9. Perception

Signed distance of x to hyperplane

$$w(x - x_0) = \frac{w^T x - w^T x_0}{||w||} = \frac{wx + w_0}{||w||}$$

For class C_1, $w^Tx + w_0 > 0$ for all points x_i in C_1 that are correctly classified.

For class C_2, $w^Tx + w_0 < 0$ for all points x_i in C_2 that are correctly classified.

For correctly classified points,
$$y_i (w^T x_i + w_0) > 0$$

For misclassified points,
$$y_i (w^T x_i + w_0) < 0$$

Perception criterion:
$$\text{minimize} \ D(w, w_0) = - \sum_{i \in M} y_i (w^T x_i + w_0)$$

M index the misclassified points.

$$\nabla_w D(w, w_0) = - \sum_{i \in M} y_i x_i = - \left(\sum_{i \in C_1} x_i - \sum_{i \in C_2} x_i \right)$$

$$\nabla_{w_0} D(w, w_0) = - \sum_{i \in M} y_i$$

$$= -(N_1 - N_2) \text{ where } N_i \text{ is the number of misclassified points in } C_i$$

Perception Update Rule

$$\begin{bmatrix} w \\ w_0 \end{bmatrix} \leftarrow \begin{bmatrix} w \\ w_0 \end{bmatrix} + \eta \begin{bmatrix} y_i x_i \\ y_i \end{bmatrix}$$

Stochastic Gradient Descent — go in the direction of negative “gradient”, but only contribution to gradient by x_i (step is taken after each x_i is visited).
Perceptron pseudo-code

Repeat
 for \(i = 1 \) to \(n \) do
 if \(y_i (w \cdot x_i + w_0) < 0 \) then
 \(w \leftarrow w + \eta y_i x_i \)
 \(w_0 \leftarrow w_0 + \eta y_i \)
 end if
 end for
 Until there are no mistakes (misclassified) within for loop

Perceptron algorithm is guaranteed to find a \(w \) separating hyperplane if the data is linearly separable.

Drawbacks of Perceptron
1. If data is linearly separable, the hyperplane output depends on the order in which points are presented to the algorithm.
2. No. of iterations might be large
3. If classes are not linearly separable, then algorithm will not converge — cycles can develop that are not easy to detect.