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Abstract

The aim of this report is to provide motivation and document current progress towards the design of a learning based link

adaptation algorithm for wireless channels that exploits all available channel information and can adapt to specific user channels.

I seek to design a sparse algorithm to minimize the computational cost associated with channel classification. I accomplish this is

in three stages using various clustering and classification techniques. I also examine the choice of distance metric and its effect

on complexity and algorithm performance.

I. INTRODUCTION

In a wireless communication system, Link Adaptation (LA) is the technique of modifying the transmission scheme according

to the measured wireless channel and/or its statistics [1]. In general, this is a very difficult problem because the cost function

is often difficult to design and solve analytically. For this reason, link adaptation decisions are often made using expensive

brute force searches over the relevant parameter space or heuristics based on domain knowledge. The effect of user specific

channels can be captured using training data. Unfortunately, many link adaptation techniques proposed do not utilize a training

phase and make decisions based only on models of the wireless channel [1]–[4].

The algorithm I propose is designed using standard assumptions about the channel model. However, minimal assumptions

are made about the correlation structure of the channel. The training information is used to augment this domain knowledge:

this leads to improved performance by utilizing user specific training information before link adaptation decisions are made.

The algorithm also utilizes all available channel information for making link adaptation decisions. This is in contrast to LA

algorithms that use a pre-processed feature space such as the condition number of the channel matrix; leading to some loss of

potentially discriminative information.

This report is organized as follows. In section II, I present the instantaneous and stochastic multiple input, multiple output

(MIMO) channel model. Next, I discuss the proposed algorithm (section III) which is composed of three sub-algorithms:

unsupervised clustering (section III-C), optimization of MIMO scheme for clusters (section III-D) and eventually sparse
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classification (section III-E). I discuss preliminary simulation results in section IV and discuss proposed analytical and simulation

work (section V). I conclude the report in section VI.

A. Notation

I denote CNp(µ,Φ) as a p-variate complex Gaussian distribution with mean µ ∈ Cp×1 and covariance matrix Φ ∈ Cp×p > 0.

The matrix X ∼ CNp,q(Υ,Ψ,Φ) is the complex matrix Gaussian random variable in Cp×q . It is equivalent in distribution to

vec(X†) ∼ CNpq(vec(Υ†),Φ ⊗Ψ) [5]. (·)∗ denotes conjugation, (·)T denotes the transpose and (·)† denotes the hermitian

transpose. | · | denotes the determinant and ‖ · ‖F denotes the Frobenius norm. ‖ · ‖p denotes the p norm and tr(·) denotes the

trace of a matrix. (·) 1
2 denotes the hermitian square root. Finally, Ip is the p× p identity matrix and 0p is the p× p matrix of

all 0’s.

II. SYSTEM MODEL

In a narrow-band wireless MIMO system with Nt transmit antennas and Nr receive antennas, the system can be modeled

by:

y =
√
Es

No
Hx + n (1)

where y ∈ CNr×1 is the received signal vector, x ∈ CNt×1 is the transmitted signal vector with the power constraint

E{‖x‖22} = Nt. H ∈ CNr×Nt is the channel matrix where its (i, j)th entry contains the complex fading parameter between

the jth transmit antenna and the ith receive antenna. The signal to noise ratio (SNR) is γo = Es

No
and n ∈ CNr×1 is zero

mean additive Gaussian noise vector with covariance matrix E{nn†} = NoINr .

In the instantaneous channel case, the channel can be decomposed using the singular value decomposition (SVD) as:

H = UhΣhV†

HH† = UhΛhU†h (2)

H = γoHH† (3)

where Λh are the eigenvalues of HH†, Λh = Σ2
h and H is the combined channel and SNR (for joint adaptation).

Each row of H is correlated with correlation matrix matrix Rt (transmit antenna correlation) and each column of H is

correlated with correlation matrix Rr (receive antenna correlation). This model has been motivated rigorously in the literature

(see [1] and references therein). In this scenario, the the channel matrix H can be decomposed as:

H =
√
aM +

√
bRr

1
2 HwRt

1
2

∼ CNNr,Nt(
√
aM, bRr ⊗Rt) (4)
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where a and b denote the appropriate power normalization factors1. This formulation implies that the correlation matrices are

normalized (E(‖H−M‖2F ) = NrNt). I can further decompose the correlation matrices as:

Rt = UtΛtU
†
t

Rr = UrΛrU†r (5)

I assume the presence of an error-free feedback channel so the transmitter receives updates of either the instantaneous channel

H or the long term channel statistics {M,Rt,Rr}. In order to make link adaptation decisions2.

