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Problem Definition

Given ]
aq b1
bl a9 bg
T = b, ,
ap—1 bn—l
bn—l Qn,
solve
Tv = M\v

for A and v # 0.

This is a central problem in any symmetric eigenproblem.

Requirements in finite precision :

A

= Oe|T|), i=12,....,n

e (0;,0;) = O(g), i#].



Surprises

e Dense Symmetric positive definite eigenproblem, n = 966.
e Example from Computational Quantum Chemistry.

e Occurs in RIMP2 theory in the modeling of biphenyl.

e [hree Phases:

— Householder Reduction ( A = QTQ!) 11 s.
— Tridiagonal Solution ( T = VAV!) 108 s.

— Back-Transformation ( A = (QV)A(QV)!) 10 s.



History

e Jacobi [1846].

e Bargmann, Montgomery and von Neumann [1946].

e Lanczos [1950], Givens [1954], Householder [1958].

e Wielandt, Wilkinson [1940/1950s], perhaps earlier.

e Francis/Kublanovskaja [1961].

e Golub and Kahan [1965].

e Wilkinson [1965].

e Golub [1973], Cuppen [1981], Gu and Eisenstat [1995].

e Kahan [1966], Demmel [1991], Eisenstat and Ipsen [1995].
e Many other publications over the last 40-50 years.

e All algorithms cost O(n?) in the worst case.



“Holy Grail” Tridiagonal Eigensolver

DESIRED GOALS:

e Minimum output complexity — O(n) per eigenvector.

e Provably numerically accurate.

— Inverse Iteration can Fail ( Dhillon[1998] ).

e Each eigenpair is independently computable.



Difficulties

e All eigenvalues of T are easily computed in O(n?) time.

e Given ), inverse iteration computes the eigenvector:

(T — Az = x;, i=0,1,2,....

— Costs O(n) per iteration.

— Typically, 1-3 iterations are enough.

e BUT, inverse iteration only guarantees

T — Ab

= O(e[IT])).



Fundamental Limitations

Gap Theorem :

. . T — Ao
sin /(v,0) < —.
Gap(})
Gap()\) can be small :
i 1 €1
€1 1 €9
€9 1 €3
€3 1

When eigenvalues are close, independently computed eigenvectors WILL NOT be mutually
orthogonal.



Eigenvalues of Biphenyl Matrix

Eigenvalue

Eigenvalue Index

e Plot Absgap(i) = log;o(min(Ai11 — Aiy Ay — Aim1) /|| T|]) -

value Gaps

Absolute Eigen:

e LAPACK — one big “cluster” A1, Ao, ..., Ag3g.
e Tridiagonal solution takes 80% of Total Time.



Proposed Solution

e Fundamental Limitation:

sin /(v,9) < IL0= Xl
Gap(A)

e Get smallest possible residual norm.

— Compute eigenvalue to greatest accuracy possible :
(A=Al = O(e]A]).
— Compute eigenvector to high accuracy :

1 T0 — o

= O(e|A).

e Gap Theorem implies :

sin /(v,v) = Ole]Al — ﬂ
| Gap(\) Relgap()\)’

e Can we achieve the above 7



Factored Forms yield Better Representations

e Tridiagonals DO NOT determine their eigenvalues to high relative accuracy.

e Bidiagonals determine their singular values to high relative accuracy.

T+ ul — L % Lt

e Bidiagonal Factors are “better” since they allow us to

— compute eigenvalues to high accuracy,

— compute eigenvectors to high accuracy.

e We call the bidiagonal factors: Relatively Robust Representations (RRRs).
e High accuracy = Orthogonality.



Algorithm Outline

1. Choose p such that T'+ ul is positive definite.

2. Compute the factorization :
T+ul = LDL".

3. Compute eigenvalues of LDL" to high relative accuracy (by dqds or bisection).

4. Given eigenvalues, compute accurate eigenvectors of LDL’.

— HOW?



Differential Transformations

e Inverse iteration — Solve for z :
LDLT =\ = L, D, L".

LJFDJFLJTr 2z = random vector.

A

Simpleqd : D.(1) = d; — A
fori=1,n—1

Lo(i) = (d)/ Dy (i) A

Dy(i+1) == dli +diy; — L (i)d;l; — A

end for

|

Differential qd : s; = )\
fortr=1,n-—1
D, (i) == s;+d,
Li(i) = (dili)/ D+(9)
Siv1 = Li(i)l;s; — A
end for
D.(n) = s,+d,




Computing an Eigenvector

e Compute the appropriate Twisted Factorization :
T—M = N,D,N',

where D, is diagonal, and

X X
N — x ) X
X X
X X
and 7 is the index of the twist.
e Solve for z, N,D,N!z=~,e, (= Nlz=¢,):
1, 1=,
2(i) = { —=Ly(i)-z(i + 1), i=r—1,...

