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Clustering

Partitioning data into clusters arises in various applications in data mining &
machine learning.

Examples:

Bioinformatics: Identifying similar genes

Text Mining: Organizing document collections

Image/Audio Analysis: Image and Speech segmentation

Web Search: Clustering web search results

Social Network Analysis: Identifying social groups

Other: Load balancing and circuit partitioning



Graph Partitioning/Clustering

In many applications, the goal is to partition/cluster the nodes of a
graph:

High School Friendship Network

[James Moody. American Journal of Sociology, 2001]



Graph Partitioning/Clustering

In many applications, the goal is to partition/cluster the nodes of a
graph:

The Internet

[The Internet Mapping Project, Hal Burch and Bill Cheswick, Lumeta Corp, 1999]
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Graph Clustering Objectives

How do we measure the quality of a graph clustering?

Could simply minimize the edge-cut in the graph
Can lead to clusters that are highly unbalanced in size

Could minimize the edge-cut in the graph while constraining the
clusters to be equal in size

Not a natural restriction in data analysis

Popular objectives include normalized cut, ratio cut and ratio
association

Normalized Cut: minimize
c

i=1

links(Vi,V \ Vi)

degree(Vi)

Ratio Cut: minimize
c

i=1

links(Vi,V \ Vi)

|Vi|

[Shi & Malik, IEEE Pattern Analysis & Machine Intelligence, 2000]
[Chan, Schlag & Zien, IEEE Integrated Circuits & Systems, 1994]



Examples

Normalized Cut Ratio Cut
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Take a real relaxation of the clustering objective

Globally optimal solution of the relaxed problem is given by
eigenvectors

For ratio cut: compute smallest eigenvectors of the Laplacian
L = D − A

For normalized cut: compute smallest eigenvectors of the

normalized Laplacian I − D−1/2AD−1/2

Post-process eigenvectors to obtain a discrete clustering



Spectral Clustering

Take a real relaxation of the clustering objective

Globally optimal solution of the relaxed problem is given by
eigenvectors

For ratio cut: compute smallest eigenvectors of the Laplacian
L = D − A

For normalized cut: compute smallest eigenvectors of the

normalized Laplacian I − D−1/2AD−1/2

Post-process eigenvectors to obtain a discrete clustering

Problem: Can be expensive if many eigenvectors of a very large graph
are to be computed



The k-means Algorithm

Given a set of vectors and an initial clustering, alternate between
computing cluster means and assigning points to the closest mean

1. Initialize clusters πc and cluster means mc for all clusters c.
2. For every vector ai and all clusters c, compute

d(ai, c) = ‖ai − mc‖
2

and
c
∗(ai) = argminc d(ai, c)

3. Update clusters: πc = {a : c∗(ai) = c}.

4. Update means: mc = 1

|πc|

�
ai∈πc

ai

5. If not converged, go to Step 2. Otherwise, output final clustering.
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From k-means to Weighted Kernel k-means

Introduce weights wi for each point ai: use the weighted mean instead

Expanding the distance computation yields:

‖ai − mc‖
2 = ai · ai −

2

�

aj∈πc
wjai · aj

�

ai∈πc
wj

+

�

ai,aj∈πc
wjwlaj · al

(
�

aj∈πc
wj)2

Computation can be done only using inner products of data points

Given a kernel matrix K that gives inner products in feature space,
can compute distances using the above formula

Objective function for weighted kernel k-means:

Minimize D({πk
c=1}) =

k

c=1 ai∈πc

wi‖ϕ(ai) − mc‖
2

where mc =

�

ai∈πc
wiϕ(ai)

�

ai∈πc
wi



The Weighted Kernel k-means Algorithm

Given a kernel matrix (positive semi-definite similarity matrix), run
k-means in the feature space

1. Initialize clusters πc

2. For every vector ai and all clusters c, compute

d(ai, c) = Kii −
2

�

aj∈πc
wjKij

�

ai∈πc
wj

+
�

ai,aj∈πc
wjwlKjl

(

�

aj∈πc
wj)2

and
c
∗(ai) = argminc d(ai, c)

3. Update clusters: πc = {a : c∗(ai) = c}.
4. If not converged, go to Step 2. Otherwise, output final clustering.
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the weighted kernel k-means objective
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Popular graph clustering objectives and corresponding weights and
kernels for weighted kernel k-means given affinity matrix A:

Objective Node Weight Kernel
Ratio Association 1 for each node K = σI + A

Ratio Cut 1 for each node K = σI − L

Kernighan-Lin 1 for each node K = σI − L

Normalized Cut Degree of the node K = σD−1 + D−1AD−1



Equivalence to Graph Clustering

Surprising Theoretical Equivalence:
Weighted graph clustering objective is mathematically identical to
the weighted kernel k-means objective

Follows by rewriting both objectives as trace maximization problems

Popular graph clustering objectives and corresponding weights and
kernels for weighted kernel k-means given affinity matrix A:

Objective Node Weight Kernel
Ratio Association 1 for each node K = σI + A

Ratio Cut 1 for each node K = σI − L

Kernighan-Lin 1 for each node K = σI − L

Normalized Cut Degree of the node K = σD−1 + D−1AD−1

Implication: Can minimize graph cuts such as normalized cut and ratio
cut without any eigenvector computation.



