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1 Introduction

Multiple Instance learning (MIL) considers a particular form of weak supervision
in which the learner is given a set of positive bags and negative bags. Positive
bags are sets of instances containing atleast one positive example and negative
bags are sets of instances all of which are negative. A number of binary SVM
based solutions have been proposed to this problem like the Normalized Set
Kernel of Gartner et. al, 2002 ([1]) which represents the bag as the sum of
all its instances normalized by its 1 or 2-norm and the sparse MIL (sMIL)
technique of Razvan and Mooney, 2007 ([2]) which improves upon NSK by
considering a weaker balancing constraint. In this project I plan to look at
equivalent formulations for a one-class SVM and empirically evaluate if ignoring
the negative bags in the formulation is detrimental to the solution found.

2 Related Work

A number of 2-class SVM based formulations have been looked at in the litera-
ture. The following are a few relevant MIL SVM formulations

e Normalized Set Kernel (NSK)

In the Normalized Set Kernel of Gartner et. al, 2002 ([1]) a bag is rep-
resented as the sum of all its instances, normalized by its 1 or 2-norm.
The resulting representation is then trained using a standard SVM. The
formulation for NSK is as follows

e sparse MIL (sMIL)

The sparse MIL formulation of Razvan and Mooney, 2007 ([2]) considers
the equation for the positive bags in the formulation of NSK as a bal-
ancing constraint. The balancing constraint of NSK is too strong since it
assumes that all the instances in a positive bag are positive. Since this is



problematic when the positive bag is particularly sparse in positive exam-
ples they consider the constraint that expresses that at least one instance
from the bag is positive. The formulation for the same is as follows

e MI-SVM

minimize: Hwl||® + ﬁzme/@l &z + ITC;lZXEXp §x (1)
subject to:  mazgex y(wo(xr) +b) >1—Ex,VX € X, X,
(2)

This is the maximum bag margin formulation of Andrews et. al (2003)
[3]. The associated heuristic algorithm starts by training a standard SVM.
This is followed by relabeling of instances in positive bags using the deci-
sion hyperplane. If a positive bag contains no instances that are positive
according to this hyperplane then the instance with the maximum value
of the decision function is relabeled as positive and the SVM is retrained
on this relabeled data. This is continued till there are no more labels to
be changed.

e A regularization framework for Multiple-Instance learning In the method
proposed by Cheung and Kwok (2006) [4] a loss function is introduced
between the label of a bag and the label of the most positive instance
in the bag and SVM is formulated by including this loss function in the
objective. This is based on relaxing the idea of mi-SVM that the label of
a positive bag is equal to the label of its most positive instance. But the
objective function is no longer convex because of the max function used
for the loss and therefore they directly formulate the dual problem instead
of the primal and solve it using CCCP([5]).

Positive bags are easily constructed in all of the above cases. For example,
in image retrieval each returned set of images can be considered as a positive
bag, segmentation where each image is a positive bag containing atleast one
valid segmentation. On the other hand it is not clear on how to choose negative
bags in these cases and they are typically constructed from examples that are
known to be non-positive.

Ray and Craven (2005) ([6]) observe that the nature of the negative instances
in the positive bags may be different from the nature of the negative instances in
the negative bags. If this is the case then one would be dealing with 3 different
distributions which might or might not be separable using the single hyperplane
found by all of these methods. And so it appears that most of these methods
work well only when the negatives in the positive bags are similarly distributed
to the negatives in the negative bags ([2]).

Therefore even though we’ve the freedom of constructing the negative bags
from any set of instances that is not positive the most gains are obtained when
these are sampled from a distribution similar to that of the negatives in the



positive bags. This might not be possible in some cases like image retrieval
where no information is known about the distribution of the noisy images in
each retrieved set.

In such situations completely ignoring the negative bags in the formulation
and considering only the positive bags and using clustering techniques or a one-
class SVM might be fruitful. In the following work we will formulate a one-class
SVM for the MI problem and compare it with the standard one-class SVM on
an image dataset. We will also compare the one-class SVM solutions with the
2-class methods outlined above to study the effect of ignoring the negative bags.

3 A one-class SVM approach to MIL

A one-class SVM is a function f that takes the value +1 in a “small” region
capturing most of the data points and -1 elsewhere. One-class SVMs are typi-
cally used for novelty detection where the task is to say whether a new example
is unlike any one of training examples. One-class SVMs have also been applied
to the task of unsupervised learning for character regognition ([7]).

