Fast Eigenvalue/Eigenvector Computation for Dense Symmetric Matrices

Inderjit S. Dhillon
Department of Computer Sciences
University of Texas, Austin

University of Illinois, Urbana-Champaign Feb 12, 2004

joint work with
Beresford N. Parlett, UC Berkeley
Paolo Bientinesi & Robert van de Geijn, University of Texas

Problem Definition

Given

$$T = \begin{bmatrix} a_1 & b_1 \\ b_1 & a_2 & b_2 \\ & b_2 & \cdot & \cdot \\ & & \cdot & \cdot & \cdot \\ & & & \cdot & a_{n-1} & b_{n-1} \\ & & & b_{n-1} & a_n \end{bmatrix},$$

solve

$$Tv = \lambda v$$

for λ and $v \neq 0$.

This is a central problem in any symmetric eigenproblem.

Requirements in finite precision:

•
$$||T\hat{v}_i - \hat{\lambda}_i \hat{v}_i|| = O(\varepsilon ||T||), \quad i = 1, 2, \dots, n$$

•
$$(\hat{v}_i, \hat{v}_j) = O(\varepsilon), \quad i \neq j.$$

Surprises

- ullet Dense Symmetric positive definite eigenproblem, n=966.
- Example from Computational Quantum Chemistry.
- Occurs in RIMP2 theory in the modeling of biphenyl.

• Three Phases:

- Householder Reduction ($A = QTQ^T$)

11 s.

- Tridiagonal Solution ($T = V\Lambda V^T$)

108 s.

- Back-Transformation ($A = (QV)\Lambda(QV)^T$)

10 s.

History

- Jacobi [1846].
- Bargmann, Montgomery and von Neumann [1946].
- Lanczos [1950], Givens [1954], Householder [1958].
- Wielandt, Wilkinson [1940/1950s], perhaps earlier.
- Francis/Kublanovskaja [1961].
- Golub and Kahan [1965].
- Wilkinson [1965].
- Golub [1973], Cuppen [1981], Gu and Eisenstat [1995].
- Kahan [1966], Demmel [1991], Eisenstat and Ipsen [1995].
- Many other publications over the last 40-50 years.
- ullet All algorithms cost $O(n^3)$ in the worst case.

"Holy Grail" Tridiagonal Eigensolver

DESIRED GOALS:

- ullet Minimum output complexity O(n) per eigenvector.
- Provably numerically accurate.
 - Inverse Iteration can Fail (Dhillon[1998]).
- Each eigenpair is independently computable.

Difficulties

- ullet All eigenvalues of T are easily computed in $O(n^2)$ time.
- Given $\hat{\lambda}$, inverse iteration computes the eigenvector:

$$(T - \hat{\lambda}I)x_{i+1} = x_i, \quad i = 0, 1, 2, \dots$$

- $-\operatorname{Costs} O(n)$ per iteration.
- Typically, 1-3 iterations are enough.
- ullet \mathbf{BUT} , inverse iteration only guarantees

$$||T\hat{v} - \hat{\lambda}\hat{v}|| = O(\varepsilon||T||).$$

Fundamental Limitations

Gap Theorem:

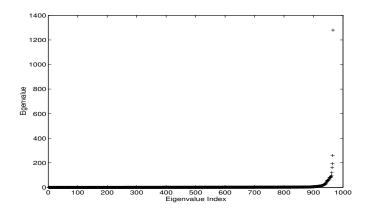
$$\sin \angle(v, \hat{v}) \le \frac{\|T\hat{v} - \hat{\lambda}\hat{v}\|}{\mathsf{Gap}(\hat{\lambda})}.$$

 $\mathsf{Gap}(\hat{\lambda})$ can be small :

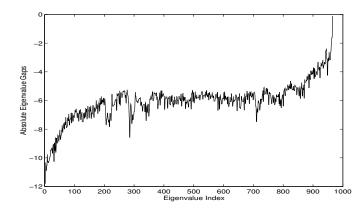
$$\begin{bmatrix} 1 & \varepsilon_1 \\ \varepsilon_1 & 1 & \varepsilon_2 \\ & \varepsilon_2 & 1 & \varepsilon_3 \\ & & \varepsilon_3 & 1 \end{bmatrix}$$

When eigenvalues are close, independently computed eigenvectors WILL NOT be mutually orthogonal.

Eigenvalues of Biphenyl Matrix



• Plot Absgap $(i) = \log_{10}(\min(\lambda_{i+1} - \lambda_i, \lambda_i - \lambda_{i-1})/\|T\|)$:



- LAPACK one big "cluster" $\lambda_1, \lambda_2, \dots, \lambda_{939}$.
- Tridiagonal solution takes 80% of Total Time.