U (i—1)-26i—1), i=r+1,...

e Solves an open problem posed by Wilkinson (1965).



Main Theorem

THEOREM. [Dhillon & Parlett, 2003] Eigenvectors computed by Algorithm Getvec are
numerically orthogonal if eigenvalues of LD L’ have large relative gaps. In particular,

O(e)
Relsep(A;, Aj)’

(@%@j) —
where
i — A

R | iy Nj) .
elsep(A;, A;) max(| |, [A;])

e Example of Large Relsep :
M =107 X\ =10"" = Relsep(\;, \y) =~ 1

Above Theorem =- Automatic Orthogonality.

e Example of Small Relsep :

A1 = 1.000000000000001,
A2 = 1.000000000000002.



Proof of Correctness

e Desired Relationship: LDL" — M = NTDTNTT, and NTDTNTTZ = V€.

computed A

v, LDLT - N,D,NT, z
3 ulpsin L 4 ulps in ]\:77,
3ulpsin D 2 ulpsin D,
5, LDL" St - N.D,N," 2 = e,

e Exact Mathematical relationship holds : LDL" — M = NrﬁTNrT.

e Key step in proof is to relate Z to v in 3 steps :

1. Z is close to Z, (only multiplications),

2.5in /(v, 2) = O(e[A)/gap(A), (1% = O(e]A])),

3.sin /(v,v) = O(e)/relgap(A)  (relative perturbation theory).
Ofe)

= Sinl(é,v) = m



Algorithm MR? (Multiple RRRs)

. Choose p such that T+ p1 is positive definite.

. Compute the factorization :
T+ul = LDL".

. Compute eigenvalues of LD L’ to high relative accuracy (by dqds or bisection).
. Group eigenvalues according to their Relative Gaps :

a) isolated (agree in < 3 digits). Compute eigenvector using a twisted factorization.
b) clustered (agree in > 3 digits).

e Pick 41 near cluster to form LDLT — Il = LD LT,

e "Refine” eigenvalues in cluster to high relative accuracy.

e Set L «— L1, D <+ D;. Repeat step 4 for eigenvalues in cluster.



Example 1

e Eigenvalues: ¢, 1 + /&, 1 +24/¢, 2.

e Extra representation needed at o = 1:
L,D,L — I = LyDyLj.

e The following Representation Tree captures the steps of the algorithm:

C({LpaDp}v {1,2,3,4}) )

€ 1 2

(v a0 1) <<{L0,Do},{2,3}> ) (7, 2}, 143)

\ﬁ 2\/5

(15", 82}, {2}) (1N, Aq}, {3})




Wilkinson’s Matrix

o W5 : 21 x 21 Wilkinson's matrix.
® )y and \9; are identical to working precision.
e What happens in this case?
L,D,LT — A1 = LyDyL{.
e Roundoff comes to the rescue.

)\QO(LODOLOT) & Agl(LoDoLg) — no digits in common!
—7.28x 107" & —1.22x 107"
(@20,?}21) = 1.0 % 10_16

e Computed Eigenvectors 09 and v91:




Large Depth

13 x 13 matrix with eigenvalues: 0,1,1 4+ 107 1+1072,14+107°,14+107% 14+ 1073, 2.

(({Lo, Do}, {1,...,13}))
€ 1-107° 2
(A1) ({LeDi}A2,- . 12)  [{Nis, A}, (13))
0 2-107°
1072 —107°
(Ve 821, 121)] (({Z2, D23, {3, 11})  [{Nia, Arab, {12}]
0 2-107°
107% —107"?
[((Ns, Ay, (31)] (({Ls, D5}, {4,-.,10})  [{Nur, Ak, {11})
0 2-1077
1077 —10""
’({N47A4}7{4})‘ @{L4’D4}’{5 """ Q}D k{N107A10}7{10}j
0 2-107 12
1072 — 1071
(e, 853, {51)] (Lo, D}, {6,781 ) [({No, Ao}, {9])
0 10" 2-1071°

[({Ns, Ac}, {6})]

[({N=, A7} {7})]

[({Ns, As}, {8})]




Timing Results of Latest Code

Some Timings :

On a 1687 x 1687 SiOSig quantum chemistry matrix,

e Time (Algorithm MR?) =55s.
e Time (LAPACK bisection + inverse iteration) = 310 s.
e Time (EISPACK bisection + inverse iteration) = 126 s.
e Time (LAPACK QR) = 1428 s.
e Time (LAPACK Divide & Conquer) =81 s.