The MI problem could be solved using the one-class SVM by simply con-
sidering all instances in positive bags as unlabeled data and then estimating a
function that returns +1 in a “small” region that should correspond to the true
positives. The function is found by mapping the data into feature space corre-
sponding to a kernel and then separating them from the origin with maximum
margin. This corresponds to the following quadratic problem

minimize: HwlP+ 536 —0p (3)
subject to:  (w.¢(x)) > p—&,& > 0.
(4)

Here [ is the total number of training examples. But the above formulation
does not respect the MI constraint which states that positive bags should contain
atleast one positive instance. From Ray and Craven (2005) [6] it is clear that
even though ignoring the bag constraint and solving the standard supervised
problem produces results comparable to MI methods in most datasets, when
the bags are very sparse MI methods invariably perform better.

As seen in Section 2 the MI constraint can be captured in a number of ways.
Of these the idea of Andrews et. al [3] is closest to capturing the MI constraint
since it states that the maximum value of y within a bag should be greater
than +1 if the bag is positive. But even though the max function is convex
it is not smooth and so the standard quadratic optimization techniques cannot
be applied. Therefore we will apply the technique used in [4]. The one-class
MI-svm formulation is given in Figure 1

Here [ denotes the total number of instances within all bags while n denotes
the total number of bags. The penalty for bags and instances have been seper-
ated out because the bag constraint is a stronger constraint as we want atleast



minimize: Ul 2+ T+ 2 50— p (5)

subject to: (w.o(z)) > p—&,& > 0.
mazzex (w(z)) > p—Ex,VX € X, Ex >0

Figure 1: one-class MI-svm formulation

one instance to be positive in each bag. On the other hand individual instances
might not be all positive and therefore the penalty should be lower.
Using multipliers «;, 8; > 0, we introduce a Lagrangian

L(w,&,2,p,0,0) = SllwlP+ 5 &+ o Y Bi—p— 2
=Y ai(mazzex, (w.g(x)) — p+Zi) = 32, Bii — >, BiEi

oz

g =

Now, because of the presence of the max function the lagragian is not dif-
ferential. But by using the sub-gradient of the maz function and setting the
derivatives to zero we can obtain the dual of the above problem. For the point-
wise maximum function h(x) = mazi<i<phi(z) its subdifferential at z is the
convex hull of the union of subgradients of “active” functions at xy. Function h;
is said to be active if h; = mazi<;<ph;(z). Introducing variables a;; to denote
whether (w.¢(x;)) is active or not in the max function yields the solution

w = > b))+ i aié(x;))
i i j
a; < ﬁ, when 1 is an instance
a; < #, when i is a bag
Z a; = 1.
Z Qi = 1, Vi
J
ag = o= if (wo(zy)) = (mazgex, (w.o(x)), zi; € X;
= 0, otherwise
(8)
We initialize agg) = 0 for all bags, and the a;;s are updated as a;; = 0,7 fx;

is not active in the max function and a;; = 1 /ng if it is. Here n, denotes the



initialize af)) = 0,Vz;; € X; € X,

while any one of the max constraints is violated do

compute the one-class SVM solution w, p using a;;;
foreach positive bag X; € x, do

compute outputs f, =< w,z > +p,Vx € X; ;

let fiaz be the largest value of f, ;

and n, denote the number of xs with f, = fiaz ;

foreach instance x;; € X; do

if fm == fmam then
1.

Q5 = ng
else
aj; =0
end
end
end

end
OUTPUT (w, p)

Figure 2: The psuedo-code for the one-class MI-SVM

number of active instances. The pseudo-code for this procedure is as shown in
Figure 2.

4 Datasets

To evaluate the proposed one-class MIL method two different datasets from the
computer vision were considered. The following is a brief description of the
same.

e SIVAL dataset

The SIVAL dataset contains segmented images of various objects in differ-
ent scenes. A positive instance is a segment containing the object, while
all others are negative. An image (bag) is labeled positive if it contains
the object. The classification task is to say whether a given segment is
positive or not.

The SIVAL images contain different objects in very similar scenes. There-
fore, in this dataset there is a reasonable correlation between the negative
segments found in positive bags and the negative segments found in the
negative bags.

¢ Google dataset

The Google dataset contains images obtained from keyword searches of
a particular category’s name. Airplanes, Cars, Faces, Guitars, Leopards,



Category AUROC - training AUROC - test
one-class | one-class MI-svm | one-class | one-class MI-svm

ajaxorange 64.22 65.40 63.72 64.14
apple 50.64 50.96 49.70 49.62
banana 63.16 64.82 61.24 63.20
bluescrunge 49.00 52.44 47.86 50.50
candlewithholder 76.14 76.62 77.22 77.20
cardboardbox 77.62 78.84 75.80 77.00
checkeredscarf 78.32 78.06 78.62 78.42
cokecan 76.78 74.32 76.00 72.98
dataminingbook 81.36 80.84 77.16 76.34
dirtyrunningshoe 76.54 77.70 71.86 72.60
dirtyworkgloves 74.82 75.90 77.78 78.74
fabricsoftenerbox 83.62 83.76 82.42 82.24
feltflowerrug 60.56 57.00 56.66 52.18
glazedwoodpot 48.52 48.84 44.08 44.06
goldmedal 49.66 55.78 49.86 55.24
greenteabox 64.36 64.92 63.76 64.28
juliespot 50.86 52.00 47.68 48.58
largespoon 69.94 72.86 75.74 AP
rapbook 69.62 71.32 72.22 73.50
smileyfacedoll 56.50 56.20 59.80 59.98
spritecan 68.92 69.04 67.82 67.22
stripednotebook 86.06 87.84 82.72 84.36
translucentbowl 43.06 44.18 44.48 46.24
wd40can 69.78 66.02 65.68 60.64
woodrollingpin 78.62 79.20 76.94 76.50
Average 66.75 67.39 65.87 66.14

