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Big Data

Link prediction

LinkedIn.

gene-gene network

fMRI

Image classification

Spam classification
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Modern Machine Learning Problems
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Inverse Covariance Estimation

Learning graph (structure and/or weights) from data.

Gene networks, fMRI analysis, stock networks, climate analysis.

Gene network fMRI brain analysis
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Matrix Completion

Missing value estimation for recommender systems.

Assumption: the underlying matrix is low-rank.
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Robust PCA

Image de-noising, face recognition, graphical modeling with latent
variables

Decompose the input matrix as sparse + low-rank matrices.

Figures from (Candès et al, 2009)
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Multi-task Learning

Training T classification tasks together.

Sparse models: Lasso

Feature sharing: Group Lasso
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Inverse Covariance Estimation
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Estimate Relationships between Variables

Example: FMRI Brain Analysis.

Goal: Reveal functional connections between regions of the brain.

(Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)

Input Output

Figure from (Varoquaux et al, 2010)
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Estimate Relationships between Variables

Example: Gene regulatory network discovery.

Goal: Gene network reconstruction using microarray data.

(Schafer & Strimmer 2005; Andrei & Kendziorski 2009; Menendez et
al, 2010; Yin and Li, 2011)

Figure from (Banerjee et al, 2008)
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Other Applications

Financial Data Analysis:

Model dependencies in multivariate time series (Xuan & Murphy, 2007).
Sparse high dimensional models in economics (Fan et al, 2011).

Social Network Analysis / Web data:

Model co-authorship networks (Goldenberg & Moore, 2005).
Model item-item similarity for recommender system(Agarwal et al, 2011).

Climate Data Analysis (Chen et al., 2010).

Signal Processing (Zhang & Fung, 2013).

Anomaly Detection (Ide et al, 2009).
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Inverse Covariance Estimation

Given: n i.i.d. samples {y1, . . . , yn}, yi ∈ Rp, yi ∼ N (µ,Σ),

Goal: Estimate relationships between variables.

The sample mean and covariance are given by:

µ̂ =
1

n

n∑
i=1

yi and S =
1

n

n∑
i=1

(yi − µ̂)(yi − µ̂)T .

Covariance matrix Σ may not directly convey relationships.

An example – Chain graph: y(j) = 0.5y(j − 1) +N (0, 1)

Σ =

 1.33 0.67 0.33
0.67 1.33 0.67
0.33 0.67 1.33
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Inverse Covariance Estimation (cont’d)

Conditional independence is reflected as zeros in Θ (= Σ−1):

Θij = 0⇔ y(i), y(j) are conditionally independent given other variables

Chain graph example: y(j) = 0.5y(j − 1) +N (0, 1)

Θ =

 1 −0.5 0
−0.5 1.25 −0.5

0 −0.5 1


In a GMRF G = (V ,E ), each node corresponds to a variable, and each
edge corresponds to a non-zero entry in Θ.

Goal: Estimate the inverse covariance matrix Θ from the observations.
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Maximum Likelihood Estimator: LogDet Optimization

Given the n samples, the likelihood is

P(y1, . . . , yn; µ̂,Θ) ∝
n∏

i=1

(det Θ)1/2 exp

(
−1

2
(yi − µ̂)T Θ(yi − µ̂)

)

= (det Θ)n/2 exp

(
−1

2

n∑
i=1

(yi − µ̂)T Θ(yi − µ̂)

)
.

The log likelihood can be written as

log(P(y1, . . . , yn; µ̂,Θ)) =
n

2
log(det Θ)− n

2
tr(ΘS) + constant.

Maximum likelihood estimator:

Θ∗ = arg min
X�0
{− log detX + tr(SX )}.

Problem: when p > n, sample covariance matrix S is singular.
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L1-regularized inverse covariance selection

A sparse inverse covariance matrix is preferred –

add `1 regularization to promote sparsity.

The resulting optimization problem:

Θ = arg min
X�0

{
− log detX + tr(SX ) + λ‖X‖1

}
= arg min

X�0
f (X ),

where ‖X‖1 =
∑n

i ,j=1 |Xij |.
Regularization parameter λ > 0 controls the sparsity.

The problem appears hard to solve:

Non-smooth log-determinant program.
Number of parameters scale quadratically with number of variables.
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Optimization in Machine Learning

High-dimensional!

