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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × int(S)→ R is defined as

Dϕ(x,y) = ϕ(x)− ϕ(y)− (x − y)T∇ϕ(y)
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × int(S)→ R is defined as

Dϕ(x,y) = ϕ(x)− ϕ(y)− (x − y)T∇ϕ(y)

y x

Dϕ(x,y)= x
y −log x

y −1h(z)

ϕ(z)=− log z

Itakura-Saito Distance (used in signal processing) is another Bregman
divergence



Bregman Divergences

Function Name ϕ(x) domϕ Dϕ(x,y)

Squared norm 1
2x

2 (−∞,+∞)
1
2 (x−y)2

Shannon entropy x log x−x [0,+∞) x log x
y −x+y

Bit entropy x log x+(1−x) log(1−x) [0,1] x log x
y +(1−x) log 1−x

1−y

Burg entropy − log x (0,+∞) x
y −log x

y −1

Hellinger −
√

1−x2 [−1,1] (1−xy)(1−y2)−1/2−(1−x2)1/2

`p quasi-norm − xp (0<p<1) [0,+∞) − xp+p xyp−1−(p−1) yp

`p norm |x|p (1<p<∞) (−∞,+∞) |x|p−p x sgn y|y|p−1+(p−1)|y|p

Exponential ex (−∞,+∞) ex−(x−y+1)ey

Inverse 1/x (0,+∞) 1/x+x/y2−2/y
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Properties of Bregman Divergences

Dϕ(x,y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)

Strictly convex in the first argument, but not convex (in general) in the
second argument

Three-point property generalizes the “Law of cosines”:

Dϕ(x,y) = Dϕ(x, z) +Dϕ(z,y)− (x − z)T (∇ϕ(y)−∇ϕ(z))
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Bregman Projections

Nearness in Bregman divergence: the “Bregman” projection of y onto
a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω,y)

y

x

PΩ(y)

Ω

Generalized Pythagoras Theorem:

Dϕ(x,y) ≥ Dϕ(x, PΩ(y)) +Dϕ(PΩ(y),y)

When Ω is an affine set, the above holds with equality



Historical References

L. M. Bregman. “The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex
programming.” USSR Computational Mathematics and Physics,
7:200-217, 1967.

Problem:

minϕ(x) subject to a
T
i x = bi, i = 0, . . . ,m− 1

Bregman’s cyclic projection method:

1. Start with appropriate x(0). Compute x(t+1) to be the Bregman

projection of x(t) onto the i-th hyperplane (i = t mod m) for
t = 0, 1, 2, . . .

Converges to globally optimal solution. This cyclic projection
method can be extended to halfspace and convex constraints,
where each projection is followed by a correction.

Question: What role can Bregman Divergences play in data analysis?



Exponential Families of Distributions

Definition. A regular exponential family is a family of probability
distributions on R

d with density function parameterized by θ:

pψ(x | θ) = exp{xT θ − ψ(θ)− gψ(x)}

ψ is the so-called cumulant function, and is a convex function of
Legendre type
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pψ(x | θ) = exp{xT θ − ψ(θ)− gψ(x)}

ψ is the so-called cumulant function, and is a convex function of
Legendre type
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(with fixed variance σ):
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Exponential Families of Distributions

Definition. A regular exponential family is a family of probability
distributions on R

d with density function parameterized by θ:

pψ(x | θ) = exp{xT θ − ψ(θ)− gψ(x)}

ψ is the so-called cumulant function, and is a convex function of
Legendre type

Example — consider spherical Gaussians parameterized by mean µ

(with fixed variance σ):

p(x) =
1
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µ
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, and ψ(θ) =

σ2

2
θ

2

Note: Gaussian distribution ←→ Squared Loss
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e
−λ
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The Poisson Distribution is a member of the exponential family

Is there a Divergence associated with the Poisson Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x, µ)− gϕ(x)},

where Dϕ is the Relative Entropy, i.e., Dϕ(x, µ) = x log
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Example

Poisson Distribution:

p(x) =
λx

x!
e
−λ
, x ∈ Z+

The Poisson Distribution is a member of the exponential family

Is there a Divergence associated with the Poisson Distribution?