Table 1: Area under the ROC curve for different categories in the SIVAL dataset
on both training and test data averaged over 5 random trials. Numbers high-
lighted in bold area cases where adding the MI constraint improves the area
under the ROC. We can clearly see that there is an improvement for majority
of the categories even though overall average is only slightly larger.




Category AUROC - training AUROC - test
one-class | one-class MI-svm | one-class | one-class MI-svm

airplane 71.10 71.96 92.46 95.60
cars_rear 69.08 67.72 89.52 88.18
face 63.18 63.18 76.26 76.26
guitar 40.42 39.76 69.64 70.00
leopard 69.20 68.40 91.62 91.48
motorbike 68.88 68.98 86.90 87.18
wrist_watch 63.42 63.14 79.26 79.54
Average 63.61 63.31 83.67 84.03

Table 2: Area under the ROC curve for different categories in the Caltech-7
dataset on both training and test data averaged over 5 random trials. Numbers
highlighted in bold are cases where the one-class SVM is better than the two-
class version.

Motorbikes and Wristwatches are the 7 different categories available in
the Google dataset. A large number of images for a category have been
downloaded and randomly assigned into bags of size 25. Negative bags
are constructed from Caltech Background images.

The test set was constructed from the Caltech dataset of the category
against Background images. The classification task is say whether a par-
ticular image belongs to the category of the background.

Since the images obtained from keyword search returns can contain images
of synonyms of the category and other irrelevant images which might not
be available in the Caltech Background category the distribution of nega-
tive images in positive bags and those in negative bags might be completely
different.

5 Experiments and Results

Two different sets of experiments were conducted using the above datasets. First
the proposed one-class MI method was evaluated on both the datasets and the
one-class MI method was compared with the two-class NSK-SVM approach to
MIL to evalute if ignoring the negative bags in the formulation simplifies the
problem and if so under what conditions.

5.1 One-class MI-SVM

Since we do not use the labels on positive instances in either the standard one-
class SVM or the one-class MI-svm both the results on the training data and the
test data are equally relevant here. Both the SIVAL and Google datasets were
randomly split into 5 runs each containing a training set of 20 images (20*30



Box and whisker plot of the change in area under the ROC on training and test data
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Figure 3: A box and whisker plot of the difference in the area under ROC for
the two methods. The mean and lower quartile are above zero for both test and
training data implying that the MI constraint does improve the area under the
ROC for most categories

segments for SIVAL, 20*25 images for Google). All results are averaged over
the 5 runs.

Kernel and other parameters were optimized separately and the same value
was used for both the standard SVM and the MI-svm since only the comparison
on the same set of parameters would be relevant. The results for the SIVAL
dataset are for a quadratic kernel with a coefficient of 5% 1076 and v = 0.9.
For the Google dataset the RBF kernel/quadratic kernel was used based on
accuracy on a held-out set with v = 5% 107¢ and v = 0.9.

Table 1 shows the Area under the ROC curve for the classification task of
predicting whether a segment is positive or not. The first two columns are on
the training data while the last two are on the test data. Numbers highlighted in
bold refer to cases where the MI method did better than the standard one-class
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Figure 4: A box and whisker plot of the difference in the area under ROC for
the two methods. The mean and lower quartile are above zero for both test and
training data implying that the MI constraint does improve the area under the
ROC for most categories

method. The MI method performs better than the standard one-class method
in a majority of the categories with a maximum improvement of 3.44 in the case
of bluescrunge on the training set. But the overall averges differ by less than
1 point and it cannot be considered as definitive that the MI method is better
than the one-class. Figure 3 shows a whisker and box plot of the difference in
the area under the ROC for the two methods. We see that there are a number of
negative outliers which could be responsible for the low average improvement.

Table 2 shows the same numbers on the Google dataset. There is a slight
improvement on the test images for the MI method as opposed to the standard
one-class method.