Large number of samples!

Large number of parameters!
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Exploiting Structure in Machine Learning Problems

Regularized Loss Minimization(RLM):

min
θ
{ g(θ,X )︸ ︷︷ ︸

loss

+ h(θ)︸︷︷︸
regularization

} ≡ f (θ),

Exploiting problem structure:

Can we have faster computation?

Exploiting model structure:

Can we avoid un-important search space?

Exploiting Data distribution:

Can we speed up optimization algorithms if we roughly estimate the data
distribution?
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QUIC
QUadratic approximation for Inverse Covariance estimation
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Sparse Inverse Covariance Estimation

p2 parameters in the non-smooth Log-determinant program:

Θ = arg min
X�0

{
− log detX + tr(SX )︸ ︷︷ ︸

negative log likelihood

+λ‖X‖1

}
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First Order Methods vs Second Order Methods

Many algorithms have been proposed.
Block coordinate descent (Banerjee et al., 2007), (Friedman et al., 2007),
Gradient or Accelerate gradient descent (Lu, 2009), (Duchi et al., 2008),
Greedy coordinate descent (Scheinberg & Rich., 2009)
ADMM (Scheinberg et al., 2009), (Boyd et al., 2011)

All of them are first order methods (only gradient information)

QUIC: the first second order method for this problem (use Hessian
information).

∇f (x) =



∂f
∂x1

∂f
∂x2

...

∂f (x)
∂xd

 , H = ∇2f (x) =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xd

...
...

. . .
...

∂2f
∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2

d
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First Order Methods vs Second Order Methods

Why do all previous approaches use first order methods?

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Second Order Methods for Non-Smooth Functions

Update rule for Newton method (second order method):

x ← x − η(∇2f (x))−1∇f (x)

Two difficulties:

Time complexity per iteration may be very high.
How to deal with non-smooth functions (‖x‖1)?

Addressed by (Hsieh, Sustik, Dhillon and Ravikumar, 2011).

Extensions:

Theoretical Analysis: (Lee et al., 2012), (Patrinos and Bemporad.,
2013), (Tang and Scheinberg, 2014), (Yen, Hsieh, Ravikumar and
Dhillon, 2014), . . .
Optimization Algorithms: (Olsen et al., 2012), (Dinh et al., 2013),
(Treister et al., 2014), (Scheinberg and Tang, 2014), (Zhong et al.,
2014), . . .
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Time Complexity?

Newton direction: H−1g . (H: Hessian, g : gradient)

Solving the linear system exactly: O(p6) time.

Appears to be prohibitive to apply a second order method.
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Time Complexity?

Coordinate descent: each time fits one element of g .
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Time Complexity?

Coordinate descent: each time fits one element of g .

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Time Complexity?

Use iterative solver—coordinate descent

O(p2) per coordinate update, O(p4) for one sweep. ⇒ need 40 days
for p = 104 on a 2.83GHz CPU.

Still prohibitive.
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Exploiting Problem Structure
Fast Computation of Newton Direction

min
X�0
{ − log detX + tr(SX )︸ ︷︷ ︸

problem structure

+ λ‖X‖1︸ ︷︷ ︸
regularization

}
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Exploiting Problem Structure

Structure of the Hessian:

H =
∂2

∂2X
(− log detX ) = X−1 ⊗ X−1.

The Kronecker product:

A⊗ B =

a11B · · · a1pB
...

. . .
...

ap1B · · · appB


was introduced by G. Zehfuss (1858) and later attributed to L.
Kronecker.

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Exploiting Problem Structure

The Hessian (p2 by p2 matrix) can be represented using p2

parameters!

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Exploiting Problem Structure

Time complexity: O(p2) ⇒ O(p) for each coordinate update.
O(p4) ⇒ O(p3) per sweep.

At coordinate descent step to update (i , j) element of descent direction:(
H vec(∆)

)
ip+j

=

(
(X−1 ⊗ X−1) vec(∆)

)
ip+j

=

(
X−1∆X−1

)
ij

= (X−1U)ij ,

where U = ∆X−1 is maintained in memory.
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Newton Method for Non-smooth Functions

Iteration conducts the following updates:
Compute the generalized Newton direction

Dt = arg min
∆

f̄Xt (∆)

= arg min
∆
〈∇g(Xt), vec(∆)〉+

1

2
vec(∆)T∇2g(Xt) vec(∆) + λ‖Xt + ∆‖1

Xt+1 ← Xt + Dt .
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Proximal Newton Method

Proximal Newton for sparse Inverse Covariance estimation

For t = 0, 1, . . .
1 Compute Proximal Newton direction: Dt = arg min∆ f̄Xt (Xt + ∆) (A

Lasso problem.)
2 Line Search: use an Armijo-rule based step-size selection to get α s.t.

