1. (10 points)
Solve a linear system of equations given by

\[
\begin{align*}
2x_1 + x_2 + x_4 &= 4 \\
2x_1 + 2x_2 + 2x_3 + 4x_4 &= 10 \\
4x_1 + 2x_2 - 3x_3 + 3x_4 &= 6 \\
-2x_1 + x_2 + x_3 + 5x_4 &= 5
\end{align*}
\]

You should first write the above system in matrix form, \(Ax = b \). Then, use Gaussian Elimination to factor the matrix \(A = LU \), where \(L \) is unit lower triangular and \(U \) is upper triangular. Now you have \(Ax = b \Rightarrow (LU)x = b \). Use forward substitution to find \(y \) such that \(Ly = b \), and as the last step use backward substitution to find the final answer \(x \) such that \(Ux = y \).

Note 1: Do the above computations using pen/pencil and paper. Show all intermediate steps.

Note 2: Verify your answer in MATLAB using \(A \backslash b \).

2. (10 points)
Write a program in Matlab \([x] = \text{lsolve}(A,b)\) to do the above computations. Note that \(A \) can be any matrix and \(b \) can be any right hand side. However, assume that \(A \) is nonsingular and that no “pivoting” is required to solve the linear system. You can use ‘if’, ‘for’, ‘while’ statements and ‘+’, ‘-’, ‘*’ and ‘/’ operations. DO NOT USE any MATLAB functions that directly solve the linear system, such as, \(LU \), \(\text{mldivide} \), \(\backslash \), etc.