
Stabilizing Gradients for Deep Neural Networks

Inderjit S. Dhillon
Amazon & UT Austin

LA/Opt Seminar, Stanford University
May 10, 2018

Joint work with Jiong Zhang and Qi Lei (UT Austin),
Vijai Mohan (Amazon Search), Po-Wei Wang (CMU) & Huan

Zhang (UC Davis)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 1 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 2 / 65

Customer Interactions on Amazon.com

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 3 / 65

Query Auto-completion

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 4 / 65

Query Auto-completion

Query-autocomplete is integral to the Amazon search
experience, and leads to a substantial number of search
requests

Challenge:

Respond faster than > 100MM customers typing
Respond to all customer requests
Serve different types of customers and shopping missions

Shopping for Thanksgiving deals on Amazon.com
Searching for Music on Amazon Music
Watching Man in the High Castle in Prime Video

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 5 / 65

Memory-based Approach

Memorize what customers type!

Suggestions computed from search behavior

Aggregate several days of search logs
Generate prefixes for each query
Rank prefix suggestion pairs
Retain top suggestions

Store prefix-suggestions pairs in RODB

Problem:

Memorizing typed queries do not generalize
No suggestion is given for unseen prefixes (potentially
leading to unseen queries)
Many prefixes have no completion using RODB approach

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 6 / 65

Example

The prefix “queen size sheet”:

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 7 / 65

Example

No completion provided for prefix: “queen size blue cot”

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 8 / 65

Example - Using Deep Learning

Deep learning(DL) model is able to generate unseen queries

DL model learnt that “cotton sheets” is likely to follow this
prefix and the context “queen size” and “blue”

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 9 / 65

Example - Using Deep Learning

Can help customers find the product and make purchases.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 10 / 65

Probabilistic language Model

We can do query completion if we know the probability
P(prefix → query)

P(mic → key mouse)=0.25

P(mic → cro sd card)=0.36 → Top candidate

P(mic → hael kors handbags)=0.08

P(mic → key bluetooth laser fidget
spinner)=0.001

P(any prefix → any completed query)

Extremely large space, need to decompose

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 11 / 65

Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)· · ·

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 12 / 65

Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)P(mick→ e)· · ·

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 13 / 65

Conditional Probability

Probability of completed query under prefix P(prefix →
query)

P(mic→ key) = P(mic→ k)P(mick→ e)P(micke→ y)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 14 / 65

Conditional Probability

Probability of completed query under prefix
P (prefix→ query)

P (mic→ key) = P (mic→ k)P (mick→ e)P (micke→ y)

= Π P (next character|current prefix)

What model to use?

Exploit recent success in Deep Learning: seq2seq models!

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 15 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 16 / 65

Things we can do with Recurrent Neural Networks

Handwriting Recognition Translation

Question answering Speech Recognition

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 17 / 65

Recurrent Neural Networks (RNN)

RNN with activation function φ:

h(t) = φ(Wh(t−1) +Mx(t) + b) (1)

ŷ(t) = Y h(t)

Note:
Parameters Θ = {W,M, b, Y } are shared at all time steps

Input xi = {x(1)i , x
(2)
i , . . . x

(T)
i } is fed sequentially

Output ŷi = {ŷ(1)i , ŷ
(2)
i , . . . ŷ

(T)
i } evaluated at each time step

Loss is measured as: L(X,Y ; Θ) = 1
N

∑N
i=1 `(yi, ŷi)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 18 / 65

Loss Functions

Given dataset {xi, yi}Ni=1, the loss is measured as:

L(X,Y ; Θ) =
1

N

N∑
i=1

`(yi, ŷi)

For regression problems, ` could be squared loss:

`(yi, ŷi) =
1

T

T∑
t=1

∥∥∥y(t)
i − ŷ

(t)
i

∥∥∥2

For classification problems, ` could be cross entropy loss:

`(yi, ŷi) =
1

T

T∑
t=1

KL(y
(t)
i ||softmax(ŷ

(t)
i))

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 19 / 65

Learning the Parameters: Gradient descent

To minimize loss L(Θ) =
∑N

i=1 `(yi; ŷi), we can conduct
gradient descent to update parameters
θ ∈ Θ = {W (t), b(t)}Tt=1:

θ ← θ − η

N

∑
i∈[N]

∂`

∂θ
(yi; ŷi)

Problem: Even one iteration is too expensive for huge N

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 20 / 65

Stochastic Gradient Descent (SGD)

SGD to train a neural network:

A minibatch B ⊂ [N] is sampled.