Xt+1 = Xt + αDt is

positive definite,
satisfies a sufficient decrease condition f (Xt + αDt) ≤ f (Xt) + ασ∆t .
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Exploiting Problem Structure

Can we scale to p ≈ 20, 000?

Coordinate descent updates for computing Newton direction.

needs O(p2) storage
needs O(p4) computation per sweep
needs O(p3) computation per sweep (by exploiting problem structure)

Line search (compute determinant using Cholesky factorization).

needs O(p2) storage
needs O(p3) computation
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Exploiting Model Structure
Variable Selection

min
θ
{ − log detX + tr(SX )︸ ︷︷ ︸

problem structure

+ h(θ)︸︷︷︸
regularization

} ≡ f (θ),
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Sparsity of the Model

ER dataset, p = 692, solutions at iteration 1, 3, 5.

Only 2.7% variables become nonzero.
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Active Variable Selection

Strategy: before solving the Newton direction, “guess” the variables
that should be updated.

Fixed set: Sfixed = {(i , j) | Xij = 0 and |∇ijg(X )| ≤ λ.}.
Only update the rest of variables (free set).

Convergence Guaranteed.

p = 1869, number of variables = p2 = 3.49 million. The size of free set
drops to 20, 000 very quickly.
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Active Variable Selection
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Exploiting Model Structure

Can we scale to p ≈ 20, 000?

Coordinate descent updates for computing Newton direction.

needs O(p2) storage
needs O(p4) computation per sweep
needs O(p3) computation per sweep (by exploiting problem structure)
needs O(mp) computation per sweep, where m ≈ ‖X‖0

(by exploiting problem and model structure)

Line search (compute determinant using Cholesky factorization).

needs O(p2) storage
needs O(p3) computation
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Algorithm

QUIC: QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix S , scalar λ, initial X0.

For t = 0, 1, . . .
1 Variable selection: select a free set of m� p2 variables.
2 Use coordinate descent to find descent direction:

Dt = arg min∆ f̄Xt (Xt + ∆) over set of free variables, (A Lasso problem.)
3 Line Search: use an Armijo-rule based step-size selection to get α s.t.

Xt+1 = Xt + αDt is

positive definite,
satisfies a sufficient decrease condition f (Xt + αDt) ≤ f (Xt) + ασ∆t .

(Cholesky factorization of Xt + αDt)

QUIC can solve p = 20, 000 in about 2.3 hours.
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Algorithm

Current iterate Xt .
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Algorithm

Form the quadratic approximation f̄Xt (∆).

f (X ) = g(X ) + λ‖X‖1

f̄Xt (∆)= f (Xt)+〈∇g(X ),∆〉+ 1

2
vec(∆)T∇2g(X )vec(∆)+λ‖X + ∆‖1
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Algorithm

Form the quadratic approximation f̄Xt (∆).

Free set selection.
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Algorithm

Form the quadratic approximation f̄Xt (∆).

Free set selection.

Coordinate descent to minimize f̄Xt (∆)
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Algorithm

Form the quadratic approximation f̄Xt (∆).

Free set selection.

Coordinate descent to minimize f̄Xt (∆)
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Algorithm

Form the quadratic approximation f̄Xt (∆).

Free set selection.

Coordinate descent to minimize f̄Xt (∆)

Xt+1 ← Xt + Dt
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Theoretical Guarantee

Theorem: Quadratic Convergence Rate for QUIC

Suppose g(·) is strongly convex and the quadratic subproblem at each
iteration is solved exactly, QUIC converges to the global optimum with an
asymptotic quadratic convergence rate:

lim
t→∞

‖Xt+1 − X ∗‖F

‖Xt − X ∗‖2
F

= κ,

where κ is a constant.
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QUIC Results: Data from Biology Applications

(a) Time for Estrogen, p = 692 (b) Time for hereditarybc, p = 1, 869
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Quic & Dirty
Active Subspace Selection for Dirty Statistical Models

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Exploiting Model Structure

min
X
{ Loss(X ; Data)︸ ︷︷ ︸

problem structure

+ Regularization(X )︸ ︷︷ ︸
model structure

}

If h(X ) = ‖X‖1, the solution is expected to be sparse.

