1. The MATLAB command `hilb(n)` generates an $n \times n$ Hilbert matrix, which we denote by H_n. Try $n = 3, 10, 20$ in the following problems:

 a) (4 points)

 Solve:

 $H_n x_n = b_n$

 for x_n, where $b_n = H_n \ast \text{ones}(n, 1)$.

 Use the MATLAB command “\" to solve the above system. (See help mldivide).

 b) (2 points)

 How close is x_n to the exact solution? Comment.

 c) (4 points)

 Explain the accuracy of x_n. Use the command `cond` to get the condition number of H_n.

2. (5 points)

 Does the MATLAB command “\" do pivoting? Give an example to justify your answer.

3. (Use pen & paper). Let

 $A = \begin{bmatrix} 10^{-16} & 10^{-17} \\ -10^{-16} & 10^{-17} \end{bmatrix}$

 a) (2 points)

 Compute the determinant of A.

 b) (5 points)

 Compute $\kappa_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1$.

 c) (2 points)

 Is A nearly singular? Comment.

 d) (1 point)

 Does the small magnitude of the determinant imply that A is nearly singular?

4. The MATLAB command `pascal(n)` generates an $n \times n$ Pascal matrix, which we denote by P_n. Try $n = 16$ in the following.

 a) (1 point)

 Using MATLAB, find the determinant of P_n.

 b) (1 point)

 Using MATLAB, find the condition number of P_n.

 c) (3 points)

 Is P_n close to singularity? Comment.