Each parameter θ ∈ {W (t), b(t)}Tt=1 is updated using an
estimate of the gradient:

θ ← θ − η

|B|
∑
i∈B

∂`

∂θ
(yi; ŷi)

Step size η is usually selected by line search or heuristics
like Adam (Kingma et al. 2014).

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 21 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 22 / 65

RNN: forward propagation

Forward propagation:

Evaluate activations
h(t) = φ(Wh(t−1) +Mx(t) + b), t = 1, . . . , T

Evaluate ŷ(t) = Y h(t), t = 1, . . . , T

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 23 / 65

RNN: backward propagation

Gradients propagate back “through time”:
∂h(t)

∂W = h(t−1) ◦ diag(φ′t);
∂h(t)

∂h(t−1) = W>diag(φ′t)

Backpropagation:

∂`

∂h(t)
∝ Πt+1

i=TW
>diag(φ′i)

Hence, gradients can easily “explode” or “vanish”

Problem: Long-range dependencies cannot be captured

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 24 / 65

Sigmoid Activation Function

Sigmoid function
σ(z) = 1/(1 + e−z) has
gradient:

σ′(z) = σ(z)(1− σ(z))

=
1

ez + e−z + 2

|z| large ⇒ vanishing
gradients

Solution indicated:
constrain size of each h

Figure: Sigmoid activation

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 25 / 65

Activation Functions: Vanishing Gradients

Saturated activation
functions (esp. sigmoid or
tanh) ⇒ vanishing
gradients

Absolute value of input is
large for saturated
activations ⇒ vanishing
gradients

Solution indicated:
constrain size of each h

Figure: Common activation
functions and their derivatives.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 26 / 65

Existing Architectural Solutions

Long Short-Term Memory (LSTM):

Figure: One node of LSTM.
(Colah 2015)

f (t) =σg(Ufx
(t) +Wfh

(t−1) + bf)

i(t) =σg(Uix
(t) +Wih

(t−1) + bi)

o(t) =σg(Uox
(t) +Woh

(t−1) + bo)

c̃(t) =σc(Ucx
(t) +Wch

(t−1) + bc)

c(t) =f (t) ∗ c(t−1) + i(t) ∗ c̃(t)

h(t) =o(t) ∗ σh(c(t))

Avoid long-term dependency issues by “forget-gates”

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 27 / 65

Existing Architectural Solutions

Gated Recurrent Unit (GRU):

Figure: One node of GRU. (Cho,
et al. (2014))

z(t) = σg(Uzx
(t) +Wzh

(t−1) + bz)

r(t) = σg(Urx
(t) +Wrh

(t−1) + br)

h̃(t) = σh(Uhx
(t) +Wh(r(t) ∗ h(t−1)) + bh)

h(t) = (1− z(t)) ∗ h(t−1) + z(t) ∗ h̃(t)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 28 / 65

Existing Solutions

Gradient Clipping (Pascanu et al. 2013)

Initialization with identity/orthogonal matrix (Le, Jaitly &
Hinton 2015)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 29 / 65

Existing Solutions

Solution: Keep W>W = I

1 uRNN (Arjovsky et al., 2016)

W ∈ Cn×n is product of reflection, diagonal, and Fourier
transform matrices

2 Full-Capacity uRNN (Wisdom et al., 2016)
3 unitary RNN (Hyland & Ratsch , 2017)

Allow W ∈ Cn×n to span the whole unitary group

4 oRNN (orthogonal RNN) (Mhammedi et al., 2017)

Allow W to span the whole orthogonal space by using
Householder reflectors

Problem: lose expressive power

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 30 / 65

Existing Solutions

Solution: encourage orthogonality

1 factorized RNN (Vorontsov et al. 2017)

Parameterize W = UΣV >, encourage Σ to be close to 1,
and update U, V by Cayley transform

2 Parseval networks (Cisse et al. 2017)

Regularize with ‖I −W>W‖2F

Problem: high time complexity

Question: How to solve the gradient vanishing/exploding
problem with full expressive power and high efficiency?