5.2 Omne-class MI-SVM vs NSK-SVM

To empirically evaluate the effect of leaving out negative bags in the formulation
the proposed one-class method was compared with the Normalized Set Kernel
(Section 2) for two-class classification. The classification tasks for both the
datasets are as explained in the previous experiment. For the SIVAL dataset
the NSK was used in conjunction with a quadratic kernel with a coefficient of
5% 1076 and v = 0.2 and for the Google dataset the RBF kernel was used with
gamma = 5% 107% and v = 0.5.

Table 3 shows the area under the ROC curve for the two methods on both
training and test data on the SIVAL dataset. The one-class method is better
than the NSK in 10 out of 25 categories. But the overall average for the one-
class method is much lower than the average for the NSK. As noted in Section 4,
in the SIVAL dataset negative segments in the positive bags are similar in
distribution to the negative segments in the negative bags. So the additional

T T T
I L -t class
I 1L - one class




Category AUROC - training AUROC - test
NSK | one-class MI-svm | NSK | one-class MI-svm
ajaxorange 77.74 65.40 73.56 64.14
apple 72.46 50.96 67.44 49.62
banana 76.98 64.82 69.78 63.20
bluescrunge 82.46 52.44 74.20 50.50
candlewithholder | 68.50 76.62 63.76 77.20
cardboardbox 67.22 78.84 63.98 77.00
checkeredscarf 79.20 78.06 75.50 78.42
cokecan 80.58 74.32 77.50 72.98
dataminingbook | 74.74 80.84 64.86 76.34
dirtyrunningshoe | 76.68 77.70 73.14 72.60
dirtyworkgloves | 65.32 75.90 63.36 78.74
fabricsoftenerbox | 89.10 83.76 86.42 82.24
feltflowerrug 78.12 57.00 75.96 52.18
glazedwoodpot | 68.66 48.84 65.52 44.06
goldmedal 74.78 55.78 63.44 55.24
greenteabox 83.16 64.92 78.34 64.28
juliespot 74.26 52.00 66.10 48.58
largespoon 69.14 72.86 63.76 77.72
rapbook 65.38 71.32 57.72 73.50
smileyfacedoll 78.72 56.20 72.08 59.98
spritecan 76.90 69.04 68.72 67.22
stripednotebook | 83.44 87.84 77.30 84.36
translucentbowl | 71.30 44.18 73.62 46.24
wd40can 81.56 66.02 73.70 60.64
woodrollingpin | 63.68 79.20 58.98 76.50
Average 75.20 67.39 69.95 66.14

Table 3: Area under the ROC curve for different categories in the SIVAL dataset
on both training and test data averaged over 5 random trials. Numbers high-
lighted in bold are cases where the one-class SVM is better than the two-class
version.
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data available with the NSK in the form of negative bags seems to help in
learning to differentiate between positive and negative segments.

On the other hand Figure 4 shows a bar graph of the area under ROC for
the two methods on the Google dataset. The figure on the left is the result on
the training images (the noisy google images containing both the category and
other images) while on the right we’ve the result on the Caltech dataset.

The one-class method is much better than the NSK at identifying correctly
the positive class from the noisy training images. Considering the fact that
in the Google dataset the negatives in the positive bags and negative bags
might be from different distributions this seems to suggest that the one-class
method might be advantageous when the two distributions are dissimilar. This is
because in this situation the NSK would have to distinguish between 3 different
classes using a single hyperplane.

But on the test images the NSK is much better. This is because the negative
test images consisting of Caltech background images are available to the NSK
during training as negative bags as opposed to the one-class method which trains
only on positive bags. In this situation extracting the positive class from the
positive bags and training a standard two-class SVM with background images
should improve results on the test data.

6 Conclusion

A one-class SVM was formulated for the MI problem and it was compared with
a standard one-class SVM for two different image datasets. Results on the two
datasets suggest that including the MI constraint does improve classification
for most cases but not by much. The iterative procedure outlined in Section 3
reduces the objective in subsequent iterations but for most of the classes the
constraint gets satisfied in under 2-3 iterations. Since the procedure is based on
a sub-gradient method it finds the optimal solution for the given formulation.
But based on the results using ground truth labels it was found that the
solution found is not optimal for the actual MI problem. It was also observed
that the active instances in some bags corresponded to the negative class which
could have resulted in the negative change in the AUROC for some categories.
These results seem to suggest that even though the max constraint improves
on the standard one-class SVM it does not completely capture the Multiple
Instance Learning criteria. Transductive constraints on maximally separating
instances within positive bags would be something to look at in the future.
The one-class SVM was also compared with a standard two-class MIL method,
the NSK. Based on the results on two different datasets it was found that it
might be advantageous to use the one-class method when the distribution of the
negative instances in positive and negative bags are different. This is because
in such situations the NSK might be trying to seperate three different distribu-
tions (positives, negatives in positive bags and negatives in negative bags) using
a single hyperplane which might not be feasible. Extracting the positives from
the positive bags using the one-class method and then constructing a standard
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two-class SVM might lead to better classification in such situations.
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