YES — p(x) can be written as

p(x) = exp{−Dϕ(x, µ)− gϕ(x)},

where Dϕ is the Relative Entropy, i.e., Dϕ(x, µ) = x log

�

x
µ

�

− x+ µ

Implication: Poisson distribution ←→ Relative Entropy



Bregman Divergences and the Exponential Family

Theorem 1 Suppose that ϕ and ψ are conjugate Legendre functions. Let
Dϕ be the Bregman divergence associated with ϕ, and let pψ( · | θ) be a
member of the regular exponential family with cumulant function ψ. Then

pψ(x | θ) = exp{−Dϕ(x,µ(θ))− gϕ(x)},

where gϕ is a function uniquely determined by ϕ.

Thus there is unique Bregman divergence associated with every
member of the exponential family

Implication: Member of Exponential Family ←→ unique Bregman
Divergence.

[Banerjee, Merugu, Dhillon, Ghosh, 2005] — “Clustering with Bregma n Divergences”,
Journal of Machine Learning Research.
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compute the doubly stochastic matrix nearest in relative entropy
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Low-Rank Matrix Approximation
Non-negative matrix factorization: Lee & Seung (2001)

Metric Nearness Problem
Given a matrix of “distances”, find the “nearest” matrix of
distances such that all distances satisfy the triangle inequality
Dhillon, Sra & Tropp (2004)



Clustering with Bregman Divergences

Let a1, . . . ,an be data vectors to be divided into k disjoint
partitions γ1, . . . , γk
The objective function for Bregman clustering

min
γ1,...,γk

k

h=1 ai∈γh

Dϕ(ai,µh),

where µh is the representative of the h-th partition

Lemma. Arithmetic mean is the optimal representative for all Bregman
divergences, i.e.,

µh ≡
1

|γh| ai∈γh

ai = argmin
x

ai∈γh

Dϕ(ai,x)

generalizes another property of squared Euclidean distance

Algorithm: KMeans-type iterative re-partitioning algorithm decreases
objective function at every iteration and converges to a local minimum
(finding the globally optimal solution is NP-hard)
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Co-clustering

Co-clustering: Given a data matrix, partition the rows as well as
columns

Original Matrix

z x z − − x

+ ◦ + ∗ ∗ ◦

z x z − − x

+ ◦ + ∗ ∗ ◦

+ ◦ + ∗ ∗ ◦

After co-clustering and permutation

x x − − z z

x x − − z z

◦ ◦ ∗ ∗ + +

◦ ◦ ∗ ∗ + +

◦ ◦ ∗ ∗ + +



Co-clustering & Matrix Approximation

Co-clustering: Given a data matrix, partition the rows as well as
columns

Matrix approximation: Given a matrix, find an approximation
determined by fewer parameters

Can a co-clustering be associated with a matrix approximation?
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Minimum Bregman Information

Matrix Approximation from a co-clustering:

Alice
Transmits co-clustering
& summary statistics

Bob

Knows input matrix A Does not know A

Reconstructs
Determines a co-clustering an approximation Â given

co-clustering & summary statistics

Key Idea: Bob will reconstruct Â using the Minimum Bregman
Information principle:

Â = argmin
X satisfies

summary statistics

m

i=1

n

j=1

Dϕ(Xij , µA)

generalizes the maximum entropy approach
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Example — Minimum Bregman Information (MBI)

Original Matrix

0 0 1 2 10 27

0 0 1 2 20 55

1 2 10 22 55 160

4 8 41 84 506 1720

1 2 10 20 56 180

MBI matrix approximation from global mean (1 summary statistic)

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100



Example — Minimum Bregman Information (MBI)

Original Matrix

0 0 1 2 10 27

0 0 1 2 20 55

1 2 10 22 55 160

4 8 41 84 506 1720

1 2 10 20 56 180

MBI matrix approximation from co-cluster means (6 summary statistics)

0 0 1.5 1.5 28 28

0 0 1.5 1.5 28 28

3 3 31.17 31.17 446.17 446.17

3 3 31.17 31.17 446.17 446.17

3 3 31.17 31.17 446.17 446.17



Example — Minimum Bregman Information (MBI)

