
CS 378 Introduction to Data Mining Spring 2009

Lecture 02
Lecturer: Inderjit Dhillon Date: Jan. 27th, 2009
Keywords: Vector space model, Latent Semantic Indexing(LSI), SVD

1 Vector Space Model

The basic idea in the vector space model is to represent each document as a vector of certain
weighted word frequencies. In order to do so, the following parsing and extraction steps are needed.

1. Ignoring case, extract all unique words from the entire set of documents.

2. Eliminate non-content-bearing “stopwords” such as “a”, “and”, “the”, etc. For sample lists
of stopwords, see [5, Chapter 7].

3. For each document, count the number of occurrences of each word.

4. Using heuristic or information-theoretic criteria, eliminate non-content-bearing “high-frequency”
and “low-frequency” words [8].

5. After the above elimination, suppose w unique words remain. Assign a unique identifier
between 1 and w to each remaining word, and a unique identifier between 1 and d to each
document.

The above steps outline a simple preprocessing scheme. In addition, one may extract word phrases
such as “New York,” and one may reduce each word to its “root” or “stem”, thus eliminating
plurals, tenses, prefixes, and suffixes [5, Chapter 8].

The above preprocessing yields the number of occurrences of word j in document i, fji. Using
these counts, we can represent the i-th document as a w-dimensional vector ai as follows. For
1 ≤ j ≤ w, set the j-th component of ai, to be the product of three terms

aji = tji · gj · si (1)

where tji is the term weighting component and depends only on fji, while gj is the global weighting
component and depends on dj , and si is the normalization component for ai. Intuitively, tji captures
the relative importance of a word in a document, while gj captures the overall importance of a word
in the entire set of documents. The objective of such weighting schemes is to enhance discrimination
between various document vectors for better retrieval effectiveness [7].

There are many schemes for selecting the term, global, and normalization components, see [6]
for various possibilities. One popular scheme is the tfn scheme known as normalized term frequency-

inverse document frequency. This scheme uses tji = fji, gj = log(d/dj) and si =
(∑w

j=1(tjigj)2
)−1/2

,
where dj is the number of documents that contain word j. Note that this normalization implies
that ∥ai∥2 = 1, i.e., each document vector lies on the surface of the unit sphere in Rw. Intuitively,
the effect of normalization is to retain only the proportion of words occurring in a document. This

1

2 CS 378: Introduction to Data Mining

ensures that documents dealing with the same subject matter (that is, using similar words), but
differing in length lead to similar document vectors.

The d document vectors may be thought of as forming the w × d document matrix A. Two
characteristics of A are high-dimensionality (large w) and sparsity. Even after throwing away
high and low frequency words, w may be very large. For example, in a test collection of 113,716
documents there were a total of more than 150,000 unique words. After pruning, w is still 26,000.
However, typically most documents contain only a small subset of the total number of words.
Hence, the document vectors are very sparse — a sparsity of 99% is common.

2 Keyword Matching

The query vector q is a w-dimensional vector such that qi is nonzero when word i is a part of the
query. The exact value of qi can be chosen from the vast number of term-weighting strategies,
see (1). Then the vector ATq gives the results of exact keyword matching over the document
collection, i.e., the j-th entry of the vector ATq is nonzero when document j contains one or more
words in the query.

The obvious problems with keyword matching are (a) synonymy (different words have a similar
meaning, e.g., you would like to retrieve documents that contain the acronym “MRI” when the query
is “magnetic resonance imaging”) and (b) polysemy (one word may have different meanings that
can be deduced by context, e.g., the “mining” in “data mining” does not refer to “coal mining”).

3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) was proposed to overcome the problems of synonymy and poly-
semy [3, 1, 4]. The main idea behind LSI is to use Ak instead of A, i.e., calculate AT

k q rather than
ATq, where Ak is the k-truncated SVD of A, defined as follows:

Ak = UkΣkVT
k , where

Uk = [u1,u2, · · ·uk],

Σk =


σ1 0 · · · 0
0 σ2 · · · 0
.
0 0 · · · σk

 ,

VT
k =


vT

1

vT
2
...

vT
k

 .