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 31 / 65

Large-Scale LSTMs in Action

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 32 / 65

Google Neural Machine Translation Architecture

Eight-layer bidirectional LSTM with Attention (Johnson
et. al., 2016)

For each language pair: 1024 nodes (hidden dimension), 8
LSTM layers with a total of 255M parameters.

Total training time is on the scale of weeks, on up to 100
GPUs.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 33 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 34 / 65

Spectral Parameterization

An illustration of the parameterization process:

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 35 / 65

Spectral Parameterization

Maintain SVD of transition matrix:

W = UΣV >

Parameterize U, V by products of Householder reflectors:

Hk(u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.

U ←
∏k1
k=nHk(uk)

V ←
∏k2
k=nHk(vk)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 36 / 65

Spectral Parameterization

Maintain SVD of transition matrix:

W = UΣV >

Parameterize U, V by products of Householder reflectors:

Hk(u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.

U ←
∏k1
k=nHk(uk)

V ←
∏k2
k=nHk(vk)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 36 / 65

Spectral Parameterization

Maintain SVD of transition matrix:

W = UΣV >

Parameterize U, V by products of Householder reflectors:

Hk(u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.

U ←
∏k1
k=nHk(uk)

V ←
∏k2
k=nHk(vk)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 36 / 65

Spectral Parameterization

Maintain SVD of transition matrix:

W = UΣV >

Parameterize U, V by products of Householder reflectors:

Hk(u) =


(
In−k

Ik−2 uu
>

‖u‖2

)
, u 6= 0

In , otherwise.

U ←
∏k1
k=nHk(uk)

V ←
∏k2
k=nHk(vk)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 36 / 65

Spectral Parameterization

Proposed parametrization:

Mk1,k2 :(Rk1 × ...× Rn)× (Rk2 × ...× Rn)× (Rn) 7→ Rn×n(
{ui}ni=k1

)
,
(
{vi}ni=k2

)
, (σ) 7→

Hn(un)...Hk1(uk1)︸ ︷︷ ︸
U

diag(σ)︸ ︷︷ ︸
Σ

Hk2(vk2)...Hn(vn)︸ ︷︷ ︸
V >

. (2)

Singular values are explicit:
Mk1,k2({ui}ni=k1 , {vi}

n
i=k2

, σ) is an n× n real matrix with
singular values σ.

Full expressivity: The image of M1,1 is the set of n× n
real matrices.

Orthogonal expressivity: The image of Mk1,k2 covers
the set of n× n orthogonal matrices if k1 + k2 ≤ n+ 2.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 37 / 65

Spectral Parameterization

Proposed parametrization:

Mk1,k2 :(Rk1 × ...× Rn)× (Rk2 × ...× Rn)× (Rn) 7→ Rn×n(
{ui}ni=k1

)
,
(
{vi}ni=k2

)
, (σ) 7→

Hn(un)...Hk1(uk1)︸ ︷︷ ︸
U

diag(σ)︸ ︷︷ ︸
Σ

Hk2(vk2)...Hn(vn)︸ ︷︷ ︸
V >

. (2)

Singular values are explicit:
Mk1,k2({ui}ni=k1 , {vi}

n
i=k2

, σ) is an n× n real matrix with
singular values σ.

Full expressivity: The image of M1,1 is the set of n× n
real matrices.

Orthogonal expressivity: The image of Mk1,k2 covers
the set of n× n orthogonal matrices if k1 + k2 ≤ n+ 2.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 37 / 65

Spectral Parameterization

Proposed parametrization:

Mk1,k2 :(Rk1 × ...× Rn)× (Rk2 × ...× Rn)× (Rn) 7→ Rn×n(
{ui}ni=k1

)
,
(
{vi}ni=k2

)
, (σ) 7→

Hn(un)...Hk1(uk1)︸ ︷︷ ︸
U

diag(σ)︸ ︷︷ ︸
Σ

Hk2(vk2)...Hn(vn)︸ ︷︷ ︸
V >

. (2)

Singular values are explicit:
Mk1,k2({ui}ni=k1 , {vi}

n
i=k2

, σ) is an n× n real matrix with
singular values σ.

Full expressivity: The image of M1,1 is the set of n× n
real matrices.

Orthogonal expressivity: The image of Mk1,k2 covers
the set of n× n orthogonal matrices if k1 + k2 ≤ n+ 2.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 37 / 65

Extra notes: matching dimensions

M1,1 seemingly maps a space of n2 + 2n dimensions to a
space of n2 dimensions.