III. LEARNING THE OPTIMAL MIMO SCHEME

As mentioned in the introduction, the motivation for this algorithm is sparsity. Link adaptation decisions have to be made

on the basis of channel realizations. However, in all but the most trivial cases, finding the optimal transmission scheme given

a channel realization can be very computationally expensive (see section III-D). In order to reduce system complexity, I aim

to design a sparse solution by first clustering the channel realizations to reduce the number of brute force searches needed for

training, then designing sparse classifiers to eliminate the need for new searches for new channel realizations.

The total number of training objects is n. k is the number of clusters and m is the number of classes (transmission schemes

available). Since our aim is to utilize the entire feature space for classification, the algorithm should adapt to observed realizations

(or distributions) of H. This can be done by defining an appropriate distance measure that captures all the information in H.

A. Distance measures for instantaneous channel

In the instantaneous channel, the distance measure most commonly used is simply the euclidean distance between the values

of vec(H). I define this distance as

Dvecnorm(H1,H2) = ‖vec(H1)− vec(H2)‖2F (6)

This norm is the product of two d2 dimensional vectors and so the computational complexity of computing this distance is

O(d2).

Research into the performance of wireless channels has shown that capacity can be achieved by optimizing transmission on

the eigenvalues of H [1]. For this reason, the measure of similarity used should be based on the distance between the channel

1In the ricean channel model, a = K
K+1

and b = 1
K+1

γo
Nt

with a specified K factor
2The formulation also allows for decision making at the receiver where only the MCS scheme index is fed back to the transmitter.
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eigenvalues. One distance measure that takes this into account is the Burg matrix divergence3 [7] which can be defined as:

Dburg(H1,H2) = tr(H1H−1
2 )− log|H1H−1

2 | − d

=
∑

i

∑
j

λi

γj
(v†i wj)2 −

∑
i

log
λi

γi
− d (7)

where d×d is the dimension of H(here d = Nt), {λi, γi} are the eigenvalues of H1 and H2 respectively, and {vi,wi} are the

corresponding eigenvectors. Note that this distortion is non-symmetric. The computation of this distance measure is dominated

by the inverse and the determinant (or the eigenvalue decomposition) and so is of O(d3).

The complexity of this computation can reduced while retaining the essential information (effects of eigenvalues) by using

only the trace measure which has a complexity of O(d2) as shown in (8).

Dtr(H1,H2) = tr(H1H2)

=
∑

i

∑
j

H(1,j)
1 H(1,j)

2 (8)

where X(i,j) denotes the (i, j) the entry of X. In this report, Dtr is only used for classification, but it will be implemented

for clustering in the final report (see section V).

B. Distance measures for the stochastic channel

The MIMO wireless channel is well modeled by the matrix Gaussian distribution (as given by equation (4)). This introduces

a natural question: What is the best notion of similarity between Gaussian distributed random variables? For Gaussian random

vectors, the Kullback Leibler divergence (KL) is a well established distance measure. The authors in [8] also show that it can

be expressed as a sum of Bregman divergences leading to a natural distance measure between Gaussian random vectors. The

matrix Gaussian distribution can also be expressed in an equivalent vector Gaussian form (for details see section I-A and [5]).

Therefore, the KL divergence can be used directly on matrix Gaussians. The KL divergence between two multivariate Gaussian

x and y can be defined given their means: {m, µ} and covariances: {S,Σ} as:

DKL(p(x|m,S)‖p(x|µ,Σ)) =
1
2
(tr(SΣ−1)− log|SΣ−1| − d) +

1
2
(m− µ)†Σ−1(m− µ)

=
1
2
Dburg(S,Σ) +

1
2
MΣ−1(m, µ) (9)

where MA is the Mahalanobis distance parametrized by the matrix A and defined as

MA(x,y) = (x− y)†A(x− y) (10)

Note that the KL divergence is a non-symmetric measure.

3See [6] for a description of Bregman divergences and some applications to clustering
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In the simple case considered in this report, I also compute distances between covariances using the Dtr distance. More

details can be found in section IV.

C. Unsupervised Clustering

The aim of the unsupervised clustering algorithm is to reduce the search space required for the optimal classification of

channels. Given a collection of objects (channels) and a distance metric between these objects, a clustering algorithm can be

designed based on the k-means algorithm [8].

