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Motivating Application: Image Search

Thousands to millions of pixels in an image

3,000-30,000 human recognizable object categories

Billions of images indexed by Google Image Search

How can images be represented?

Global representations: One vector per image — pixel intensities, color
histograms, etc.

Local representations: Detect distinctive interest points and extract
descriptors invariant to scale, translation, rotation, illumination, etc.
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Image Search: Pyramid Match Kernel

Use Local Representations to represent each image as a set of
fixed-dimensional vectors

Used the pyramid match kernel of [Grauman and Darrell, 2007] to
compute approximate matching between two images

Place multidimensional, multi-resolution grid over point sets
Compute intersection of multi-dimensional histograms at multiple
resolutions
Compute match between image u and v as:

K (u, v) =
L∑

i=0

wiNi (u, v), where wi > wi+1 > 0,

and Ni is number of newly matched pairs at level i

Can show that K is a positive definite matrix (kernel function)
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Example query results
Query Top three retrieved images
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Example (bad) query results
Query Top three retrieved images
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Example: Image Search Is Not Perfect...

Web Bilder Maps News Shopping Mail Mehr ▼ 

Anmelden

  
  Erweiterte Bildsuche 

  Einstellungen

 Bilder Ergebnisse 1 - 20 von ungefähr 163.000 für charlie van loan. (0,05 Sekunden) 
Anzeigen:  Alle Größen - Extra groß - groß - mittel - klein 

Charles Van Loan 
450 x 600 - 241k - gif 
www.cs.cornell.edu

Charles Van Loan 
Professor 

256 x 256 - 50k - gif 
www.cs.cornell.edu 
[ Mehr von www.cs.

cornell.edu ]

Top to bottom: Joe 
Van Loan, ... 

438 x 594 - 19k - jpg 
inkspots.ca

... guitar; Joe Van 
Loan, 1st tenor; ... 
247 x 249 - 7k - jpg 

inkspots.ca

... Van Dooren, Charlie Van 
Loan, ... 

489 x 312 - 27k - jpg 
www.cs.umd.edu

Van Loan and Acord 
216 x 388 - 10k - jpg 
gaslight.mtroyal.ca

by Charles E. Van Loan 
400 x 400 - 43k - jpg 
gaslight.mtroyal.ca

... Charles Van Loan, Dennis 
West, ... 

308 x 250 - 29k - jpg 
www.northerninitiatives.com

... Charles F. Van Loan 
501 x 798 - 62k - jpg 

mrelusive.com

Gene H. Golub and Charles F. 
Van ... 

1000 x 1400 - 27k - gif 
www.scholarswithoutborders.in

Author: Charles E. Van Loan 
405 x 500 - 19k - jpg 
images.amazon.com

Patricia Van Loan. Manotick ? - 
2007 

276 x 400 - 16k - jpg 
www.alsindependence.com

Gene H. Golub and Charles F. 
van ... 

170 x 120 - 3k -  
www.wurzelzieher.de

This image is by Samuel Van 
Loan ... 

491 x 289 - 29k - jpg 
www.antiquephotographics.com

... Charles F. Van Loan (Künstler) 
98 x 150 - 5k -  

www.amazon.de

Gene H. Golub and Charles F. 
van ... 

210 x 100 - 2k - png 
de.wikipedia.org

charlie van loan - Google Bilder

http://images.google.de/images?q=charlie...N&tab=wi&ei=TdRCSOqmCIeQgQLJvbXyDg&gbv=1 (1 of 2) [6/1/08 11:56:03 AM]
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Improving the Kernel

The Matrix Nearness Problem:

min loss(K ,K0)
(ei − ej)

TK (ei − ej) ≤ u if (i , j) ∈ S [similarity constraints]
(ei − ej)

TK (ei − ej) ≥ ` if (i , j) ∈ D [dissimilarity constraints]
K � 0

Learn kernel matrix K that is “close” to the baseline kernel matrix K0

Other linear constraints on K are possible

Constraints can arise from various scenarios

Unsupervised: Click-through feedback
Semi-supervised: must-link and cannot-link constraints
Supervised: points in the same class have “small” distance, etc.

QUESTION: What should “loss” be?

We use “loss” to be the LogDet Divergence
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What is the LogDet Divergence?
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Distance between Positive Definite Matrices

Frobenius Distance:
DFrob = ‖X − Y ‖F

LogDet Divergence:

D`d(X ,Y ) = trace(XY−1)− log det(XY−1)− d ,

= trace(Y−1/2XY−1/2)− log det(Y−1/2XY−1/2)− d ,

= trace(Y−1/2XY−1/2 − log Y−1/2XY−1/2 − I ),

=
∑

i

∑
j

(vT
i uj)

2

(
λi

θj
− log

λi

θj
− 1

)
,

where X = V ΛV T and Y = UΘUT
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LogDet Divergence: Basic Properties

D`d(X ,Y ) = trace(Y−1/2XY−1/2)− log det(Y−1/2XY−1/2)− d ,

Can be used as a measure of distance

Positive, and zero iff X = Y
But not symmetric, and triangle inequality does not hold

Convex in first argument (not in second)

Pythagorean Property holds: Given Y and a convex set Ω,

D`d(X ,Y ) ≥ D`d(X ,PΩ(Y )) + D`d(PΩ(Y ),Y ), holds for all X ∈ Ω

Definition can be extended to semi-definite matrices
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LogDet Divergence: Scale Invariance