Active Variable Selection:

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Matrix Completion Problems

min
X
{ g(X ) + λ‖X‖∗ }

‖X‖∗: a nuclear norm regularization to promote the low rank structure.

Active variable selection ⇒ Active subspace selection

(identify the low-dimensional subspace)
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Active Subspace Selection

Given current iterate X = UΣV T , the “active subspace” is:

A = {uvT | uTXv 6= 0 or |uT∇Xv| > λ}.

Step 1: Active subspace selection:
UG ΣGV

>
G = Sλ(X −∇g(X )).

UA := span(U,UG ), VA := span(V ,VG ).
A = {uvT | u ∈ UA, v ∈ VA}.

Step 2: Solve the reduced-sized problem:

argmin
S∈Rk×k

ḡX (UASV
>
A ) + λ‖S‖∗,

ḡX (·) is the quadratic approximation of g(·) at current iterate X

Iterate steps 1 and 2.

Subspace selection can be generalized to settings where the regularizer
is a “decomposable norm” at the solution
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Active Subspace Selection for Decomposable Norms

A norm ‖ · ‖ is decomposable at x if there is a subspace T and vector
e ∈ T such that the sub differential at x is

∂‖x‖r = {ρ ∈ Rn | ΠT (ρ) = e and ‖ΠT ⊥(ρ)‖∗r ≤ 1},

Examples: `1 norm, nuclear norm, group lasso, . . .

Active subspace selection:

Divide the space into “fixed” subspace and “free subspace”:

Sfree := [T (θ)] ∪ [T (proxλr
(G ))], Sfixed = Sfree

⊥,

where T (·) is the support of the decomposable norm.
Solve the reduced sized problem.
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Active Subspace Selection for Dirty Models

Superposition-structured models or “dirty models”:

min
{θ(r)}k

r=1

{
g

(∑
r

θ(r)

)
+
∑

r

λrh
(r)(θ(r))

}
,

Examples:

Sparse + low-rank graphical model learning
Multi-task learning (sparse + group-sparse or sparse + low-rank).

Select active subspace for each θ(r).
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Proximal Newton Method

Proximal Newton for Dirty Models (QUIC & DIRTY)

For t = 0, 1, . . .
1 Compute θ̄ =

∑k
r=1 θ

(r)

2 Compute the current gradient G = ∇g(θ̄)
3 Select free set by

S(r)
free := [T (θ(r))] ∪ [T (prox

(r)
λr

(G ))], S(r)
fixed = S(r)

free

⊥
,

4 For r = 1, . . . , k

Solve the subproblem

∆(r) = argmin
d∈Rn

〈d ,G +
∑
t 6=r

H∆(t)〉+
1

2
dTHd + λr‖θ(r) + d‖r .

5 Line Search: use an Armijo-rule based step-size selection to get α s.t.
θ = θ + α∆ sufficient decrease the objective function value.
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Theoretical Guarantee

Theorem: Quadratic Convergence Rate for QUIC & DIRTY

Suppose g(·) is strongly convex and the quadratic subproblem at each
iteration is solved exactly, Quic & Dirty converges to the global optimum
with an asymptotic quadratic convergence rate:

lim
t→∞

‖Xt+1 − X ∗‖F

‖Xt − X ∗‖2
F

= κ,

where κ is a constant.
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Results: Data from Biology Applications

Sparse + low rank graphical model learning

min
S ,L:L�0,S−L�0

− log det(S − L) + 〈S − L,Σ〉+ λS‖S‖1 + λL tr(L).
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(c) Time for Leukemia, p = 1, 255
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(d) Time for Rosetta, p = 2, 000
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Application: Multi-task Learning

Multi-task (multi-class) learning with sparse + group sparse structure.

