NOMAD: A Distributed Framework for Latent Variable Models

Inderjit S. Dhillon

Department of Computer Science
University of Texas at Austin

Joint work with H.-F. Yu, C.-J. Hsieh, H. Yun, and S.V.N. Vishwanathan

NIPS 2014 Workshop:
Distributed Machine Learning and Matrix Computations
Outline

- Challenges
- Matrix Completion
 - Stochastic Gradient Method
 - Existing Distributed Approaches
 - Our Solution: NOMAD-MF
- Latent Dirichlet Allocation (LDA)
 - Gibbs Sampling
 - Existing Distributed Solutions: AdLDA, Yahoo LDA
 - Our Solution: F+NOMAD-LDA
Large-scale Latent Variable Modeling

- Latent Variable Models: very useful in many applications
 - Latent models for recommender systems (e.g., MF)
 - Topic models for document corpus (e.g., LDA)

- Fast growth of data
 - Almost 2.5×10^{18} bytes of data added each day
 - 90% of the world’s data today was generated in the past two years
Challenges

- Algorithmic as well as hardware level
 - Many effective algorithms involve fine-grain iterative computation ⇒ hard to parallelize
 - Many current parallel approaches
 - bulk synchronization ⇒ wasted CPU power when communicating
 - complicated locking mechanism ⇒ hard to scale to many machines
 - asynchronous computation using parameter server ⇒ not serializable, danger of stale parameters

- Proposed NOMAD Framework
 - access graph analysis to exploit parallelism
 - asynchronous computation, non-blocking communication, and lock-free
 - serializable (or almost serializable)
 - successful applications: MF and LDA
Matrix Factorization: Recommender Systems
Recommender Systems

Rating Matrix

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Items</th>
<th>Movie 10</th>
<th>Movie 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho-Ju</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Si Si</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Inderjit</td>
<td>3</td>
<td>5</td>
<td>?</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kai-Yang</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Donghyuk</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Koje</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Inderjit Dhillon (UT Austin.)
Matrix Factorization Approach $A \approx WH^T$

H^T

W

\begin{array}{cccccccc}
-0.07 & -0.11 & -0.53 & -0.46 & -0.06 & -0.05 & -0.53 & -0.07 \\
0.13 & -0.42 & 0.45 & 0.17 & 0.25 & -0.17 & -0.18 & 0.27 \\
-0.21 & -0.43 & -0.23 & 0.16 & 0.08 & 0.17 & 0.57 & -0.39 \\
\end{array}

\begin{array}{cccc}
-8.72 & 0.03 & -1.03 \\
-7.56 & -0.79 & 0.62 \\
-4.07 & -3.95 & 2.55 \\
-3.52 & 3.73 & -3.32 \\
-7.78 & 2.34 & 2.33 \\
-2.44 & -5.29 & -3.92 \\
-1.78 & 1.90 & -1.68 \\
\end{array}
Matrix Factorization Approach $A \approx WH^T$

<table>
<thead>
<tr>
<th>H^T</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.07</td>
<td>-8.72</td>
</tr>
<tr>
<td>-0.11</td>
<td>-7.56</td>
</tr>
<tr>
<td>-0.53</td>
<td>-4.07</td>
</tr>
<tr>
<td>-0.46</td>
<td>-3.52</td>
</tr>
<tr>
<td>-0.06</td>
<td>-3.24</td>
</tr>
<tr>
<td>-0.05</td>
<td>2.34</td>
</tr>
<tr>
<td>-0.53</td>
<td>2.33</td>
</tr>
<tr>
<td>-0.07</td>
<td>2.44</td>
</tr>
<tr>
<td>-0.35</td>
<td>-5.29</td>
</tr>
<tr>
<td>-0.19</td>
<td>-3.92</td>
</tr>
<tr>
<td>-0.14</td>
<td>-1.78</td>
</tr>
<tr>
<td>-0.14</td>
<td>1.90</td>
</tr>
</tbody>
</table>

$$W = \begin{bmatrix}
1 & 5 & 3 & 5 & 2 \\
2 & 3 & 5 & 2 & 5 \\
2 & 5 & 3 & 4 & 2 \\
5 & 5 & 1 & 5 & 1 \\
1 & 1 & 2 & 4 & 4
\end{bmatrix}$$
Matrix Factorization Approach

\[
\min_{W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{n \times k}} \sum_{(i,j) \in \Omega} (A_{ij} - w_i^T h_j)^2 + \lambda (\|W\|_F^2 + \|H\|_F^2),
\]