On initialization, the algorithm randomly assigns objects to clusters. where πi denotes the assigned cluster of object i. Next

the mean of each cluster is computed using a suitable distance measure. For instance, the distance measure in the Gaussian

stochastic case is chosen to be the KL divergence. After the means are updated, π is recalculated by computing the distance

of each object to each cluster center and re-assigning each object to its closest center. This process of computing centers and

reassigning members is repeated until none of the cluster assignments change or a specified objective function (such as the

sum of distances between objects and centers) does not change significantly.

In general clustering is a NP -hard problem with no closed form solutions. However, k-means has been shown to converge

within a few iterations even with high dimensional data. Suppose each distance calculation takes O(α(D)) complexity, each

iteration can be shown to be of O(α(D)nk) complexity, where n, k are the number of objects and number of clusters

respectively. If the clustering takes place in τ steps, the computation of the full algorithm will be of O(α(D)nkτ).

In the instantaneous channel, the objects are the channel matrices H. these are clustered using both DBurg(·, ·) and

Dvecnorm(·, ·). For the stochastic case, we refer to the work in [8]. In this case, the channel correlations are clustered using

DKL(·, ·). the authors in [8] show that this measure can lead to very good representative objects (as measured by normalized

mutual information). Further details on the k-means algorithm and various optimizations can be found in [9]–[11] and references

therein.

If unsupervised clustering based training is not desired, training data can still be utilized to create sparsity in the channel

representation. This can be done by defining typical channels based on domain knowledge. Given n such channels and training

data, we can find the subset of k channels that best represent the user space. This can be done using a k-nearest neighbor

(k-nn) type solution. Using training data, we can compute the distance between each training channel and the set of optimal

channel representatives. We can then discard the (n−k) representative channels least describe the training data; we can discard

the representative channels that are farthest away from the training data, or equivalently, we can assign each training channel

to its closest representative channel, and discard the representative channels with the fewest assignments.
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D. Brute Force Search: Choosing the optimal MIMO transmission scheme

The most critical sub-algorithm for our link adaptation formulation is computing the optimal transmission scheme given a

channel realization (or channel statistics). This is the fundamental link adaptation problem. This can be achieved in several

ways. In this section, I outline a few of these methods and discuss come advantages and disadvantages.

The fundamental measure of wireless system performance is the rate of transmission. this can be generalized to the notion

of capacity. The channel capacity can be defined as the maximum error free rate that can be supported by a given wireless

channel. It is given by the maximum mutual information between the input and output of the channel. In general, it can be

expressed as:

C = max
Q:tr(Q)<Es

I(X; Y)

= max
Q:tr(Q)<Es

logdet(INr +
HQH†

No
) = max

Q:tr(Q)<Es

logdet(INr +
QH†H
No

) (11)

where Q = E{xx†} is the correlation between the transmitted symbols. Note that the maximization can also be carried out

over Q̂ = UHΛHU†H because tr(Q̂) = tr(Q)

It has has been shown that the optimal Q̂ is diagonal [1] and its corresponding capacity can be achieved by water-filling

on the eigenvalues of HH†. This is an optimization problem that must be solved numerically. A sub-optimal solution can be

found by specifying transmission schemes that define various Q matrices. For instance, In beam-forming, Q̂ is a 0Nt
matrix

with Es at index (1, 1) i.e. data is transmitted on the leading eigenvalue of H†H. In spatial multiplexing without channel

knowledge, equal power allocation has been shown to be optimal; here Q = Es

Nt
INt .

In the stochastic case, the notion of capacity is usually the average capacity with is defined as Cergodic = EH(C) i.e. the

average capacity of the channel over the channel distribution. The ergodic capacity of double stochastic channels (the matrix

Gaussian channel) is still an open problem. However, there are known results for the capacity in the zero mean single correlated

channel case (M = 0,Rr = INr
,Rt is arbitrary). It has been shown that this capacity can be achieved by water filling on the

eigenvalues of the long term correlation matrix Rt [12]. There are also results for the channel capacity using beamforming

and spatial multiplexing. current results for the capacity of stochastic wireless channels can be found in [5].

The use of capacity for link adaptation in a practical system adaptation is faced with many challenges. The most important

consideration is that capacity is defined using infinite block lengths of coding. This impractical for a real systems. The capacity

formulation does not explicitly deal with the notion of bit error as it assumes all transmissions are error free. In a practical

system, error considerations are often relaxed in order to increase the combined data rate.

