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Kernel Methods

Kernel methods are important for many problems in machine learning

Embed data into high-dimensional space via a mapping ψ

Kernel function gives the inner product in the feature space:

κ(ai,aj) = ψ(ai) · ψ(aj)

Kernel algorithms use the kernel matrix for learning in feature space

Kernels have been defined for various discrete structures
trees
graphs
strings
images
...



Low-Rank Kernels

A kernel matrix may not be of full rank, but rather of rank r < n
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Several advantages to such a decomposition

Storage reduces from O(n2) to O(nr)

Running time of most kernel algorithms improves to linear in n

Example: SVM training goes from O(n3) to O(nr2)



Learning Low-Rank Kernels

A kernel matrix may not be of full rank, but rather of rank r < n
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Sometimes need to learn the kernel matrix
No kernel may be given, but other information may be available
An existing kernel may be given, but may want to modify the
kernel to satisfy additional constraints
May want to combine multiple sources of data into a single kernel

Existing methods for learning a kernel are O(n3) (or worse)
Semi-definite programming methods [Lanckriet et al., JMLR, 2004]
Projection-based methods [Tsuda et al., JMLR, 2005]
Hyperkernels and other methods [Ong et al, JMLR, 2005]



Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × ri(S) → R is defined as

Dϕ(x,y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)
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Squared Euclidean distance is a Bregman divergence
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Dϕ(x,y)=x log x
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ϕ(z)=z log z

Relative Entropy (also called KL-divergence)



Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × ri(S) → R is defined as

Dϕ(x,y) = ϕ(x) − ϕ(y) − (x − y)T∇ϕ(y)

y x

Dϕ(x,y)= x
y
−log x

y
−1h(z)

ϕ(z)=− log z

Itakura-Saito Distance (or Burg divergence)—used in signal processing



Properties of Bregman Divergences

Dϕ(x,y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)

Strictly convex in the first argument, but not convex (in general) in the
second argument

Three-point property generalizes the “Law of cosines”:

Dϕ(x,y) = Dϕ(x, z) +Dϕ(z,y) − (x − z)T (∇ϕ(y) −∇ϕ(z))



Bregman Projections

Nearness in Bregman divergence: the “Bregman” projection of y onto
a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω,y)
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Bregman Projections

Nearness in Bregman divergence: the “Bregman” projection of y onto
a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω,y)

y

x

PΩ(y)

Ω

Generalized Pythagoras Theorem:

Dϕ(x,y) ≥ Dϕ(x, PΩ(y)) +Dϕ(PΩ(y),y)

When Ω is an affine set, the above holds with equality



Bregman Matrix Divergences

Extend Bregman divergences over vectors to divergences over real,
symmetric matrices:

Dϕ(X,Y ) = ϕ(X) − ϕ(Y ) − trace((∇ϕ(Y ))T (X − Y ))

Squared Frobenius norm: ϕ(X) = 1
2 tr(XTX). Then

DFrob(X,Y ) =
1

2
‖X − Y ‖2

F

von Neumann Divergence: ϕ(X) = tr(X logX −X) (negative entropy
of the eigenvalues). Then

DvN (X,Y ) = trace(X logX −X log Y −X + Y )

Burg Matrix Divergence (LogDet divergence): ϕ(X) = − log detX
(Burg entropy of the eigenvalues). Then

DBurg(X,Y ) = trace(XY −1) − log det(XY −1) − n



Optimization Framework

Optimization problem:

minimize Dϕ(K,K0)

subject to tr(KAi) ≤ bi, 1 ≤ i ≤ c

rank(K) ≤ r

K � 0.

Problem is non-convex due to the rank constraint

Standard convex optimization techniques do not seem to apply here



Rank-Preserving Matrix Divergences

Rewrite the Von Neumann divergence and Burg divergence using the
eigendecompositions

Given matrices X and Y , let X = V ΛV T and Y = UΘUT

von Neumann:

DvN (X,Y ) = tr(X logX −X log Y −X + Y )

=
i

λi log λi −
i,j

(vT
i uj)

2
λi log θj −

i

(λi − θi)

Important Implication: DvN (X,Y ) is finite iff range(X) ⊆ range(Y )
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Rank-Preserving Matrix Divergences

Rewrite the Von Neumann divergence and Burg divergence using the
eigendecompositions

Given matrices X and Y , let X = V ΛV T and Y = UΘUT

Burg divergence:

DBurg(X,Y ) = tr(XY −1) − log det(XY −1) − n

=
i,j
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(vT

i uj)
2 −

i

log

�

λi
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�

− n

Important Implication: DBurg(X,Y ) is finite iff range(X) = range(Y )

Optimization problem:
Satisfies rank(K) ≤ rank(K0) in vN divergence
Satisfies rank(K) = rank(K0) in Burg divergence
Implicitly maintains rank and positive semi-definite constraints
Is convex when rank(K0) ≤ r



Method of Cyclic Projections

Use the “Bregman” projection of y onto affine set H,

PH(y) = argmin
a∈H

Dϕ(a,y)

y

a

Method projects onto each constraint, one at a time, and applies
appropriate “correction”—provably converges to the optimal solution



Projections with rank-preserving Bregman divergences

Solve smaller optimization problem to get projection onto constraint i

minimize Dϕ(Kt+1,Kt)

subject to tr(Kt+1Ai) ≤ bi

For both divergences, projections can be calculated in O(r2) time

Requires all operations to be done on a suitable factored form of the
kernel matrices
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subject to tr(Kt+1Ai) ≤ bi

For both divergences, projections can be calculated in O(r2) time

Requires all operations to be done on a suitable factored form of the
kernel matrices

Burg divergence update:

Kt+1 = (K†
t − αA

T
i )†

such that tr(Kt+1Ai) ≤ bi

Distance constraints expressed as Ai = ziz
T
i

Projection parameter α has a closed form solution

O(r2) projection achieved using factored form of Kt
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We have designed a custom non-linear solver to compute the
projection parameter α



Projections with rank-preserving Bregman divergences

Solve smaller optimization problem to get projection onto constraint i

minimize Dϕ(Kt+1,Kt)

subject to tr(Kt+1Ai) ≤ bi

For both divergences, projections can be calculated in O(r2) time

Requires all operations to be done on a suitable factored form of the
kernel matrices

Von Neumann divergence update:

Kt+1 = exp(log(Kt) + αziz
T
i )

such that tr(Kt+1Ai) ≤ bi

Requires the fast multipole method to achieve O(r2) projection
We have designed a custom non-linear solver to compute the
projection parameter α

End Result: Algorithms are linear in n+ c, quadratic in r



Special Cases and Related Work

Full-rank case with von Neumann divergence, bi = 0∀i, obtain
DefiniteBoost optimization problem [Tsuda et al., JMLR, 2005]

Improve the running time from O(n3) to O(n2) per projection
Allow arbitrary linear constraints, both equality and inequality

For constraints Kii = 1∀i, obtain the nearest correlation matrix
problem [Higham, IMA J. Numerical Analysis, 2002]

Arises in financial applications
New efficient methods for finding low-rank correlation matrices

Can be used for nonlinear dimensionality reduction
Isometry constraints are linear
[Weinberger et al., ICML, 2004] maximize trace(X) (by
semi-definite programming)



Experiments

Digits data: 317 digits, 3
classes

Given a rank-16 kernel
for 317 digits
Randomly create
constraints:

d(i1, i2) ≤ (1 − ε)bi

d(i1, i2) ≥ (1 + ε)bi

Attempt to learn a
“better” rank-16 kernel 0 20 40 60 80 100 120 140
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Clustering: use kernel k-means with random initialization, compute
accuracy using normalized mutual information



Experiments

GyrB protein data: 52
proteins, 3 classes

Given only constraints
Want to learn a kernel
based on constraints
Constraints generated
from target kernel matrix
Attempt to learn a
full-rank kernel
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Classification: use k-nearest neighbor, k = 5, 50/50 training/test split,
2-fold cross validation averaged over 20 runs



Relevant Papers

[Dhillon & Tropp] “Matrix Nearness Problems with Bregman
Divergences”, submitted to the SIAM Journal on Matrix Analysis and
Applications, 2006.

[Kulis, Sustik & Dhillon] “Low-Rank Kernel Learning”, International
Conference on Machine Learning, 2006 (to appear).



Conclusions

Low-rank kernel matrices can be learnt efficiently using appropriate
Bregman matrix divergences

Burg divergence and von Neumann divergence
Implicitly maintain rank and positive semi-definiteness constraints

Algorithms scale linearly with n and quadratically with r

Future Work
Further investigate the gains of preserving range space
Apply to varied applications
Improvement over cyclic projection methods
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