- \(\Omega = \{(i,j) \mid A_{ij} \text{ is observed}\} \)
- Regularized terms to avoid over-fitting

A transform maps users/items to latent feature space \(\mathbb{R}^k\)
- the \(i^{th}\) user \(\Rightarrow i^{th}\) row of \(W, w_i^T\),
- the \(j^{th}\) item \(\Rightarrow j^{th}\) column of \(H^T, h_j\).
- \(w_i^T h_j\): measures the interaction.
SGM: Stochastic Gradient Method

SGM update: pick \((i, j) \in \Omega\)

- \(R_{ij} \leftarrow A_{ij} - w_i^T h_j\),
- \(w_i \leftarrow w_i - \eta \left(\frac{\lambda}{|\Omega_i|} w_i - R_{ij} h_j \right)\),
- \(h_j \leftarrow h_j - \eta \left(\frac{\lambda}{|\bar{\Omega}_j|} h_j - R_{ij} w_i \right)\),

\(\Omega_i\): observed ratings of \(i\)-th row.
\(\bar{\Omega}_j\): observed ratings of \(j\)-th column.

An iteration: \(|\Omega|\) updates

- Time per update: \(O(k)\)
- Time per iteration: \(O(|\Omega|k)\), better than \(O(|\Omega|k^2)\) for ALS
Challenge: direct parallel updates \Rightarrow memory conflicts.

- Multi-core parallelization
 - Hogwild [Niu 2011]
 - Jellyfish [Recht et al, 2011]
 - FPSGD** [Zhuang et al, 2013]

- Multi-machine parallelization:
 - DSGD [Gemulla et al, 2011]
 - DSGD ++ [Teflioudi et al, 2013]
Motivation

Most existing parallel approaches require

- **Synchronization** and/or
 - E.g., ALS, DSGD/JellyFish, DSGD++, CCD++
 - Computing power is wasted:
 - Interleaved computation and communication
 - Curse of the last reducer

- **Locking** and/or
 - E.g., parallel SGD, FPSGD**
 - A standard way to avoid conflict and guarantee *serializability*
 - Complicated remote locking slows down the computation
 - Hard to implement efficient locking on a distributed system

- **Computation using stale values**
 - E.g., Hogwild, Asynchronous SGD using parameter server
 - Lack of serializability

Q: Can we avoid both *synchronization* and *locking* but keep CPU from being *idle* and guarantee *serializability*?
Our answer: NOMAD

A: Yes, NOMAD keeps CPU and network busy simultaneously

- **Stochastic gradient** update rule
 - only a small set of variables involved

- **Nomadic token passing**
 - widely used in telecommunication area
 - avoids conflict without explicit remote locking
 - Idea: “owner computes”
 - NOMAD: multiple “active tokens” and nomadic passing

Features:

- fully asynchronous computation
- lock-free implementation
- non-blocking communication
- serializable update sequence
Access Graph for Stochastic Gradient

- Access graph $G = (V, E)$:
 - $V = \{w_i\} \cup \{h_j\}$
 - $E = \{e_{ij} : (i, j) \in \Omega\}$

- Connection to SG:
 - each e_{ij} corresponds to a SG update
 - only access to w_i and h_j

- Parallelism:
 - edges without common node can be updated in parallel
 - identify “matching” in the graph

- Nomadic Token Passing:
 - mechanism s.t. active edges always form a “matching”
 - serializability guaranteed
Nomadic Tokens for \(\{h_j\} \):

- \(n \) tokens
- \((j, h_j)\): \(O(k) \) space

Worker:

- \(p \) workers
- a computing unit + a concurrent token queue
- a block of \(W \): \(O(mk/p) \)
- a block row of \(A \): \(O(|\Omega|/p) \)
Illustration of NOMAD communication
Comparison on a Multi-core System

- On a 32-core processor with enough RAM.
- Comparison: NOMAD, FPSGD**, and CCD++.