A more realistic optimization problem is to find the transmit configuration that leads to maximizing rate while minimizing
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bit error rate. this problem can be solved analytically in specific cases. For instance, the problem was solved using double

space time transmit diversity (D-STTD) with linear receivers in [3]. The analytic solution depends on the channel model chosen

and is very sensitive to real world impairments. For instance, a real transmitter has to contend with non-linearity in the radio

frequency (RF) front end, channel estimation errors and other impairments. Even with current analysis tools, rate and BER

equations are not available for every MIMO scheme. Note that a brute force search is still required in this case to find the

scheme that maximized the rate while minimizing BER. If there are only a few schemes, switching point can be found based

on analysis of the above equations [1]. These switching points are often implemented using indicators of spatial selectivity

(essentially a compressed feature space) such as channel condition number [3].

If there is a sufficiently detailed system model implemented, transmission decisions can be made by simulation. The rate

and BER of a channel realization {H, λo}, can be computed by streaming randomly generated bits through this channel with

a simulated transmitter and receiver. This can be done for all possible transmission schemes. The scheme that maximizes the

rate while maintaining a but error rate threshold is chosen. In a stochastic system, this will have to be repeated multiple times

with multiple channel realizations in order to guarantee performance. The major advantage of this method is its generality.

for instance, channel coding algorithms can be implemented on the transmitted data and form part of the switching criteria

without a full analysis of the effect of coding on transmission4.

Using any of the above methods, link adaptation using brute force search is very expensive. It is for this reason that I seek

sparse representations of the channel space.

E. Classification

We discuss two ways to design a sparse classifier. First we can design a simple k-nn classifier using the appropriate distance

measures. The k-nn classifier partitions the input space into Voronoi regions corresponding to each training object. For each

new test object, the distances to each training object are computed. The new object is classified by majority decision between

it’s k nearest training points. This algorithm has been shown to perform well in various scenarios [10]. I can increase the

sparsity of this classifier by making decisions based on the k clusters instead of all n training points. I intend to show that

there is a negligible loss of performance in this case.

Another method for creating sparsity is the use of a support vector machine (SVM). SVM’s encourage sparsity by using only

objects that are close to the decision boundary to define the optimum separation of classes. In this way, they avoid computation

using the entire training set to make decisions about a new test object (calculations only need to be done using the support

vectors, see [10] for details). This problem can also be solved using an appropriately defined kernel matrix. The kernel matrix

4This is a difficult problem to solve analytically because coding adds another dimension of variation and different coding schemes behave differently [1].
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K(·, ·) defines the distance between data points in a higher dimensional space. It allows classification in the higher dimensional

space. However, computation is still done in the lower dimension - reducing computational complexity. The kernel matrix is

constrained to be symmetric and positive definite. In our case, this can be achieved using Dvecnorm and Dtr but the Burg and

KL divergence will have to be modified [13]. One common modification of the KL divergence that makes it symmetric and

positive definite is shown in equation (12).

DsymKL(X,Y) = exp(
1
ρ
(KL(X‖Y) +KL(y‖X))) (12)

Using the above measures, I intend to provide a solution to the SVM using the Trace and symmetric-KL kernels and apply

the resulting support vector machines to the classification of wireless channels. the sparse nature of these classifiers should

reduce overall classification complexity.

IV. SIMULATION RESULTS

In my initial work, I chose to focus on a simple case of the wireless channel (for tractability). In this simple case, the

channel has zero mean and transmit correlation only. This means H ∼ CNNr,Nt
(0Nr,Nt

, INr,Nr
⊗ Rt). I implemented the

clustering algorithm as described in section III. The algorithms were tested using synthetic channel correlations (Rt). For each

of k channel distributions, a channel correlation matrix was generated where the eigenvalues of HH† were chosen uniformly

between 0 and 1 (and normalized). γo was chosen uniformly between 0 and γmax.

I generated n = 100 realizations of k channel distributions by picking each distribution randomly and generating the

relevant channel realization. For the stochastic case, I generated the k channel distributions by averaging over 30Nt channel

realizations. In order to study the effect of cluster size, number of antennas and SNR, I generated channel values with k ∈

{5, 15, 25, 35}, Nr = Nt ∈ {2, 5, 8}, γmax ∈ {−8, 0, 8}dB. The entire algorithm was repeated 60 times for each combination

of channel values. The n channels were first clustered into k objects. These k objects were then classified into one of m = 2

classes using the capacity formulation [1], [3] i.e. the mode that maximized capacity was chosen (but the actual transmission

rate/constellation adaptation was not implemented). Next u = 20 new channel objects were created randomly from the same k

initial distributions. I then used a 1-nn (single closest neighbor) to find the optimum transmission schemes for the new channel

objects.