Original Matrix

0 0 1 2 10 27

0 0 1 2 20 55

1 2 10 22 55 160

4 8 41 84 506 1720

1 2 10 20 56 180

MBI matrix approximation from row, column and co-cluster Means (5+6+6)

0 0 0.66 1.37 8.81 29.16

0 0 1.29 2.67 17.17 56.86

0.52 1.04 5.3 10.93 53.87 178.35

4.92 9.84 50.05 103.28 509.18 1685.73

0.56 1.12 5.7 11.76 57.96 191.9



Co-clustering & Matrix Approximation

Main Idea: Judge co-clustering by goodness of the matrix
approximation

Objective Function for Co-clustering:

min
(ρ,γ)

Dϕ(A, Â(ρ,γ))

where Â(ρ, γ) is the MBI matrix approximation corresponding to
co-clustering (ρ, γ)

The problem is NP-hard
Algorithm: Iterative method alternates between row re-partitioning
and column re-partitioning
Monotonically decreases objective function till convergence
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Co-clustering Example

Original Matrix:

γ1 γ1 γ2 γ2 γ3 γ3
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Relative Entropy Co-clustering

γ1 γ2 γ2 γ3 γ3 γ3

ρ1 0 0.16 0.84 1.74 8.64 28.62

ρ2 0.16 0.31 1.64 3.38 16.82 55.69

ρ2 0.51 1 5.25 10.83 53.92 178.5

ρ2 4.79 9.45 49.62 102.39 509.61 1687.14

ρ2 0.55 1.08 5.65 11.66 58.01 192.06



Co-clustering Example

Original Matrix:

γ1 γ1 γ2 γ2 γ3 γ3

ρ1 0 0 1 2 10 27

ρ1 0 0 1 2 20 55

ρ2 1 2 10 22 55 160

ρ2 4 8 41 84 506 1720

ρ2 1 2 10 20 56 180

Relative Entropy Co-clustering

γ1 γ2 γ2 γ3 γ3 γ3

ρ1 0 0.11 0.57 1.75 8.72 28.86

ρ1 0 0.21 1.11 3.41 17 56.27

ρ2 0.52 1.01 5.32 10.83 53.89 178.42

ρ2 4.92 9.58 50.28 102.35 509.4 1686.47

ρ2 0.56 1.09 5.72 11.65 57.99 191.98



Co-clustering Example

Original Matrix:

γ1 γ1 γ2 γ2 γ3 γ3

ρ1 0 0 1 2 10 27

ρ1 0 0 1 2 20 55

ρ2 1 2 10 22 55 160

ρ2 4 8 41 84 506 1720

ρ2 1 2 10 20 56 180

Relative Entropy Co-clustering

γ1 γ1 γ2 γ3 γ2 γ2

ρ1 0 0 0.85 1.36 8.77 29.02

ρ1 0 0 1.66 2.64 17.1 56.6

ρ2 0.52 1.04 5.25 10.93 53.88 178.38

ρ2 4.92 9.84 49.59 103.31 509.28 1686.06

ρ2 0.56 1.12 5.65 11.76 57.98 191.94
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ρ1 0 0 1 2 10 27

ρ1 0 0 1 2 20 55

ρ2 1 2 10 22 55 160

ρ2 4 8 41 84 506 1720

ρ2 1 2 10 20 56 180

Relative Entropy Co-clustering

γ1 γ1 γ2 γ2 γ3 γ3

ρ1 0 0 0.66 1.37 8.81 29.16

ρ1 0 0 1.29 2.67 17.17 56.86

ρ2 0.52 1.04 5.3 10.93 53.87 178.35

ρ2 4.92 9.84 50.05 103.28 509.18 1685.73

ρ2 0.56 1.12 5.7 11.76 57.96 191.9



Co-clustering Example

Original Matrix:

γ1 γ1 γ2 γ2 γ3 γ3

ρ1 0 0 1 2 10 27

ρ1 0 0 1 2 20 55

ρ2 1 2 10 22 55 160

ρ2 4 8 41 84 506 1720

ρ2 1 2 10 20 56 180

Relative Entropy Co-clustering

γ1 γ1 γ2 γ2 γ3 γ3

ρ1 0 0 0.66 1.37 8.81 29.16

ρ1 0 0 1.29 2.67 17.17 56.86

ρ2 0.52 1.04 5.3 10.93 53.87 178.35

ρ2 4.92 9.84 50.05 103.28 509.18 1685.73

ρ2 0.56 1.12 5.7 11.76 57.96 191.9

Squared Euclidean Co-clustering

γ1 γ1 γ1 γ1 γ2 γ3

ρ1 −24.6 −23.4 −13.2 0.2 15.38 85.63

ρ1 −18.27 −17.07 −6.87 6.53 21.71 91.96

ρ1 10.4 11.6 21.8 35.2 50.38 120.63

ρ2 24.9 26.1 36.3 49.7 506 1720

ρ1 13.57 14.77 24.97 38.37 53.54 123.79



Results — Document Clustering

Document data set with 3 known clusters

Co-clustering with Relative Entropy
superior performance as compared to just column clustering
performs implicit dimensionality reduction at each iteration

(3 doc;20 word) (3 doc;500 word) (3 doc;2500 word)

1389 1 2 1364 3 18 920 49 292

9 1455 33 5 1446 21 31 1239 404

0 4 998 29 11 994 447 172 337

Confusion matrices for a document data set with different number of word clusters

Co-clustering with Relative Entropy — has also been applied to tasks
in Natural Language Processing (Part-of-speech tagging) where rows
correspond to “words” and columns to “senses” [Rowher & Freitag,
2004]
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Results — Bioinformatics

Gene Expression Leukemia Data – Matrix contains positive and
negative numbers

Squared Euclidean Distance works well

Co-clustering is able to recover the cancer samples and functionally
related genes

10 20 30 40 50 60 70
  J02923_at
  M19722_at
  M33552_at
  M63138_at
  U89336_cds1_at
  X14046_at
  X16663_at
  X62055_at
  X95735_at
  X89109_s_at
  U19713_s_at
  L09209_s_at
  X64072_s_at
  M15395_at
  M21005_at
  M27891_at
  J03077_s_at
  M26311_s_at
  J03801_f_at
  M19045_f_at
  X14008_rna1_f_at
  M12886_at
  M13792_at
  M16279_at
  U14603_at
  U50743_at
  U23852_s_at
  U49835_s_at
  X00437_s_at
  X76223_s_at
  X00274_at
  M13560_s_at
  HG3576−HT3779_f_at
  M33600_f_at
  D88270_at
  M11722_at
  M92287_at
  U51240_at
  X67951_at
  X82240_rna1_at
  M28826_at
  U67171_at
  X03934_at
  X14975_at
  X69433_at

Tissue  Samples

G
en

es

−2 −1 0 1 2 3 4 5 6

(R1)

(R2)

(R4)

(R5)

(R6)

(T−ALL) (AML) (B−ALL)

(R3)



Matrix Divergences

Non-separable matrix divergences obtained by applying ϕ to
eigenvalues:

Let H: space of N ×N Hermitian matrices
Let λ : H → R

N be the eigenvalue map

Dϕ◦λ(A,B) = (ϕ◦λ)(A)−(ϕ◦λ)(B)−〈A −B,U diag {∇ϕ(λ(A))}U∗)}〉

Example: ϕ(x) = −

�

k log xk. Then (ϕ ◦ λ)(A) = − log det A, and

Dϕ◦λ(A; B) = trace(AB
−1)− log det AB

−1 −N

Inequalities:

Hadamard: det A ≤
N

i=1
aii for all positive definite A

N

i=1

Aii
λi
≥ N, and

N

i=1

λi(A
−1)ii ≥ N for all positive definite A
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Conclusions

Squared loss is used in many data inference problems

When data is drawn from a member of the exponential family, the
corresponding Bregman nearness problem needs to be solved

Leads to various interesting matrix nearness problems

Open questions:
How good is the matrix approximation from co-clustering?
Given an application, what is the appropriate divergence
measure?
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