![Graphs showing test RMSE over time for Netflix and Yahoo! datasets with different parameters and algorithms.](image-url)

Netflix, machines=1, cores=30, $\lambda = 0.05$, $k = 100$

Yahoo!, machines=1, cores=30, $\lambda = 1.00$, $k = 100$
Comparison on a Distributed System

- On a distributed system with 32 machines.
- Comparison: NOMAD, DSGD, DSGD++, and CCD++.

(100M ratings)

Netflix, machines=32, cores=4, $\lambda = 0.05$, $k = 100$

(250M ratings)

Yahoo!, machines=32, cores=4, $\lambda = 1.00$, $k = 100$
Super Linear Scaling of NOMAD-MF

Yahoo!, cores=4, $\lambda = 1.00$, $k = 100$

Inderjit Dhillon (UT Austin.)
Topic Modeling:
Latent Dirichlet Allocation
Each **topic** is a multinomial distribution over words

Each **document** is a multinomial distribution over topics

Each **word** is drawn from one of these topics

1 source:

Inderjit Dhillon (UT Austin.)
Graphical Model for LDA

Joint distribution

\[
Pr(\cdot) = \prod_{t=1}^{T} Pr(\phi_t \mid \beta) \prod_{i=1}^{l} Pr(\theta_i \mid \alpha) \left(\prod_{j=1}^{n_i} Pr(z_{i,j} \mid \theta_i)Pr(w_{i,j} \mid \phi_{z_{i,j}}) \right)
\]

- Pr(\phi_t \mid \beta), Pr(\theta_i \mid \alpha): Dirichlet distributions
- Pr(w \mid \phi_t), Pr(z \mid \theta_i): multinomial distributions
Inference for LDA

- Only documents are observed
- $\theta_t, \phi_t, z_{i,j}$ are latent
- Goal: infer these latent structures

Posterior Inference for LDA

Task: $Pr(\theta_i, \phi_t, z_{i,j} \mid \{d_i\}, \alpha, \beta)$
- Given
 - a corpus of documents $\{d_i : i = 1, \ldots, N\}$, α, β
 - each document $d_i = \{w_{i,j} : j = 1, \ldots, n_i\}$
- Exact inference for $z_{i,j}, \theta_i, \phi_t$
 - Intractable
 - Latent variables are dependent when conditioned on data

Approximate Inference approaches:

- Variational Methods
 - See [Blei et al, 2003]
 - an optimization approach
 - runs faster
 - but generates biased results

- Gibbs Samplings
 - See [Griffiths & Steyvers, 2004]
 - an MCMC approach
 - more accurate
 - but slower with a vanilla implementation

Goal: Design a scalable Gibbs sampler for LDA
Gibbs Sampling for LDA [Griffiths & Steyvers, 2004]

- Count matrices for topic assignment \(\{z_{i,j}\} \):
 - \(n_{dt} \): \# words of document \(d \) assigned to topic \(t \)
 - \(n_{wt} \): \# of times word \(w \) assigned to topic \(t \)
 - \(n_t := \sum_w n_{wt} = \sum_d n_{dt} \)

- Gibbs Sampling Step
 1. choose \(w := w_{i,j} \) with old assignment \(t_o := z_{i,j} \) of document \(d := d_i \)
 2. Decrease \(n_{dt_o}, n_{wt_o}, n_{t_o} \) by 1
 3. Resample a new assignment \(t_n := z_{i,j} \) according to

\[
Pr(z_{i,j} = t) \propto \frac{(n_{dt} + \alpha)(n_{wt} + \beta)}{n_t + \bar{\beta}}, \quad \forall t = 1, \ldots, T.
\]