However, Hk(uk) is invariant to the norm of uk, so the
domain of M1,1 also has exactly n2 dimensions.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 38 / 65

Spectral RNN: RNN with SVD parameterization

In Spectral RNN , we parametrize the transition matrix
W ∈ Rn×n using m1 +m2 Householder reflectors.

Can select m1 and m2 to balance expressive power versus
time/space complexity. (Full expressivity if m1 = m2 = n)

Can do both forward and backward propagation in
O(n(m1 +m2)) time. (RNN: O(n2))

Can explicitly control the singular values. For example,

σi = σ∗ + 2r(sigmoid(σ̂i)− 0.5), i ∈ [n] (3)

⇒ σi ∈ [σ∗ − r, σ∗ + r]. Usually σ∗ is set to 1 and r � 1.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 39 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 40 / 65

Forward propagation

Only aspect different from regular RNN in forward
propagation is computation of Wh(t−1):

Wh(t) =Hn(un)...Hn−m1+1(un−m1+1)diag(σ)

Hn−m2+1(vn−m2+1)...Hn(vn)h(t)

Can be done efficiently through m1 +m2 inner products
and vector additions. For each reflector:

Hk(uk)h =

(
In −

2ûkû
>
k

û>k ûk

)
h = h− 2

û>k h

û>k ûk
ûk

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 41 / 65

Backward propagation

Let L({ui}, {vi}, σ,M, Y, b) be the loss or objective
function, C(t) = Wh(t), Σ̂ = diag(σ̂). Given ∂L

∂C(t) , we define:

∂L

∂u
(t)
k

:=

[
∂C(t)

∂u
(t)
k

]>
∂L

∂C(t)
;
∂L

∂v
(t)
k

:=

[
∂C(t)

∂v
(t)
k

]>
∂L

∂C(t)
;

∂L

∂Σ(t)
:=

[
∂C(t)

∂Σ(t)

]>
∂L

∂C(t)
;
∂L

∂Σ̂(t)
:=

[
∂Σ(t)

∂Σ̂(t)

]>
∂L

∂Σ(t)
;

∂L

∂h(t−1)
:=

[
∂C(t)

∂h(t−1)

]>
∂L

∂C(t)

Back propagation for Spectral RNN requires ∂C(t)

∂u
(t)
k

, ∂C(t)

∂v
(t)
k

,

∂C(t)

∂Σ̂(t)
and ∂C(t)

∂h(t−1) .

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 42 / 65

Backward propagation

Partial gradients can be computed iteratively (ĥ := Hk(uk)h
and g := ∂L

∂ĥ
):

∂L

∂h
=

[
∂ĥ

∂h

]>
∂L

∂ĥ
=

(
In −

2ûkû
>
k

û>k ûk

)
g = g − 2

û>k g

û>k ûk
ûk

∂L

∂ûk
=

[
∂ĥ

∂ûk

]>
∂L

∂ĥ
= −2

(
û>k h

û>k ûk
In +

1

û>k ûk
hû>k − 2

û>k h

(û>k ûk)
2
ûkû

>
k

)
g

= −2
û>k h

û>k ûk
g − 2

û>k g

û>k ûk
h+ 4

û>k h

û>k ûk

û>k g

û>k ûk
ûk

Thus backward propagation can also be done in
O((m1 +m2)n) time.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 43 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 44 / 65

Extension to Non-square matrices

For any real matrix W ∈ Rm×n (assume m < n) with
reduced SVD:

W = U(Σ|0)(VL|VR)> = UΣV >L

where U ∈ Rm×m, Σ ∈ diag(Rm),VL ∈ Rn×m.
There exist un, ..., uk1

and vn, ..., vk2
s.t.

U = Hm
m(um)...Hm

k1
(uk1), V = Hn

n(vn)...Hn
k2

(vk2
).

SVD parameterization for any matrix:

Mm,n
k1,k2

:(Rk1 × ...× Rm)× (Rk2 × ...× Rn)× (Rmin(m,n)) 7→ Rm×n(
{ui}mi=k1

)
,
(
{vi}mi=k2

)
, (σ) 7→(

Hm
m(um) · · ·Hm

k1
(uk1

)
)

(Σ)
(
Hn

k2
(vk2

) · · ·Hn
n(vn)

)
.