Note that both A and Ak are w × d matrices. In the above,

• Uk is the matrix of left singular vectors, while Vk is the matrix of right singular vectors.

• u’s and v’s are orthogonal to each other, i.e., UT
k Uk = I and VT

k Vk = I.

• σ1, σ2, · · · , σk are real.

Lecture 02 3

Note that when k = 1, Ak = σ1u1vT
1 is a rank-1 matrix. For general k, Ak = Σi(σiuivT

i) is a
rank-k matrix. In both cases, Ak is a w × d matrix.

Why use the SVD?

• It can be proven that Ak is the closest/best rank-k approximation to A, i.e., ∥A − Ak∥ ≤
∥A−B∥ for any rank-k matrix B. Thus the SVD gives the best possible matrix approximation.

• Why might this approximation be better? In normal language, there is a variability in word
usage. Different people use different words for the same concepts (synonymy). Also, the
same word sometimes has many different meanings (polysemy). Authors of LSI papers have
claimed that Ak contains the “signal” while the “noise” A − Ak is removed.

• I take the following view. Instead of A, a different ideal matrix Aideal obtained from A by
incorporating “synonymy” and “polysemy” would be better. The k-truncated SVD may be
thought of as an approximation to Aideal.

3.1 Geometric interpretation

Note that AT
k q = (VkΣk)

(
UT

k q
)
. Since

UT
k q =


uT

1 q
uT

2 q
...

uT
k q

,


each of the components of this vector is the projection of the query q onto each singular vector
ui. Thus the w-dimensional vector q is reduced to k dimensions. Note that the singular vectors
(ui’s) are not a basis of the entire document space (i.e., every document vector cannot be exactly
recovered from u1,u2, · · · ,uk), but in a sense span the “important” part of the space.

Also, UT
k A = ΣkVT

k and thus each column of ΣkVT
k can be interpreted as the reduced k-

dimensional representation (obtained by projection onto the ui) of the original w-dimensional doc-
ument vector. Thus AT

k q = (VkΣk)(UT
k q) can be interpreted as the dot-product between the

projected document vectors and the projected query. Note that k is typically much smaller than w
(w may be 10000 and k may be 300). This process of going from a high-dimensional representation
to lower-dimensions is known as dimensionality reduction.

3.2 Algebraic justification

Let ei be a vector such that its i-th entry is 1 and all other entries are 0. Then Aei = the i-th
document vector. UT

k Aei = projection of i-th document vector onto u1,u2 · · · uk. A may be
written as

A = UkΣkVT
k︸ ︷︷ ︸

signal

+Uw−kΣw−kVT
w−k︸ ︷︷ ︸

noise

where:

Uw−k = [uk+1,uk+2, · · ·,uw]
all of which are orthogonal to u1,u2, · · ·,uk ⇒ UT

k Uw−k = 0
Vw−k = [vk+1,vk+2, · · ·,vw] (assuming d ≥ w)

4 CS 378: Introduction to Data Mining

Σw−k =


σk+1 0 · · · 0
0 σk+2 · · · 0
.
0 0 · · · σw


Then

UT
k Aei = (ΣkVT

k + 0)ei

= ΣkVT
k ei

Thus, the claims of section 3.1 follow.

3.3 Structure and computation of Ak

While A is sparse, Ak in general is a dense w × d matrix. Ak requires wd storage while A might
have required (.01 ∗ wd) storage(because of sparsity). Thus,

1. It is difficult to explicitly store such a large matrix.

2. Computation of the SVD takes a substantial amount of time.

AT
k q should be computed as follows.

1. Write AT
k q = VkΣkUT

k q.

2. Compute

x = UT
k q (a k × 1 vector),

Dk = VkΣk (a d × k matrix),
⇒ AT

k q = Dkx.

Note that Dk = VkΣk is a d× k matrix that is not dependent on the query q. Thus, Dk needs
to be computed “offline” exactly once for the document collection.

3.4 LSI steps

Thus, the main steps involved in query retrieval using LSI are:

1. For the entire document collection, form VkΣk.

2. For a new query q, form UT
k q.

3. Compute z = (VkΣk)(UT
k q) and return the document i with large zi values as being the

most relevant.

