Neural Network Architecture for Auto-complete

Output: Dense Softmax R512 → R200

Input: one-hot encoding R200

2 layers for character-level and word-level transition
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Spectral RNN Training Time

Time Measure on V100 (P3 instance), batch size 1024,
training time for 10 batches:

Spectral RNN (0.125*dimension reflectors):

Dimension = 512: 9.0 s (slower)
Dimension = 1024: 5.7 s
Dimension = 2048: 14.6 s (faster!)

LSTM (batch size 1024):

Dimension = 512: 2.3 s
Dimension = 1024: 5.7 s
Dimension = 2048: 25.5 s

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 61 / 68



Spectral RNN vs RNN

Vanilla RNN diverges badly, while Spectral RNN shows
convergence
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Spectral RNN vs LSTM

Number of parameters in 2 layer LSTM and
SpecRNN+LSTM are very similar
SpecRNN+LSTM 2048+1024 comparable to 2-layer
LSTM-1024 (both have 13.9 M parameters)
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Gated-Spectral-RNN vs LSTM

With similar number of parameters, 1-layer
Gated-Spectral-RNN has faster convergence than LSTM

In multi-layer setting, substituting last layer with
Gated-Spectral-RNN improves performance.
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Conclusions

Efficient spectral parameterization of weight matrices in deep
networks that:

allows explicit control over its singular values to
eliminate/reduce the exploding/vanishing gradient problem

no loss of expressive power

similar time complexity as vanilla RNN

seems to have better generalization and is easier to train

Promising direction, but lots of work to be done....
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Customer Interactions on Amazon.com

Join us in solving these problems.
Internships, Visitor & Fulltime positions available.
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