1. (10 points)
 a) Do Problem P2.2.1 from textbook. Instead of \(x \) being an \((n - 1) \)-column vector, you should let \(x \) be an \(n \)-column vector.
 HINT: Use HornerN and InterpV.
 b) Show output of your code for \(c_1 = 1, c_2 = 2, c_3 = 3 \) and \(x_1 = 1, x_2 = 2, x_3 = 3 \).

2. (10 points)
 Let \(f(x) \) be a differentiable function such that \(f'(x) \) and \(f''(x) \) are continuous over the interval \([a, b]\). Also, assume that \(f'(x) \) is increasing in \([a, b]\). Let \(p(x) \) be the degree 1 polynomial that interpolates \(f(x) \) at the two points \(a \) and \(b \), i.e., \(p(a) = f(a) \) and \(p(b) = f(b) \). Prove that \(f(x) < p(x) \) for all \(x \in (a, b) \).