Computing the SVD of a large, sparse matrix is a non-trivial task. There are existing software
packages such as SVDPACKC to accomplish this job [2].

Lecture 02 5

3.5 Drawbacks of LSI/SVD

• Computationally expensive since A is large and sparse. Also typically, many singular vectors
are required (k = 100 to 500) and the SVD software seems to take time that is quadratic in
k.

• Not very intuitive. How does one quantify the statement :“Singular vectors capture the
concepts of a document collection”?

• While LSI seems to work well for long queries, people have found that it is not really good
for short queries (as would typically be seen on the internet). Thus, LSI is not used in any
commercial engine.

• Fundamental problems with vector space model (e.g. you might never want to return a
webpage containing only “Bill Clinton Sucks.” However, the vector space model allows no
way to automatically capture the “information content” of a document).

4 Example

Suppose we are give the following d = 9 documents:

c1: Human machine interface for Lab ABC computer applications

c2: A survey of user opinion of computer system response time

c3: The EPS user interface management system

c4: System and human system engineering testing of EPS

c5: Relation of user-perceived response time to error measurement.

m1: The generation of random, binary, unordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey

4.1 Vector Space Model

The twelve underlined words are used to characterize each document in a w = 12 dimensional word
vector space. The 12 dimensional document vectors form the w × d matrix denoted by A.

4.2 Normalized vs non-Normalized A

There are a number of normalizations that can be applied to A. Here we apply the txn scaling to A,
thus each document vector is normalized to have unit length. Let’s denote nA as the normalized
A. For nA we can think of all the documents as points in the first quadrant on a unit sphere in
w-dimensional space.

6 CS 378: Introduction to Data Mining

Terms c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0

interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0

user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0

response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0

survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0

graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

Table 1: A: Nine document vectors, each in a 12 dimensional word space

0 5 10 15
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Non Normalized A

k

u k

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8
Normalized A

k

u k

Figure 1: First two singular vectors for A and nA(solid line is the first singular vector while the dotted line
represents the second singular vector)
.

Lecture 02 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.5

0

0.5

1

1.5

DOCUMENTS Projection: Non Normalized A

First Singular Vector

S
ec

on
d

S
in

gu
la

r
V

ec
to

r

c1

c2

c3

c4

c5

m1

m2

m3

m4

Figure 2: Documents projected on 2-D space from A

4.3 Singular Vectors of A and nA

Figure 1 shows the first two singular vectors of A and nA. Note the following in Figure 1:

• All entries in the first singular vector are positive.

• Some entries in the second singular vector are negative.

• The dot product of the two singular vectors should be zero. This explains why some of the
entries of the second singular vector MUST be negative.

4.4 Projecting documents on 2-D space

The basis of Latent Semantic Indexing is that we want to project onto a smaller k-dimensional
space that represents k “concepts”. The first k singular vectors obtained by the SVD of A (or nA)
represent this space.

For visualization purposes, we choose k = 2 in our case. The two singular vectors shown in
Figure 1 are used for this projection. Figure 2 shows the distribution of the 12 documents projected
on the 2-D space obtained from the 2 left singular vectors of A. The words projected on the same
space yield the distribution shown in Figure 4.

The documents projected on the 2-D space obtained from the normalized matrix nA are shown
in Figure 5 and the words projected on the same space are shown in Figure 6.

4.5 Rank-k approximations

The value of k was chosen to be 2 for visualization purposes and also because we knew that the
documents fell into one of two “concepts”. In general higher values of k are required. As k → w,
better and better approximation of A is obtained. Recall that for any k, Ak = UkΣkVT

k is the
“best” rank k approximation of A, where best is defined in terms of ∥A − Ak∥2.