The Multilevel Approach

Overview of the approach

Coarsening Refining

Input Graph

Initial Clustering

Final Clustering

[CHACO, Hendrickson & Leland, 1994]
[METIS, Karypis & Kumar, 1999]
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The Multilevel Approach

Phase I: Coarsening
Coarsen the graph by merging nodes together to form smaller and
smaller graphs
Use a simple greedy heuristic specialized to each graph cut
objective function

Phase II: Base Clustering
Once the graph is small enough, perform a base clustering
Variety of techniques possible for this step

Phase III: Refining
Uncoarsen the graph, level by level
Use weighted kernel k-means to refine the clusterings at each
level
Input clustering to weighted kernel k-means is the clustering from
the previous level



Experiments: gene network

Mycobacterium tuberculosis gene network: 1381 genes and 9766
functional linkages.

Normalized cut values generated by Graclus and the spectral method

# clusters 4 8 16 32 64 128
Graclus 0 .009 .018 .53824 3.1013 18.735
Spectral 0 .036556 .1259 .92395 5.3647 25.463



Experiments: gene network

Mycobacterium tuberculosis gene network: 1381 genes and 9766
functional linkages.

Spy plots of the functional linkage matrix before and after clustering
(128 clusters)—each dot indicates a non-zero entry
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Experiments: gene network

Mycobacterium tuberculosis gene network: 1381 genes and 9766
functional linkages.

Two example clusters: Histidine biosynthesis pathway and ATP
synthase multiprotein complex

HisG

HisE

HisI

HisA

HisH

HisF

HisB

HisC/HisC2

HisB

HisD

(A) (B)



Experiments: IMDB movie data set

The IMDB contains 1.4 million nodes and 4.3 million edges.

Normalized cut values and computation time for a varied number of
clusters, using Graclus and the spectral method

Normalized cut values—lower cut values are better

# clusters 2 4 8 16 32 64 128 256

Graclus .049 .163 .456 1.39 3.72 9.42 24.13 64.04

Spectral .00 .016 .775 2.34 5.65 - - -

Computation time (in seconds)

Graclus 34.57 37.3 37.96 46.61 49.93 53.95 64.83 81.42

Spectral 261.32 521.69 597.23 1678.05 5817.96 - - -



Experiments: IMDB movie data set

The IMDB contains 1.4 million nodes and 4.3 million edges.

We generate 5000 clusters using Graclus, which takes 12 minutes.

If we use the spectral method, we would have to store 5000
eigenvectors of length 1.4M; that is 24 GB main memory.

Movies Actors

Harry Potter and the Sorcerer’s Stone Daniel Radcliffe, Rupert Grint,

Harry Potter and the Chamber of Secrets Emma Watson, Peter Best,

Harry Potter and the Prisoner of Azkaban Joshua Herdman, Harry Melling,

Harry Potter and the Goblet of Fire Robert Pattinson, James Phelps,

Harry Potter and the Order of the Phoenix Tom Felton, Devon Murray,

Harry Potter: Behind the Magic Jamie Waylett, Shefali Chowdhury,

Harry Potter und die Kammer des Schreckens: Stanislav Ianevski, Jamie Yeates,

Das grobe RTL Special zum Film Bonnie Wright, Alfred Enoch, Scott Fern,

J.K. Rowling: Harry Potter and Me Chris Rankin, Matthew Lewis, Katie Leung

Sean Biggerstaff, Oliver Phelps



Experiments: Image segmentation

Leftmost plot is the original image and each of the 3 plots to the right
of it is a component (cluster) — body, tail and background.

Normalized cut value for this multilevel clustering is .022138, smaller
than .023944 for spectral



Experiments: Benchmark graph clustering

Test graphs:

Graph name No. of nodes No. of edges Application

copter2 55476 352238 helicopter mesh

memplus 17758 54196 memory circuit

pcrystk02 13965 477309 structural engineering

ramage02 16830 1424761 navier stokes and continuity equations



Experiments: Benchmark graph clustering

Computation time:
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Experiments: Benchmark graph clustering

Quality (normalized cut and ratio association):

 copter2  memplus pcrystk02  ramage02
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Experiments: Benchmark graph clustering

Computation time comparison between Graclus and Metis
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Conclusions

Minimizing graph cuts such as the normalized cut is useful in many
applications

A mathematical equivalence between spectral graph clustering
objectives and the weighted kernel k-means objective

Multilevel algorithm uses kernel k-means in its refinement phase

Experimental results show that the multilevel algorithm, as compared
to a state-of-the-art spectral clustering algorithm:

Mostly outperforms spectral algorithm in terms of quality
Significantly faster
Requires much less memory
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