 4. Increase \(n_{dt_n}, n_{wt_n}, n_{t_n} \) by 1

- Constants
 - \(J \): vocabulary size
 - \(\bar{\beta} = \beta \times J \)
Access Pattern for Gibbs Sampling

n_t Topics

Words

n_{wt}

n_{dt} Docs

Z_{ij}
Multinomial Sampling Techniques for $\mathbf{p} \in \mathbb{R}_+^T$

<table>
<thead>
<tr>
<th></th>
<th>Initialization</th>
<th>Generation</th>
<th>Parameter Update</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Space</td>
<td>Time</td>
</tr>
<tr>
<td>LSearch</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(T)$</td>
</tr>
<tr>
<td>BSearch</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log T)$</td>
</tr>
<tr>
<td>Alias Method</td>
<td>$\Theta(T)$</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>F+tree Sampling</td>
<td>$\Theta(T)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(\log T)$</td>
</tr>
</tbody>
</table>

- **LSearch**
 - maintain $c_T = \mathbf{p}^T \mathbf{1}$
 - linear search
 - $\Theta(1)$ update

- **BSearch**
 - maintain $\mathbf{c} = \text{cumsum}(\mathbf{p})$
 - binary search
 - no support for update

- **Alias Method**
 - Alias table
 - construction has **some overhead**
 - no support for updates

- **F+tree**
 - a variant of Fenwick tree
 - construction has **low overhead**
 - logarithmic time for sampling and update
Construction in $\Theta(T)$ time

$p = [0.3, 1.5, 0.4, 0.3]^T$
F+Tree: Sampling

- Multinomial sampling in $\Theta(\log T)$ time
- Initial u: a uniformly number drawn from $[0, F[1])$
F+Tree: Update

- Update in $\Theta(\log T)$ time
- $p_3 \leftarrow p_3 + \delta$
Decomposition of p

\[
p_t = \frac{(n_{dt} + \alpha)(n_{wt} + \beta)}{n_t + \beta}, \quad \forall t = 1, \ldots, T.
\]

\[
= \beta \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right) + n_{wt} \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right).
\]

\[\text{(1)}\]

- $p = \beta q + r$
 - two-level sampling for p
 - q is dense
 - only 2 entries (q_{t_o}, q_{t_n}) change for each Gibbs step in the same document
 - use F+Tree for q
 - r is sparse
 - nonzero entries: $T_w := \{t : n_{tw} \neq 0\}$
 - entire r changes for each Gibbs step
 - use BSearch for r
- Can also work on word-by-word update sequence
F+LDA: Alternative Decomposition

- **Word-by-word** Gibbs sampling sequence
- **Decomposition of** p

\[p_t = \frac{(n_{dt} + \alpha)(n_{wt} + \beta)}{n_t + \beta}, \quad \forall t = 1, \ldots, T. \]

\[= \alpha \left(\frac{n_{wt} + \beta}{n_t + \beta} \right) + n_{dt} \left(\frac{n_{wt} + \beta}{n_t + \beta} \right). \quad (2) \]

- **$p = \alpha q + r$**
- **q: slight changes for this sequence \Rightarrow use F+Tree**
- **r: $|T_d := \{t : n_{dt} \neq 0\}|$ nonzeros \Rightarrow use BSearch**
Comparison to Other LDA Sampling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition</td>
<td>(\alpha \left(\frac{n_{wt} + \beta}{n_t + \beta} \right) + n_{dt} \left(\frac{n_{wt} + \beta}{n_t + \beta} \right))</td>
<td>(\beta \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right) + n_{wt} \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right))</td>
<td>(\frac{\alpha \beta}{n_t + \beta} + \beta \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right) + n_{wt} \left(\frac{n_{dt} + \alpha}{n_t + \beta} \right))</td>
<td>(\alpha \left(\frac{n_{wt} + \beta}{n_t + \beta} \right) + n_{dt} \left(\frac{n_{wt} + \beta}{n_t + \beta} \right))</td>
</tr>
<tr>
<td>Structure</td>
<td>F+tree BSearch</td>
<td>F+tree BSearch</td>
<td>LSearch LSearch</td>
<td>Alias LSearch</td>
</tr>
<tr>
<td>Fresh samples</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Initialization</td>
<td>(\Theta(\log T))</td>
<td>(\Theta(\frac{</td>
<td>T_d</td>
<td>}{T}))</td>
</tr>
<tr>
<td>Sampling</td>
<td>(\Theta(\log T))</td>
<td>(\Theta(\log</td>
<td>T_d</td>
<td>))</td>
</tr>
</tbody>
</table>