D`d(X ,Y ) = trace(Y−1/2XY−1/2)− log det(Y−1/2XY−1/2)− d ,

Scale-invariance

D`d(X ,Y ) = D`d(αX , αY ), α ≥ 0

In fact, for any invertible M

D`d(X ,Y ) = D`d(MTXM,MTYM)

In particular,
D`d(X ,Y ) = D`d(Y−1/2XY−1/2, I )
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LogDet and the Condition Number

D`d(X , I ) = trace(X )− log det(X )− d ,

=
d∑

i=1

(
λi − log λi − 1

)

Now, x − log x ≥ 1 with equality at x = 1

Also, x − log x ≥ log x + 1− log 4 with equality at x = 2

Letting, λ1 ≥ λ2 · · · ≥ λd > 0

D`d(X , I ) ≥ (log λ1 + 1− log 4)− (log λd + 1),

=⇒ cond(X ) ≤ 4 exp D`d(X , I )

Thus, LogDet yields an upper bound on the condition number
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Where does LogDet occur?
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The Gaussian Connection — Maximum Likelihood

Suppose x1, x2, . . . , xm are drawn from:

p(x|µ,Σ) =
1

(2π)d/2(detΣ)1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}

Log-Likelihood:

L(µ,Σ) =
m∏

i=1

p(xi |µ,Σ)

∝ exp
{
−m

2

(
D`d(Σ−1, S̄

−1
) + (µ̄− µ)TΣ−1(µ̄− µ)

)}
,

where µ̄ = 1
m

∑m
i=1 xi and S̄ = 1

m

∑m
i=1(xi − µ̄)(xi − µ̄)T

Thus, µ̄ and S̄ are the maximum likelihood estimates of the mean &
covariance matrix, respectively
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Further Connections in Statistics

Wishart Distribution — Given m samples from a Gaussian distribution,
the pdf of the sample covariance matrix may be written as:

p(S,m) ∝ exp

{
−m

2
D`d(Σ−1,S−1)− d + 1

2
log detS

}

Differential Relative Entropy between two Multivariate Gaussians:∫
p(x|µ,Σ0) log

(
p(x|µ,Σ0)

p(x|µ,Σ)

)
dx =

1

2
D`d(Σ,Σ0)

[James and Stein, 1961] LogDet divergence is known as Stein’s loss in
the statistics community
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Quasi-Newton Optimization

LogDet Divergence arises in the BFGS and DFP updates

Quasi-Newton methods
Approximate Hessian of the function to be minimized

[Fletcher, 1991] BFGS update can be shown to optimize:

min
B

D`d(B,Bt)

subject to B st = yt (“Secant Equation”)

st = xt+1 − xt , yt = ∇ft+1 −∇ft

Closed-form solution:

Bt+1 = Bt −
Btsss

T
t Bt

sT
t Btst

+
yty

T
t

sT
t yt

Similar form for DFP update
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How do we use LogDet?
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Kernel Learning

The Matrix Nearness Problem:

min D`d(K ,K0)
(ei − ej)

TK (ei − ej) ≤ u if (i , j) ∈ S [similarity constraints]
(ei − ej)

TK (ei − ej) ≥ ` if (i , j) ∈ D [dissimilarity constraints]
K � 0
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Successive Projection-Correction Algorithm

Algorithm: project successively onto each linear constraint followed by
correction — converges to globally optimal solution

Each projection updates the Kernel matrix:

min
K

D`d(K ,Kt)

s.t. (ei − ej)
TK (ei − ej) ≤ u

Can be solved by rank-one update:

Kt+1 = Kt + θtKt(ei − ej)(ei − ej)
TKt

=⇒ K ∗ = K0 + K0ΘK0

Advantages:
Automatic enforcement of positive semidefiniteness
Simple, closed-form projections (θt computable in closed form)
No eigenvalue/eigenvector calculation
Easy to incorporate slack for each constraint
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Enhancements

Impose structure on K :

low-rank
K0 + low-rank
Each iteration costs only O(r2), where r is rank

Extension to new data points:

Learned kernel can be shown to be of the form

K (x, y) = K0(x, y) +
∑

i

∑
j

θijK0(x, xi )K0(y, xj)

Fast Nearest-Neighbor Search

Can incorporate “locality-sensitive hashing”

Online algorithms

Constraints are presented incrementally
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Results
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Application 1: Image Recognition

Data Set: Caltech 101

Standard benchmark for multi-category image recognition

101 classes of images

Wide variance in pose etc.

Challenging data set

Experimental Setup

5, 10, 15 & 30 images per class in training set; rest in test set

Performed 1-NN using original kernels and learned kernels
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Results: Image Recognition
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Application 2: Automating Software Support

Clarify: system to compare a user’s program execution to existing
executions in a database to automate software support

Need appropriate notion of “distance” between program executions
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Results: Clarify

Representation: System
collects program features
during run-time

Function counts
Call-site counts
Counts of program paths
Program execution
represented as a vector of
counts

Class labels: Program
execution errors

Nearest neighbor software
support

Match program executions
Underlying distance
measure should reflect this
similarity

LaTeX Results
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Conclusions

LogDet Divergence

Previously used in Statistics & Optimization

Has intriguing properties

Applications

Leads to new matrix nearness problems

Successive projection-correction algorithm

Each projection can be computed efficiently

Challenges

Faster solutions to matrix nearness problem – interior point methods?

Apply to find low-rank correlation matrices
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