Can be applied to any Deep MLP (offers an alternative to
Residual Networks)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 45 / 65

Direct conclusions from the gradients

For Spectral RNN, recall Gradient for activations is:

∂h(T)

∂h(t0)
=

∏
T≥t≥t0

∂h(t)

∂h(t−1)
=

∏
T≥t≥t0

W>diag(φ′(h(t−1)))

Solves the exploding gradient problem:

‖W‖2 ≤ 1 + ε =⇒

∥∥∥∥∥∂h(T)

∂h(0)

∥∥∥∥∥ ≤ (1 + ε)T

Mitigates the vanishing gradient problem:

σmin(W) ≥ 1− ε =⇒ σmin

(
∂h(T)

∂h(0)

)
≥ min |φ′|T (1− ε)T

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 46 / 65

Spectral MLP

Generalization of MLP is bounded by its spectral Lipschitz
constant L for a T -layered network as in (Bartlett et al.
2017), or similarly bounded by ‖W‖T2 as in (Neyshabur et
al. 2017)

Spectral MLP guarantees L ≤ ‖W‖T ≤ (1 + ε)T , if we
control singular values s.t. ‖W‖2 ≤ 1 + ε
Generalization guarantee for recurrent neural network is
unclear yet in the literature

Weight matrices are Parseval tight frames =⇒ robustness
in predictions (Cisse et al. 2017)

Spectral MLP guarantees near orthogonal weight matrix,
namely tight frames

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 47 / 65

Generalization Analysis

Generalization bound using PAC-Bayes (McAllester, 2003)
analysis on the following expected margin loss
(Neyshabur et al., 2017):

Definition (Expected Margin Loss)

For any distribution D and margin γ > 0, we define the
expected margin loss as:

Lγ(fw) = P(x,y)∼D

[
fw(x)[y] ≤ γ + max

j 6=y
fw(x)[j]

]
,

where fw(x)[y] is the probability of predicting y given input x
with weight w.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 48 / 65

Generalization Analysis: MLP

Generalization Bound (Neyshabur et al. 2017)

For any B, d, h > 0, let fw : Rn → Rk be a d-layered feedforward
neural network, where h is the upper bound on the number of
output units in each layer. If it satisfies:

Input x is bounded: ‖x‖ ≤ B, ∀x,

Activation φ is ReLU.

Then for any δ, γ > 0, with probability ≥ 1− δ over a training
set of size m, for any w = vec({W1,W2, · · ·Wd}), we have:

L0(fw) ≤ L̂γ(fw) +O

√B(w) + ln dm
δ

m

 ,

where B(w) = B2d2h ln(dh)

γ2
Πd
i=1‖Wi‖22

∑d
j=1

‖Wj‖2F
‖Wj‖22

.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 49 / 65

Generalization Analysis: RNN

Main Theorem (ours)

For any B, T, n > 0, let fw : Rn×T → Rn be a recurrent neural
network with T time steps. If it satisfies

Bounded input {x(1), x(2), · · ·x(T)}: ‖x(t)‖ ≤ B, ∀t ≤ T .

Shrinking activation φ:
‖φ(x)‖ ≤ ‖x‖, ‖φ(x)− φ(y)‖ ≤ ‖x− y‖,∀x, y.

Then, for any δ, γ > 0, with probability ≥ 1− δ over a training
set of size m, for any w = vec({W,M,Y }), we have:

L0(fw) ≤ L̂γ(fw) +O

(√
B(w) + ln m

δ

m

)
, where

B(w) = B2T4n ln(n)

γ2
max{‖W‖2T−2

2 , 1}max{‖M‖22, 1}max{‖Y ‖22, 1}‖w‖2,
and ‖w‖2 = ‖W‖2F + ‖Y ‖2F + ‖M‖2F .

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 50 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 51 / 65

The Addition Task

Each input data includes two sequences

top sequence: values sampled uniformly from [0, 1]

bottom sequence: binary sequence with two 1’s and the
rest are 0

output: the dot product between the two sequences

Figure: The Addition Task from (Le et. al 2015).

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 52 / 65

Addition Task: Results

Figure: RNNs on addition task with L layers & nh hidden dimension.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 53 / 65

Outline

1 Introduction
Applications at Amazon Search
Recurrent Neural Networks
The Vanishing Gradient Problem

2 Proposed Solution
Spectral RNN
Training algorithms
Extensions

3 Generalization Analysis

4 Experimental Results
Synthetic Addition Task
Auto-complete Task

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 54 / 65

Auto-Complete using RNNs

P (prefix→ query) = Π P (next character|current prefix)

All we need to know is P (next character|current prefix)!

