Show all your work in solving the following problems. Otherwise points may be deducted.

- 1. Let $f(x) = \sin(2\pi x) + \cos(2\pi x)$.
 - a) (4 points) Show that $|f^{(n)}(x)| \leq 2(2\pi)^n$ for all x. Note that $f^{(n)}(x)$ denotes the n-th derivative of f at x.
 - b) (5 points) Consider the interval $[\frac{1}{10}, \frac{1}{5}]$. Let p(x) be the polynomial interpolating f at n equally spaced points x_1, x_2, \ldots, x_n in this interval $(x_1 = \frac{1}{10}, x_n = \frac{1}{5})$. Find n such that

$$error(x) = |f(x) - p(x)| \le 10^{-3}$$

HINT: Use
$$f(x) = p(x) + \frac{f^{(n)}(\xi)}{n!}(x - x_1)(x - x_2)\dots(x - x_n)$$
 and $|(x - x_1)(x - x_2)\dots(x - x_n)| \leq (b - a)^n$.

2. Given the table:

		x_1	x_2	x_3	x_4
•	x	-1	0	1/2	1
	f(x)	0	1	0.650068	0
	f'(x)	1.16395	0	-1.23204	-1.16395

- a) (3 points) Compute the Newton polynomial p(x) passing through $(x_1, f(x_1))$, $(x_2, f(x_2))$, $(x_3, f(x_3))$ and $(x_4, f(x_4))$, i.e., $p(x_i) = f(x_i)$ for i = 1, 2, 3, 4.
- b) (3 points) Compute the cubic Hermite polynomial q(x) through $(x_1, f(x_1), f'(x_1))$ and $(x_3, f(x_3), f'(x_3))$, i.e., $q(x_1) = f(x_1)$, $q(x_3) = f(x_3)$, $q'(x_1) = f'(x_1)$ and $q'(x_3) = f'(x_3)$. HINT: Use $q(x) = a_1 + a_2(x - x_1) + a_3(x - x_1)^2 + a_4(x - x_1)^2(x - x_3)$.
- c) (4 **points**) Find the interpolating polynomial r(x) (of least possible degree) through $(x_1, f(x_1)), (x_2, f(x_2), f'(x_2))$ and $(x_3, f(x_3)),$ i.e., $r(x_1) = f(x_1), r(x_2) = f(x_2), r'(x_2) = f'(x_2)$ and $r(x_3) = f(x_3)$.
- d) (1 point) The tabular data given above is from the function

$$f(x) = \frac{1 - e^{1 - x^2}}{1 - e}.$$

Among the computed polynomials, which gives the best approximation to f(-0.1)?

SEE NEXT PAGE

3. The problem is to compute

$$I = \int_{-1}^{1} \frac{1 - e^{1 - x^2}}{1 - e} \ dx$$

a) (3 points) Write a MATLAB function I1 = left_point_rule(a,b,n) to compute the above integral by dividing the interval into n equal subintervals and then using the left-point rule; i.e., compute I_1 as the shaded area below:

b) (4 **points)** Use or modify the above function to compute I_2 and I_3 , shown below pictorially:

- c) (1 point) Produce a table listing I_1 , I_2 , I_3 , for n = 10, 50, 250,
- d) (2 points) Use the above table to give error bounds $|I I_2|$ for n = 10, 50, 250.

2