Proposed Solution

• Fundamental Limitation:

$$\sin \angle(v, \hat{v}) \le \frac{\|T\hat{v} - \hat{\lambda}\hat{v}\|}{\mathsf{Gap}(\hat{\lambda})}.$$

- Get smallest possible residual norm.
 - Compute eigenvalue to greatest accuracy possible :

$$|\hat{\lambda} - \lambda| = O(\varepsilon |\lambda|).$$

- Compute eigenvector to high accuracy :

$$||T\hat{v} - \hat{\lambda}\hat{v}|| = O(\varepsilon|\lambda|).$$

• Gap Theorem implies :

$$\sin\angle(v,\hat{v}) \; = \; \frac{O(\varepsilon|\lambda|)}{\mathsf{Gap}(\hat{\lambda})} \; = \; \frac{O(\varepsilon)}{\mathsf{Relgap}(\hat{\lambda})}.$$

• Can we achieve the above?

Factored Forms yield Better Representations

- Tridiagonals DO NOT determine their eigenvalues to high relative accuracy.
- Bidiagonals determine their singular values to high relative accuracy.

- Bidiagonal Factors are "better" since they allow us to
 - compute eigenvalues to high accuracy,
 - compute eigenvectors to high accuracy.
- We call the bidiagonal factors: Relatively Robust Representations (RRRs).
- High accuracy \Rightarrow Orthogonality.

Algorithm Outline

- 1. Choose μ such that $T + \mu I$ is positive definite.
- 2. Compute the factorization :

$$T + \mu I = LDL^T.$$

- 3. Compute eigenvalues of LDL^T to high relative accuracy (by dqds or bisection).
- 4. Given eigenvalues, compute accurate eigenvectors of LDL^T .
 - HOW?

Differential Transformations

• Inverse iteration — Solve for z:

$$LDL^{T} - \hat{\lambda}I = L_{+}D_{+}L_{+}^{T}.$$

 $L_{+}D_{+}L_{+}^{T}z = \text{random vector.}$

Simple qd :
$$D_+(1) := d_1 - \hat{\lambda}$$
 for $i=1,n-1$
$$L_+(i) := (d_i l_i)/D_+(i)$$

$$D_+(i+1) := d_i l_i^2 + d_{i+1} - L_+(i) d_i l_i - \hat{\lambda}$$
 end for

 $\begin{array}{ll} \textbf{Differential qd:} & s_1 := -\hat{\lambda} \\ & \text{for } i = 1, n-1 \\ & D_+(i) := s_i + d_i \\ & L_+(i) := (d_i l_i)/D_+(i) \\ & s_{i+1} := L_+(i) l_i s_i - \hat{\lambda} \\ & \text{end for} \\ & D_+(n) := s_n + d_n \end{array}$

Computing an Eigenvector

• Compute the appropriate Twisted Factorization :

$$T - \hat{\lambda}I = N_r D_r N_r^T,$$

where D_r is diagonal, and

$$N_r = egin{bmatrix} \mathsf{x} & \mathsf{x} &$$

and r is the index of the twist.

ullet Solve for z, $N_rD_rN_r^Tz=\gamma_re_r$ ($\Rightarrow N_r^Tz=e_r$) :

$$z(i) = \begin{cases} 1, & i = r, \\ -L_{+}(i) \cdot z(i+1), & i = r-1, \dots, 1, \\ -U_{-}(i-1) \cdot z(i-1), & i = r+1, \dots, n. \end{cases}$$

• Solves an open problem posed by Wilkinson (1965).

Main Theorem

THEOREM. [Dhillon & Parlett, 2003] Eigenvectors computed by Algorithm Getvec are numerically orthogonal if eigenvalues of LDL^T have large relative gaps. In particular,

$$(\hat{v}_i, \hat{v}_j) = \frac{O(\varepsilon)}{\mathsf{Relsep}(\lambda_i, \lambda_j)},$$

where

$$\mathsf{Relsep}(\lambda_i, \lambda_j) = \frac{|\lambda_i - \lambda_j|}{\max(|\lambda_i|, |\lambda_j|)}.$$

• Example of Large Relsep :

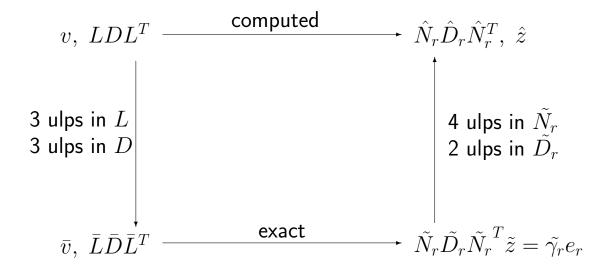
$$\lambda_1 = 10^{-16}, \ \lambda_2 = 10^{-15} \quad \Rightarrow \quad \mathsf{Relsep}(\lambda_1, \lambda_2) \approx 1$$

Above Theorem \Rightarrow Automatic Orthogonality.