k∑
r=1

`(y (r),X (r)(S (r) + B(r))) + λS‖S‖1 + λB‖B‖1,2,

dataset
number of Dirty Models (sparse + group sparse) Other Models

training data Quic & Dirty proximal gradient ADMM Lasso Group Lasso

USPS
100 7.47% / 0.75s 7.49% / 10.8s 7.47% / 4.5s 10.27% 8.36%
400 2.5% / 1.55s 2.5% / 35.8 2.5% / 11.0s 4.87% 2.93%

RCV1
1000 18.45% / 23.1s 18.49% / 430.8s 18.5% / 259s 22.67% 20.8%
5000 10.27% / 87s 10.27% / 2254s 10.27% / 1191s 13.67% 12.25%
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Big & Quic
Sparse Inverse Covariance Estimation with 1 Million Random Variables
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Big & Quic
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Difficulties in Scaling QUIC

Coordinate descent requires Xt and X−1
t ,

needs O(p2) storage
needs O(mp) computation per sweep, where m = ‖Xt‖0

Line search (compute determinant of a big sparse matrix).

needs O(p2) storage
needs O(p3) computation

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



Line Search

Given sparse matrix A = Xt + αD, we need to
1 Check its positive definiteness.
2 Compute log det(A).

Cholesky factorization in QUIC requires O(p3) computation.

If A =

(
a bT

b C

)
,

det(A) = det(C )(a− bTC−1b)
A is positive definite iff C is positive definite and (a− bTC−1b) > 0.

C is sparse, so can compute C−1b using Conjugate Gradient (CG).

Time complexity: TCG = O(mT ), where T is number of CG iterations.
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Difficulties in Scaling QUIC

Coordinate descent requires Xt and X−1
t ,

needs O(p2) storage
needs O(mp) computation per sweep, where m = ‖Xt‖0

Line search (compute determinant of a big sparse matrix).

needs O(p) storage
needs O(mp) computation
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Back-of-the-envelope calculations

Co-ordinate descent requires m computations of wT
i Dwj .

To solve a problem of size p = 104 (avg degree=10), QUIC takes 12
minutes

Extrapolate: to solve a problem with p = 106, QUIC would take
12min× 104 = 83.33 days (2.6 days using 32 cores).

p2 memory means 8 Terabyte main memory for p = 106.

Naive solution that has O(m) memory requirement:

Compute wi ,wj by solving two linear systems by CG,
O(TCG ) computation per coordinate update
O(mTCG ) computation per sweep.
Would need 8,333 days to solve the problem for p = 106 (260 days using
32 cores).

BigQUIC solves problems of size p = 106 in one day on 32 cores.
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Back-of-the-envelope calculations

Co-ordinate descent requires m computations of wT
i Dwj .

To solve a problem of size p = 104 (avg degree=10), QUIC takes 12
minutes

Extrapolate: to solve a problem with p = 106, QUIC would take
12min× 104 = 83.33 days (2.6 days using 32 cores).

p2 memory means 8 Terabyte main memory for p = 106.

Naive solution that has O(m) memory requirement:

Compute wi ,wj by solving two linear systems by CG,
O(TCG ) computation per coordinate update
O(mTCG ) computation per sweep.
Would need 8,333 days to solve the problem for p = 106 (260 days using
32 cores).

BigQUIC solves problems of size p = 106 in one day on 32 cores.
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Coordinate Updates with Memory Cache

Assume we can store M columns of W in memory.

Coordinate descent update (i , j): compute wT
i Dwj .

If wi ,wj are not in memory: recompute by CG:

Xwi = ei : O(TCG ) time.
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Coordinate Updates – ideal case

Want to find update sequence that minimizes number of cache misses:
probably NP Hard.

Our strategy: update variables block by block (assume k = p/M
blocks).
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General case: block diagonal + sparse

If the block partition is not perfect:

extra column computations can be characterized by boundary nodes.

Given a partition {S1, . . . ,Sk}, we define boundary nodes as

B(Sq) ≡ {j | j ∈ Sq and ∃i ∈ Sz , z 6= q s.t. Fij = 1},

where F is adjacency matrix of the free set.
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Graph Clustering Algorithm

The number of columns to be computed in one sweep is

p +
∑

q

|B(Sq)|.

Can be upper bounded by

p +
∑

q

|B(Sq)| ≤ p +
∑
z 6=q

∑
i∈Sz ,j∈Sq

Fij .

Minimize the right hand side → minimize off-diagonal entries.