- **F+LDA**: word-by-word faster than doc-by-doc for large \(I \)
 - \(|T_d| \) bounded by \(n_i \), but \(|T_w| \) approaches to \(T \)
 - per Gibbs step cost: \(\rho_F \log T + \rho_B |T_d| \)

- **SparseLDA**:
 - per Gibbs step cost: \(\Theta(T + |T_d| + |T_w|) \)
 - the first \(\Theta(T) \) rarely happens but \(|T_w| \to T \) for large \(I \)

- **AliasLDA**:
 - per Gibbs step cost: \(\rho_A |T_d| + \#MH \)
 - \(\rho_A \approx 3 \times \rho_B \): construction overhead of Alias table
 - If \((\rho_A - \rho_B) |T_d| > \rho_F \log T \Rightarrow \) AliasLDA slower than F+LDA
 - say \(|T_d| \approx 100 \), F+LDA still faster for \(T < 2^{50} \)
Comparison of various sampling methods

- Single machine, single thread
- y-axis: speedup over normal $O(T)$ multinomial sampling
- $T = 1024$
- Enron: 38K docs with 6M tokens
- NyTimes: 0.3M docs with 100M tokens
Access Pattern for Gibbs Sampling

- n_t: Topics
- n_{dt}: Docs
- n_{wt}: Words
- Z_{ij}
Access Graph for Gibbs Sampling

- $G = (V, E)$: a hyper graph

 $V = \{d_i\} \cup \{w_j\} \cup \{s\}$

 $E = \{e_{ij} = (d_i, w_j, s)\}$

- Connection to Gibbs sampling

 $\begin{align*}
 (d_i)_t &:= n_{d_it},
 (w_j)_t &:= n_{wjt},
 (s)_t &:= nt
 \end{align*}$

 each e_{ij}: a Gibbs step for word w_j in d_i

 access to (d_i, w_j, s)

- Parallelism: more challenging

 all edges incident to s

 all $(s)_t$ are large in general

 \Rightarrow slightly stale s is fine for accuracy

 duplicate s for parallelism
Nomadic Tokens for w_j

Nomadic Tokens for
$\{w_j : j = 1, \ldots, J\}$:
- J tokens
- (j, w_j): $O(T)$ space

Worker:
- p workers
- a computing unit + a concurrent token queue
- a subset of $\{d_i\}$: $O(IT/p)$
- “x”: an occurrence of a word
- bigger rectangle: a subset of corpus
- smaller rectangle: a unit subtask
Nomadic Token for s: Circular Delta Update

- Single global s
 - travels among machines as a messenger
 - broadcasts local delta updates
- Every machine p: (s_p, \bar{s})
 - s_p: local working copy
 - \bar{s}: snapshot version of global s

\[
s \leftarrow s + (s_3 - \bar{s}) \\
\bar{s} \leftarrow s \\
s_3 \leftarrow s
\]
Comparison on a single multi-core machine

- On a machine with a 20-core processor
- Comparison: F+NOMAD LDA, Yahoo! LDA
- PubMed: 9M docs with 700M tokens
- Amazon: 30M docs with 1.5B tokens

[Graphs showing performance comparison between F+NOMAD LDA and Yahoo! LDA on PubMed and Amazon datasets]
Comparison on a Multi-machine System

- 32 machines, each with a 20-core processor, $T = 1024$
- Comparison: F+NOMAD LDA, Yahoo! LDA
- Amazon: 30M docs with 1.5B tokens
- UMBC: 40M docs with 1.5B tokens
Scaling of NOMAD-LDA

- Each machine has 20 cores
- Multi-machine setting:
 - 18 cores for sampling
 - 2 cores for communication
Conclusions

- NOMAD framework uses nomadic tokens to provide
 - Asynchronous computation
 - Non-blocking communication
 - Lock-free implementation
 - Serializable or near Serializable

- Recommender System: Matrix factorization
 - scalable parallel stochastic gradient
 - Serializability guarantee

- Topic Modeling: Latent Dirichlet Allocation
 - Logarithmic F+tree sampling
 - Efficient Gibbs Sampling
 - Duplicated nomadic tokens for the common node
 - Outperforms Yahoo! LDA