• Example of Small Relsep:

Proof of Correctness

• Desired Relationship: $LDL^T - \hat{\lambda}I = N_rD_rN_r^T$, and $N_rD_rN_r^Tz = \gamma_re_r$.



- ullet Exact Mathematical relationship holds : $ar{L}ar{D}ar{L}^T \hat{\lambda}I = \tilde{N}_r \tilde{D}_r \tilde{N}_r^T$.
- Key step in proof is to relate \hat{z} to v in 3 steps :
 - 1. \hat{z} is close to \tilde{z} , (only multiplications),
 - 2. $\sin \angle (\bar{v}, \tilde{z}) = O(\varepsilon |\bar{\lambda}|)/\mathrm{gap}(\hat{\lambda})$, $(|\tilde{\gamma_r}| = O(\varepsilon |\bar{\lambda}|))$,
 - 3. $\sin \angle(\bar{v}, v) = O(\varepsilon)/\text{relgap}(\hat{\lambda})$ (relative perturbation theory).

$$\Rightarrow \sin \angle (\hat{z}, v) = \frac{O(\varepsilon)}{\mathsf{Relgap}(\hat{\lambda})}.$$

Algorithm MR³ (Multiple RRRs)

- 1. Choose μ such that $T + \mu I$ is positive definite.
- 2. Compute the factorization:

$$T + \mu I = LDL^T.$$

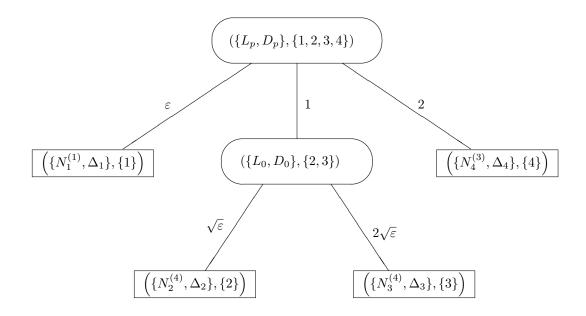
- 3. Compute eigenvalues of LDL^T to high relative accuracy (by dqds or bisection).
- 4. Group eigenvalues according to their Relative Gaps:
 - a) isolated (agree in < 3 digits). Compute eigenvector using a twisted factorization.
 - b) clustered (agree in > 3 digits).
 - Pick μ near cluster to form $LDL^T \mu I = L_1D_1L_1^T$.
 - "Refine" eigenvalues in cluster to high relative accuracy.
 - Set $L \leftarrow L_1$, $D \leftarrow D_1$. Repeat step 4 for eigenvalues in cluster.

Example 1

- Eigenvalues: ε , $1 + \sqrt{\varepsilon}$, $1 + 2\sqrt{\varepsilon}$, 2.
- Extra representation needed at $\sigma = 1$:

$$L_p D_p L_p^T - I = L_0 D_0 L_0^T.$$

• The following Representation Tree captures the steps of the algorithm:



Wilkinson's Matrix

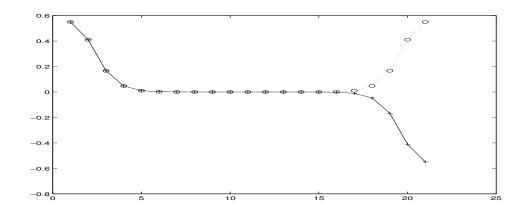
- W_{21}^+ : 21×21 Wilkinson's matrix.
- λ_{20} and λ_{21} are identical to working precision.
- What happens in this case?

$$L_p D_p L_p^T - \hat{\lambda}_{21} I = L_0 D_0 L_0^T.$$

• Roundoff comes to the rescue.