Long short term memory(LSTM) unit

P (next character|current prefix) = softmax (Wht+1) ∈ R200

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 55 / 65

Training the model

P (prefix→ query) = Π P (next character|current prefix)

Goal: model on P (next character|prefix)

Train to predict the next character for every query

Totally unsupervised, only need queries...

Learn the language model of queries from data

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 56 / 65

Neural Network Architecture for Auto-complete

Output: Dense Softmax R512 → R200

Input: one-hot encoding R200

2 layers for character-level and word-level transition

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 57 / 65

Spectral RNN Training Time

Time Measure on V100 (P3 instance), batch size 1024,
training time for 10 batches:

Spectral RNN (0.125*dimension reflectors):

Dimension = 512: 9.0 s (slow!)
Dimension = 1024: 5.7 s
Dimension = 2048: 14.6 s (fast)

LSTM (batch size 1024):

Dimension = 512: 2.3 s
Dimension = 1024: 5.7 s
Dimension = 2048: 25.5 s

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 58 / 65

Spectral RNN vs RNN

Vanilla RNN diverges badly, while Spectral RNN shows
convergence

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 59 / 65

Spectral RNN vs LSTM

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 60 / 65

Spectral RNN + LSTM vs LSTM

Number of parameters in 2 layers of LSTM and
SpecRNN+LSTM are very similar
SpecRNN+LSTM 2048+1024 comparable to 2-layer
LSTM-1024 (both have 13.9 M parameters)

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 61 / 65

Conclusions

Efficient spectral parameterization of weight matrices in deep
networks that:

allows explicit control over its singular values to
eliminate/reduce the exploding/vanishing gradient problem

no loss of expressive power

similar time complexity as vanilla RNN

seems to have better generalization and is easier to train

Promising direction, but lots of work to be done....

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 62 / 65

References

[1] J. Zhang, Q. Lei, I. S. Dhillon. Stabilizing Gradients for Deep Neural Networks
via Efficient SVD Parametrization. arXiv preprint arXiv:1803.09327, 2018.

[2] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In ICML (2013).

[3] D. Kingma, Diederik, and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[4] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, and N.
Thorat,Google’s multilingual neural machine translation system: enabling
zero-shot translation. arXiv preprint arXiv:1611.04558. (2016).

[5] M. Arjovsky, A. Shah, and Y. Bengio.Unitary evolution recurrent neural
networks. In ICML. pp. 1120-1128, (2016).

[6] S. Wisdom, T. Powers, J. Hershey, J. L. Roux, and L. Atlas. Full-capacity
unitary recurrent neural networks. In NIPS, pp. 4880-4888, (2016).

[7] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using Householder reflections. In
ICML, pp. 2401-2409, (2017).

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 63 / 65

References

[8] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal. On orthogonality and
learning recurrent networks with long term dependencies. In ICML, pp.
3570-3578, (2017).

[9] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval
networks: Improving robustness to adversarial examples. In ICML, pp. 854-863,
(2017).

[10] P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin
bounds for neural networks. arXiv preprint arXiv:1706.08498, (2017).

[11] Y. Prabhu and M. Varma. FastXML: a fast, accurate and stable tree-classifier
for extreme multi-label learning. In KDD, pages 263-272, (2014).

[12] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, (2015).

[13] D. McAllester. Simplified PAC-Bayesian margin bounds. In Learning theory
and Kernel machines, pp. 203215. Springer, 2003.

[14] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A
PAC-Bayesian approach to spectrally-normalized margin bounds for neural
networks. arXiv preprint arXiv:1707.09564, 2017.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 64 / 65

Customer Interactions on Amazon.com

Join us in solving these problems.
Internships, Visitor & Fulltime positions available.

Inderjit S. Dhillon Stabilizing Gradients for Deep Neural Networks 65 / 65

	Introduction
	Applications at Amazon Search
	Recurrent Neural Networks
	The Vanishing Gradient Problem

	Proposed Solution
	Spectral RNN
	Training algorithms
	Extensions

	Generalization Analysis
	Experimental Results
	Synthetic Addition Task
	Auto-complete Task