On a 2000 x 2000 [1,2,1] matrix,

e Time (Algorithm MR?) =4.1s.
e Time (LAPACK bisection + inverse iteration) = 808 s.
e Time (EISPACK bisection + inverse iteration) = 126 s.
e Time (LAPACK QR) = 1642 s.
e Time (LAPACK Divide & Conquer) = 106 s.



A Parallel Eigensolver for Dense Symmetric Matrices using
Multiple Relatively Robust Representations
[PMR?]

Paolo Bientinesi
Inderjit S. Dhillon
Robert A. van de Geijn

Department of Computer Sciences (CS)
Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin

{pauldj,inderjit,rvdg}@cs.utexas.edu

More Information soon at: www.cs.utexas.edu/users/plapack/



Flowchart for PMR? on each processor

—

T

|

Compute LOD()L%‘ =T — 0'01 and AO

|

Determine Aj,cq1 C Ag to be local

|

Setting:
matrix size = n;
# of processors = p;
processor i computes
eigenvectors
SA—1)+1,... %

Identify A C Ag to be a “Relatively Close” Cluster

A SZ Alocal A g Alocal
Compute new Representation: Sequential MR?
LijLjT = LODOLOT —o;l (Dhillon & Parlett)
Refine Vs e A

J




Running Time Comparisons (in secs) for dense symmetric matrices.

randomly distributed eigenvalues, 16 processors

800 T T T 3000 T T T T 9000 T T T T
Bl Red Bl Red Bl Red
[ ] Back [ ] Back [ ] Back
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e PMR?® and QR use PLAPACK for Reduction and Backtransformation stages.
e DC is ScaLAPACK’s PDSYEVD, and IN is ScaLAPACK’s PDSYEVX.

e Leftmost plot eliminates Inverse Iteration(IN), middle plot eliminates QR,
rightmost plot eliminates DC for large matrices.



time in secs

Largest Problem Solved on 64 processors

64 processors Reduction time

15000

T

10000

5000

| 11,000 secs
Bl Red Tridiagonal Eigsolver 440 secs
g .I?figk (Eigenvalue computation = 390 secs)

Backtransformation 3,000 secs

n = 64,000 1
Experiments run on the Buffalo CCR linux cluster:
300 nodes each equipped with 2Gb of memory
and two Intel Pentium 4 processors, connected via
Myricom high performance network (2Gigabit/s).

Access to parallel systems was provided by
TACC, NPACI, and the Center for Computational
Research of the University at Buffalo, SUNY.

PMR3 DC QR IN

CONCLUSIONS:

e PMR? scales up well both in time and in space (O(n) workspace).

e n—=64,000 on 64 processors:
Extrapolated Time(QR Trid) __ 10 hours __ vt
Time(PMR? Trid) 8 minutes

Extrapolated Time(Dense Eigensolve by QR) _ 12.5 hours __ 31
Time(Dense Eigensolve by PMR3) 4 hours ’

e Problems of very large size can now be tackled in a reasonable amount of
time.



Summary

e New Algorithm MR? for the Real Symmetric Tridiagonal Eigenproblem
e High ACCURACY results in SPEED.

e Faster O(n?) serial solution.

e Preliminary version of software is available as part of LAPACK.

e Software update will be available in next LAPACK release.

— Send email to inderjit@cs.utexas.edu for latest version of the software.

e Good parallel scaling.
e Parallel implementation in PLAPACK.

e Papers available at : http://www.cs.utexas.edu/users/inderjit



Largest Problem Solved on 1 Processor

e Symmetric Tridiagonal with n = 13,786 from Jeff Bennighof (Aerospace Engg, UT Austin).

e Arises from Finite Element Model of an automobile body.

e Timing Results on a Sun Enterprise 450 with 4 400 MHz processors and 4GB memory:

Time (Algorithm MR?)

Time (LAPACK Divide & Conquer)
Time (EISPACK bisection & invit)
Time (LAPACK bisection & invit)

Time (LAPACK QR)

Time spent in new algorithm

Maximum Residual Norm

Maximum Dot Product

Percentage of Zeros in Eigenvector Matrix

4 min12s

1 hr 26 min
22 hrs 2 min
67 hrs 32 min
84 hrs 42 min

141s (eigs), 107s (evecs)
10~
101!
31%



