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Structured Data

• Data organized into fields: Relational databases, 
spreadsheets, XML

• Highly optimized for storage & retrieval (e.g. using SQL)
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Structured Data

• Focus is on data format, efficient storage & search

• Less or no uncertainty in semantics: e.g. businesses know 
the fields of the data
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Unstructured Data
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Modern data is unstructured and diverse

Networks, 
Graphs Text

Images, Videos
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Unstructured Data
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Much greater growth rate
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Unstructured Data

• Dynamic aspects of unstructured data:

• Constantly evolving

• Uncertainties abound: What should I ask of the data? 

• Seek insights

• Heterogeneity renders traditional database models 
inadequate
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Unstructured Data

• Buzzwords - “Big Data” & “Data Science”

• Machine Learning: Predictive models for data

• Engineering perspective: Scale matters
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Network Graphs
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Graph Evolution

• Social networks are highly dynamic

• Constantly grow, change quickly over time

• Users arrive/leave, relationships form/dissolve

• Understanding graph evolution is important
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Graphs meet Machine Learning

• Network analysis: Understanding structure & evolution of 
networks

• Formulate predictive problems on the adjacency matrix of 
the graph

• Confluence of graph theory & machine learning
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Facebook growth

Scalable Network Analysis

12

Link Prediction

Recommender Systems

Netflix problem: 
100M ratings, 
0.5M users, 
20K movies

A Toy Problem In Comparison!
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Recommender Systems

13

     

     
U

se
rs

Movies



Inderjit S. Dhillon University of Texas at Austin Scalable Network Analysis

Link Prediction in Social 
Networks

• Problem: Infer missing relationships from a given snapshot 
of the network
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Network at time T Network at time T + 1
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Predicting gene-disease links
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Signed Social Networks

• Sign Prediction Problem: Given a snapshot of the signed 
social network, predict the signs of missing edges
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Low-rank Matrix Completion
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Low-rank Matrix Completion
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Low-rank Matrix Completion
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Low-rank Matrix Completion
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Low-rank Matrix Completion
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Low-rank Matrix Completion
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Link Prediction

• Can be posed as matrix completion problem

• Issue: Only positive relationships                                       
are observed

24

A(t) =

2

66664

. 1 1 . .
1 . 1 1 1
1 1 . . 1
. 1 . . .
. 1 1 . .

3

77775
⇡

2

66664

1
1
1
1
1

3

77775

⇥
1 1 1 1 1

⇤

Test Link Score

(4,5) 1

(1,4) 1

(3,4) 1

(1,5) 1



Inderjit S. Dhillon University of Texas at Austin Scalable Network Analysis

Link Prediction

• Formulate Biased Matrix Completion Problem:
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Signed Social Networks

• Social Balance [Harary,1953]: 
• In real-world signed networks, triangles tend to be 

balanced
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Friend of a friend
is a friend

Enemy of an enemy
is a friend

Balanced Not balanced
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Signed Social Networks
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Theorem: All triangles in a network are balanced if 
and only if there exist two antagonistic groups.
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Signed Social Networks

• Relaxation: Weak balance

• Allow triangles with all negative edges

28

Weakly Balanced Not balanced
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Signed Social Networks
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Theorem: All triangles in a network are weakly balanced 
if and only if there exist k antagonistic groups.
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Sign Prediction

• Sign inference can be posed as low-rank matrix 
completion
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Theorem: A k-weakly balanced signed network has rank 
at most k.

Theorem: If there are no “small” groups, the underlying 
network can be exactly recovered, under certain 

conditions.

K. Chiang et al. Prediction and Clustering in Signed Networks: A Local to Global Perspective. To appear in JMLR.
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Stochastic Gradient 

• Time per update

• Effective for very large-scale problems
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wi  wi � ⌘((Aij �wT
i hj)hj + �wi)

hj  hj � ⌘((Aij �wT
i hj)wi + �hj)

• Sample random index (i,j) and update corresponding         
factors:

O(k)
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Distributed Stochastic Gradient Descent 
(DSGD) [Gemulla et al. KDD 2011]

• Decoupled updates

• Easy to parallelize

• But communication & computation are interleaved
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DSGD
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DSGD
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Curse of the last reducer
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DSGD
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NOMAD

• Goal: Keep CPU & network simultaneously busy.

• Asynchronous distributed solution.
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   Non-locking 
stOchastic 
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   Decentralized matrix factorization
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NOMAD

38
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD
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NOMAD Algorithm

1. Initialize: Randomly assign       columns to worker queues
2. Parallel Foreach q in {1,2,...,p}
3.     If queue[q] not empty then
4.                             queue[q].pop()
5.         for (      ) in          do
6.                 Do SGD updates
7.         end for
8.         Sample q’ uniformly from {1,2,...,p}
9.         queue[q’].push(         )
10.     end if
11.  Parallel End

51
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NOMAD Algorithm

1. Initialize: Randomly assign       columns to worker queues
2. Parallel Foreach q in {1,2,...,p}
3.     If queue[q] not empty then
4.                             queue[q].pop()
5.         for (      ) in          do
6.                 Do SGD updates
7.         end for
8.         Sample q’ uniformly from {1,2,...,p}
9.         queue[q’].push(         )
10.     end if
11.  Parallel End
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(j,hj)

(j,hj)

i, j ⌦(q)
j

hj

Concurrent object

Distributed setting:
Write over the network
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Algorithm Complexity

• Average space required per worker: 

• Average time for one sweep:
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O(mk/p+ nk/p+ |⌦|/p)

O(|⌦|k/p)



Results on Applications
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Recommender Systems
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Multicore Distributed

Netflix dataset: 2,649,429 users, 17,770 movies, ~100M ratings
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Recommender Systems
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Synthetic dataset: ~85M users, 17,770 items, ~8.5B observations
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Link Prediction
• Flickr dataset: 1.9M users & 42M links.

• Test set: sampled 5K users.

•
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Predicting Gene-Disease Links
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Sign Prediction
• Epinions dataset (+ve & -ve reviews):

• 131K nodes, 840K edges, 15% edges negative.

• MF-ALS is faster and achieves higher accuracy.

•

59

MF-ALS takes 455 secs 
on network with 

1.1M nodes & 120M edges
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Conclusions

• Rapid growth of unstructured data demands scalable 
machine learning solutions for analysis

• Machine learning problems arising in network analysis can 
be cast in the matrix completion framework

• Our proposed asynchronous distributed algorithm NOMAD  
outperforms state-of-the-art matrix completion solvers

• Beyond Matrix Completion: Asynchronous distributed 
framework for solving machine learning problems
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