Use Graph Clustering (METIS or Graclus) to find the partition.
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Size of boundary nodes in real datasets

ER dataset with p = 692.

Random partition Partition by clustering

compute 1687 columns compute 775 columns

O(kpTCG )→ O(pTCG ) flops per sweep.
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BigQUIC

Block co-ordinate descent with clustering,

needs O(m + p2/k) storage
needs O(mp) computation per sweep, where m = ‖Xt‖0

Line search (compute determinant of a big sparse matrix).

needs O(p) storage
needs O(mp) computation
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Convergence Guarantees for QUIC

Theorem (Hsieh, Sustik, Dhillon & Ravikumar, NIPS, 2011)

QUIC converges quadratically to the global optimum, that is for some
constant 0 < κ < 1:

lim
t→∞

‖Xt+1 − X ∗‖F

‖Xt − X ∗‖2
F

= κ.
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BigQUIC Convergence Analysis

Recall W = X−1.

When each wi is computed by CG (Xwi = ei ):

The gradient ∇ijg(X ) = Sij −Wij on free set can be computed once and
stored in memory.
Hessian (wT

i Dwj in coordinate updates) needs to be repeatedly
computed.

To reduce the time overhead, Hessian should be computed
approximately.

Theorem (Hsieh, Sustik, Dhillon, Ravikumar & Poldrack, 2013)

If ∇g(X ) is computed exactly and η̄I � Ĥt � ηI for some constant
η̄, η > 0 at every Newton iteration, then BigQUIC converges to the
global optimum.
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η̄, η > 0 at every Newton iteration, then BigQUIC converges to the
global optimum.

Inderjit Dhillon Computer Science & Mathematics UT Austin Proximal Newton Methods for Large-Scale Machine Learning



BigQUIC Convergence Analysis

To have super-linear convergence rate, we require the Hessian
computation to be more and more accurate as Xt approaches X ∗.

Measure the accuracy of Hessian computation by R = [r1 . . . , rp],
where ri = Xwi − ei .

The optimality of Xt can be measured by

∇S
ij f (X ) =

{
∇ijg(X ) + sign(Xij )λ if Xij 6= 0,

sign(∇ijg(X )) max(|∇ijg(X )| − λ, 0) if Xij = 0.

Theorem (Hsieh, Sustik, Dhillon, Ravikumar & Poldrack, 2013)

In BigQUIC, if residual matrix ‖Rt‖ = O(‖∇S f (Xt)‖`) for some
0 < ` ≤ 1 as t →∞, then ‖Xt+1 − X ∗‖ = O(‖Xt − X ∗‖1+`) as
t →∞.

When ‖Rt‖ = O(‖∇S f (Xt)‖), BigQUIC has asymptotic quadratic
convergence rate.
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Experimental results (scalability)

(e) Scalability on random graph (f) Scalability on chain graph

Figure: BigQUIC can solve one million dimensional problems.
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Experimental results

BigQUIC is faster even for medium size problems.

Figure: Comparison on FMRI data with a p = 20000 subset (maximum dimension
that previous methods can handle).
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Results on FMRI dataset

228,483 voxels, 518 time points.

λ = 0.6 =⇒ average degree 8, BigQUIC took 5 hours.

λ = 0.5 =⇒ average degree 38, BigQUIC took 21 hours.

Findings:

Voxels with large degree were generally found in the gray matter.
Can detect meaningful brain modules by modularity clustering.
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Conclusions

Proximal Newton method: a second order method for optimizing a
smooth convex function plus a non-smooth regularizer.

How to develop an efficient proximal Newton method?

Exploit problem structure and geometry of problem

For sparse inverse covariance estimation problem, our proposed
algorithm (BigQuic) can solve a 1-million dimensional problem in
1-day on a single 32-core machine.

Main ingredients for BigQuic:

Fast coordinate descent solver for computing Newton direction.
Avoid un-important updates by active subspace selection.
Memory efficient coordinate descent updates.

Quic & Dirty: extension to “Dirty” Statistical Models.
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Future Work

“Effective” order of Newton-like methods for specific problems?

Multi-core Computation? “Wild” Co-ordinate Descent?

Prioritized Scheduling (Co-ordinate Descent)?

Suitability for Distributed for Out-of-core Computing?

Develop scalable & reliable software

No dearth of interesting applications!
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