8 CS 378: Introduction to Data Mining

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

WORDS Projection: Non Normalized A

First Singular Vector

S
ec

on
d

S
in

gu
la

r
V

ec
to

r

human

interface

computer user

system

responsetime

EPS

survey

trees

graph

minors

Figure 3: Words projected on 2-D space from A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

DOCUMENTS Projection: Normalized A

First Singular Vector

S
ec

on
d

S
in

gu
la

r
V

ec
to

r

c1

c2
c3

c4
c5

m1 m2m3

m4

Figure 4: Documents projected on 2-D space from nA

Lecture 02 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

WORDS Projection: Normalized A

First Singular Vector

S
ec

on
d

S
in

gu
la

r
V

ec
to

r

human

interface
computer

user

system

responsetimeEPS

survey

trees

graph

minors

Figure 5: Words projected on 2-D space from nA

10 × nA1 =



0.01 0.04 0.02 0.02 0.02 0.16 0.21 0.21 0.14
0.01 0.05 0.03 0.02 0.03 0.20 0.26 0.27 0.18
0.02 0.06 0.03 0.03 0.03 0.26 0.34 0.35 0.23
0.03 0.11 0.06 0.05 0.06 0.45 0.57 0.59 0.39
0.03 0.11 0.06 0.05 0.06 0.47 0.61 0.63 0.41
0.02 0.08 0.04 0.03 0.04 0.32 0.41 0.42 0.28
0.02 0.08 0.04 0.03 0.04 0.32 0.41 0.42 0.28
0.01 0.05 0.03 0.02 0.03 0.21 0.26 0.27 0.18
0.08 0.27 0.15 0.12 0.14 1.14 1.47 1.51 1.00
0.36 1.21 0.66 0.54 0.63 5.07 6.51 6.70 4.44
0.29 0.99 0.54 0.44 0.51 4.13 5.30 5.46 3.61
0.17 0.58 0.32 0.25 0.30 2.41 3.09 3.18 2.11



10 × nA2 =



0.97 1.85 1.76 1.46 1.37 −0.14 −0.12 −0.09 0.21
1.21 2.31 2.19 1.81 1.71 −0.18 −0.14 −0.10 0.27
1.11 2.12 2.01 1.66 1.57 −0.08 −0.03 0.01 0.31
2.04 3.90 3.69 3.06 2.89 −0.19 −0.11 −0.03 0.54
2.38 4.53 4.29 3.55 3.36 −0.27 −0.18 −0.10 0.59
1.30 2.49 2.36 1.95 1.84 −0.08 −0.02 0.03 0.38
1.30 2.49 2.36 1.95 1.84 −0.08 −0.02 0.03 0.38
1.24 2.36 2.24 1.85 1.75 −0.18 −0.15 −0.11 0.27
0.74 1.52 1.34 1.11 1.07 0.94 1.25 1.31 1.05
−0.23 0.09 −0.41 −0.35 −0.21 5.26 6.71 6.89 4.39
−0.01 0.42 0.00 −0.01 0.09 4.23 5.40 5.56 3.59
0.06 0.37 0.12 0.09 0.15 2.44 3.13 3.22 2.10



10 CS 378: Introduction to Data Mining

 A
1

 nA
1

 A
2

 nA
2

 A
3

 nA
3

 A
4

 nA
4

 A
5

 nA
5

 A
6

 nA
6

 A
7

 nA
7

 A
8

 nA
8

 A
9

 nA
9

Figure 6: The successive rank k approximations of A. White denotes high value while black denotes low
values. As k increases from 1 to 9, better and better approximations are obtained.

References

[1] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intelligent information
retrieval. SIAM Review, 37(4):573–595, 1995.

[2] Michael Berry, Theresa Do, Gavin O’ Brien, Vijay Krishna, and Sowmini Varadhan. SVD-
PACKC (Version 1.0) User’s Guide. Computer Science Dept. Technical Report CS-93-194,
University of Tennessee, Knoxville, April 1993.

[3] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices, vector spaces, and infor-
mation retrieval. SIAM Review, 41(2):335–362, June 1999.

[4] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6):391–
407, 1990.

[5] W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms.
Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[6] T. G. Kolda. Limited-Memory Matrix Methods with Applications. PhD thesis, The Applied
Mathematics Program, University of Maryland, College Park, Mayland, 1997.

[7] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information
Processing & Management, 4(5):513–523, 1988.

[8] G. Salton and M. J. McGill. Introduction to Modern Retrieval. McGraw-Hill Book Company,
1983.