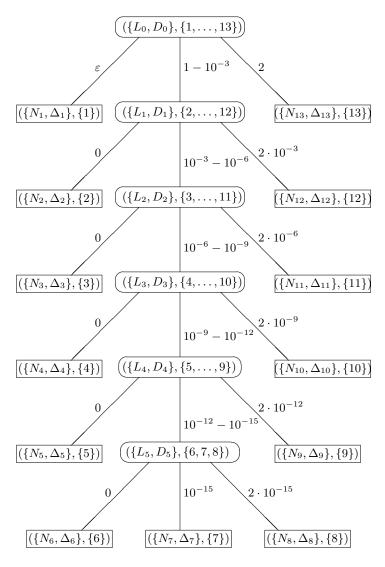
$$\begin{array}{llll} \lambda_{20}(L_0D_0L_0^T) & \& & \lambda_{21}(L_0D_0L_0^T) & -\text{no digits in common!} \\ -7.28\times 10^{-14} & \& & -1.22\times 10^{-15} \\ & & & & & \\ (\hat{v}_{20},\hat{v}_{21}) & = & 1.0\times 10^{-16} \end{array}$$

• Computed Eigenvectors \hat{v}_{20} and \hat{v}_{21} :



Large Depth

 $13\times 13 \text{ matrix with eigenvalues: } 0,1,1\pm 10^{-15},1\pm 10^{-12},1\pm 10^{-9},1\pm 10^{-6},1\pm 10^{-3},2.$



Timing Results of Latest Code

Some Timings:

On a $1687 \times 1687 \ \mathrm{SiOSi_6}$ quantum chemistry matrix,

$ullet$ Time (Algorithm ${f M}{f R}^3$)	= 5.5 s.
 Time (LAPACK bisection + inverse iteration) 	=310 s.
• Time (EISPACK bisection + inverse iteration)	= 126 s.
• Time (LAPACK QR)	= 1428 s.
• Time (LAPACK Divide & Conquer)	=81 s.

On a 2000×2000 [1,2,1] matrix,

$ullet$ Time (Algorithm $\mathbf{M}\mathbf{R}^3$)	=4.1 s.
ullet Time (LAPACK bisection $+$ inverse iteration)	=808 s.
ullet Time (EISPACK bisection $+$ inverse iteration)	= 126 s.
• Time (LAPACK QR)	= 1642 s.
• Time (LAPACK Divide & Conquer)	= 106 s.

A Parallel Eigensolver for Dense Symmetric Matrices using Multiple Relatively Robust Representations [PMR³]

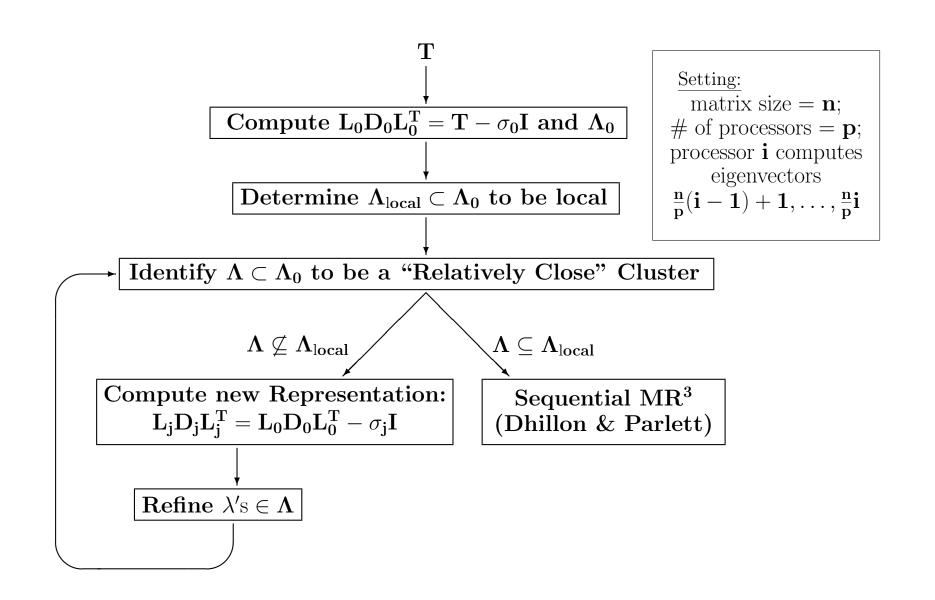
Paolo Bientinesi Inderjit S. Dhillon Robert A. van de Geijn

Department of Computer Sciences (CS)
Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin

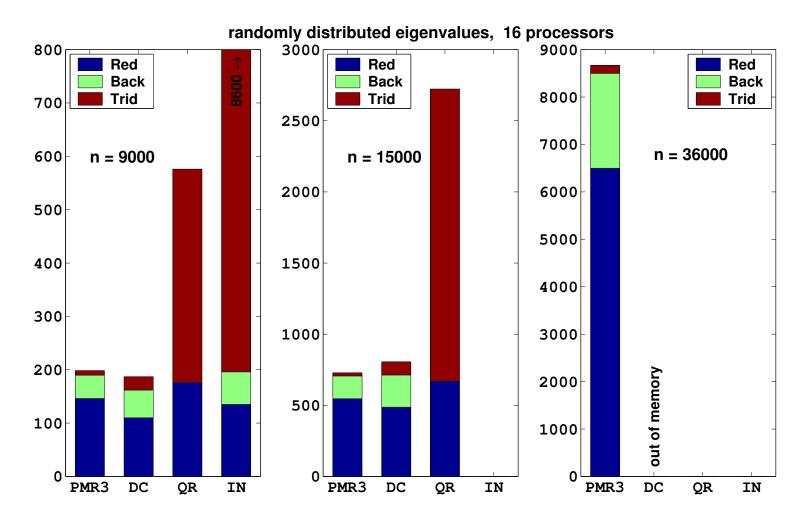
{pauldj,inderjit,rvdg}@cs.utexas.edu

More Information soon at: www.cs.utexas.edu/users/plapack/

Flowchart for PMR³ on each processor

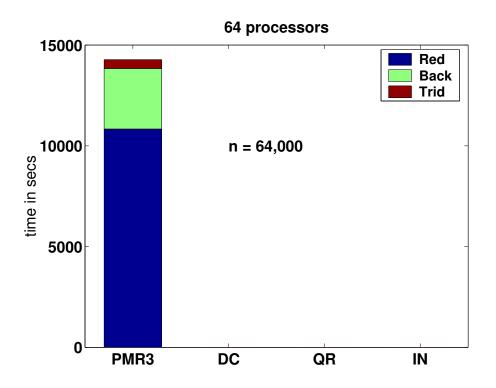


Running Time Comparisons (in secs) for dense symmetric matrices.



- PMR³ and QR use PLAPACK for Reduction and Backtransformation stages.
- DC is ScaLAPACK's PDSYEVD, and IN is ScaLAPACK's PDSYEVX.
- Leftmost plot eliminates Inverse Iteration(IN), middle plot eliminates QR, rightmost plot eliminates DC for large matrices.

Largest Problem Solved on 64 processors



Reduction time = 11,000 secs Tridiagonal Eigsolver = 440 secs (Eigenvalue computation = 390 secs) Backtransformation = 3,000 secs

Experiments run on the Buffalo CCR linux cluster: 300 nodes each equipped with 2Gb of memory and two Intel Pentium 4 processors, connected via Myricom high performance network (2Gigabit/s).

Access to parallel systems was provided by TACC, NPACI, and the Center for Computational Research of the University at Buffalo, SUNY.

CONCLUSIONS:

- PMR³ scales up well both in time and in space (O(n) workspace).
- \bullet n=64,000 on 64 processors:

$$\frac{\text{Extrapolated Time}(\text{QR Trid})}{\text{Time}(\text{PMR}^3 \text{ Trid})} = \frac{10 \text{ hours}}{8 \text{ minutes}} = 75$$

$$\frac{\text{Extrapolated Time}(\text{Dense Eigensolve by QR})}{\text{Time}(\text{Dense Eigensolve by PMR}^3)} = \frac{12.5 \text{ hours}}{4 \text{ hours}} = 3.1$$

• Problems of very large size can now be tackled in a reasonable amount of time.

Summary

- \bullet New Algorithm $\mathbf{M}\mathbf{R}^3$ for the Real Symmetric Tridiagonal Eigenproblem
- High ACCURACY results in SPEED.
- Faster $O(n^2)$ serial solution.
- Preliminary version of software is available as part of LAPACK.
- Software update will be available in next LAPACK release.
 - Send email to inderjit@cs.utexas.edu for latest version of the software.
- Good parallel scaling.
- Parallel implementation in PLAPACK.
- Papers available at : http://www.cs.utexas.edu/users/inderjit

Largest Problem Solved on 1 Processor

- Symmetric Tridiagonal with n=13,786 from Jeff Bennighof (Aerospace Engg, UT Austin).
- Arises from Finite Element Model of an automobile body.
- Timing Results on a Sun Enterprise 450 with 4 400 MHz processors and 4GB memory:

Time (Algorithm ${f MR}^3$)	4 min 12 s
Time (LAPACK Divide & Conquer)	1 hr 26 min
Time (EISPACK bisection & invit)	22 hrs 2 min
Time (LAPACK bisection & invit)	67 hrs 32 min
Time (LAPACK QR)	84 hrs 42 min
Time spent in new algorithm	141s (eigs), 107s (evecs)
Maximum Residual Norm	10^{-17}
Maximum Dot Product	10^{-11}
Percentage of Zeros in Eigenvector Matrix	31%