In the instantaneous channel case, the clustering was done using the Burg divergence and the vecnorm distance. Both of

these measures and the trace distance were used for classification. In the stochastic channel case, the clustering was done using

the KL divergence. The performance was calculated by computing the percentage of time the k cluster representatives fell into

different classes from the n channel objects. The performance of the final classification was also computed similarly using the
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percentage of time classification led to different classes from brute force search.

The number of steps required for clustering is plotted for all scenarios in Figs. 1, 5. I saw that for larger number of

antennas, clustering converged pretty quickly. However, for two antennas, the clustering converged very slowly and even failed

to converge for k ∈ {25, 35}. This suggests that the number of clusters should scale with the number of antennas. It is likely

that the results will be similar even in the realistic correlation cases to be simulated for the final report [14].

Using the burg measure Fig. 2, the percentage of misclassified training points was about 40% on average. This meant

that many of the training points were classified incorrectly especially at high SNR’s. I attributed this to the Burg measure

attempting to cluster using both the eigenvalues and eigenvectors of the channel realization, even though the capacity (BFS

method) depends only on the eigenvalues. I intend to solve this problem by using another distance measure that only considers

the channel eigenvalues for clustering. The largest training error was found for Nt = 8, γmax = 8dB. The plateau of error for

Nt = 2 was due to the clustering not converging for those values of k. I found similar results using the vecnorm error Fig. 6,

though the rise with k was more pronounced. The test error did not fare much better with the best performance at low SNR’s

and the worst at high SNR’s. once again, the Nt = 8, γmax = 8dB case performed badly.

The stochastic Channel was clustered using the KL divergence measure (Figs. 9-12). As in the instantaneous case, the number

of iterations required for clustering convergence increased with number of clusters; Fig. 9. The algorithm was also unable to

converge in less than 50 iterations for high values of k. The training error was low and fairly constant for most situations. In

fact training errors of 0% were observed in may cases. I noticed a marked increase in error for Nt = 2, γmax = 8dB. I need

to investigate this occurrence further in order to explain the comparatively bad performance in this case The stochastic channel

was clustered using the KL measure and the trace measure. Both algorithms performed well except in the Nt = 2, γmax = 8dB

case. On average, the trace distance was able to outperform the KL distortion, but the performance increase was within the

margin of error. This further motivates using the trace distance or another less computationally expensive distance measure to

cluster and classify wireless channels.

V. PROPOSED AND FUTURE WORK

There is still extensive work left to be done for this project. In this section we list the work that I aim to complete before

the end of the semester

• I intend to show analytically that the clustering does not significantly affect capacity if the correct distance measure is

used. I intend to show this by providing loose bounds on lost capacity based on clustering. This is similar to work done

in [15] for the effect of imperfect channel estimates.

• I intend to implement the brute force search using BER/rate and using system simulations as discussed in section III-D.



10

• The channel correlation simulated was a very simple case. I intend to simulate a more realistic channel model in order

to better quantify performance. In a related problem, I intend to show the performance of the algorithm in the general

matrix Gaussian channel.

• I expect that there are a few correlation scenarios where it will be advantageous cluster and classify channels based on

the full channel matrix instead of computing the channel condition number [3]. This problem is likely more pronounced

in high dimensions. I intend to simulate other adaptation algorithms and show the scenarios where the proposed algorithm

has superior performance.

• The KL divergence works well for stochastic adaptation. However, it is quite expensive to compute. The burg distance did

not work well for the instantaneous channel classification case. I intend to explore the use of different distance measures

to find one with that utilizes the matrix eigenvalues, but is relatively simple to compute.

• I intend to solve the SVM problem using the symmetric KL divergence and the trace metric. I will compare the performance

of this algorithm to the performance of the k-nn classifier.

There are also extensions that I am interested in but will be unable to pursue this semester. they include:

• The k-means algorithm has a rich library of optimizations for speed [9]–[11]. I would like to explore the use of some of

these heuristics to speed up the general k-means algorithm with non-euclidean distance.

• I would like to extend this work to MIMO-OFDM. the major issue there is getting good estimates of the channel

correlations given very few data samples. However the channel is relatively well understood and I can use Bayesian priors

to improve the estimates of channel statistics.

• The algorithm as described seems to have a strong connection to vector/channel quantization and code-book design. I

would like to explore these extensions further and explore opportunities for limited feedback algorithms based on the

clustering and classification.

VI. CONCLUSIONS

In this report, I have motivated and outlined an algorithm for link adaptation based on learning methods. I have also provided

some preliminary results. the preliminary results seem promising especially in the stochastic channel case. This also motivate

further work in order to understand the effect of the distance measure and other choices on algorithm performance.
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