
CS 391D Data Mining: A Mathematical Perspective Fall 2009

Homework 3

Instructor: Inderjit Dhillon Date Due: October 27, 2009
Keywords: Classification, Logistic Regression, Perceptron, Support Vector Machines

Use Matlab for problem 3. Turn in your code along with your results in hard copy only. Note that the
assignment is due IN CLASS.

1. (4 points) Given training instances (xn, yn) with yn ∈ {0, 1}, consider the following error function for logistic
regression:

E(w) = −
N

∑

n=1

(yn log zn + (1 − yn) log(1 − zn)),

where zn = σ(wT xn), w specifies a hyperplane, and σ is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
.

Prove that the error function E(w) is a convex function and provide a condition on the input data so that
E(w) has a unique minimum.

2. (6 points) In this exercise, we will prove correctness and convergence of the Perceptron algorithm for linearly
separable data.

Let wt represent the hyperplane at step t and (xt, yt) represent an input instance with yt ∈ {1,−1}. Note

that the input data is padded with one, i.e. xt =

[

xt

1

]

. Recall the update:

wt+1 = wt + ytxt, if yt(w
T
t xt) < 0, i.e., a mistake.

Assume that all the input data points have bounded Euclidean norm, i.e., ‖xt‖ ≤ R and are linearly separable
with finite margin γ > 0, i.e., there exists a hyperplane specified by w∗ such that:

yt(w
∗T xt) ≥ γ, ∀ t.

(a) (2 points) Prove that the following holds after t updates: w∗T wt ≥ tγ.

(b) (2 points) Prove that: ‖wt‖
2
2 ≤ tR2.

(c) (2 points) Using parts (a) and (b), prove that the Perceptron algorithm converges to a separating

hyperplane after at most
R2‖w∗‖2

2

γ2 steps.

3. (6 points) In this exercise, we will compare the performance of least squares regression and logistic regression
for a 3-class classification problem. The data set for this problem can be downloaded at
http://www.cs.utexas.edu/~wtang/cs391d/3gaussian.tar.gz.

(a) (2 points) Solve the classification problem by using least squares regression in Matlab. Plot the data
points according to the predicted labels. What do you observe in your plot?
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(b) (4 points) Solve the classification problem by using logistic regression by the Newton-Raphson method
in Matlab. Plot the data points according to the predicted labels. What do you observe in your plot?

Hint: The Newton-Raphson update, for minimizing a function E(w), takes the form

w
(new) = w

(old) − H−1∇wE(w),

where H is the Hessian, i.e., H = ∇2
w

E(w) and both derivatives are evaluated at w
(old).

When we solve a K-class classification problem by logistic regression, the k-th element of prediction
vector for point xn, p(Ck|xn) = zk(xn) = exp(ak)/

∑

j exp(aj), where ak = w
T
k xn. The objective is to

minimize

E(w1, . . . ,wK) = −
N

∑

n=1

K
∑

k=1

yk(xn) log zk(xn),

where yk(xn) is the k-th element of target vector y(xn) for point xn.

The gradient of the error function w.r.t wj is given by

∇wj
E(w1, . . . ,wK) =

N
∑

n=1

(zj(xn) − yj(xn))xn,

and the Hessian matrix H comprises blocks of size (D + 1)× (D + 1), where D is the dimensionality of
the data points. The block i, j is given by

∇wi
∇wj

E(w1, . . . ,wK) =
N

∑

n=1

zi(xn)(Iij − zj(xn))xnx
T
n ,

where Iij is the (i, j)-th element of the K × K identity matrix I.

You can initialize w0 to be zero in your implementation.

4. (9 points) In this exercise, we will derive an algorithm for solving the SVM problem. Recall the dual
formulation for the linearly-separable SVM:

max
α

W (α), where W (α) =
∑N

i=1 αi −
1
2

∑N
i=1

∑N
j=1 yiyjαiαjKij

subject to

N
∑

i=1

yiαi = 0, (1)

αi ≥ 0, i = 1, ..., N. (2)

In the above problem, Kij could be xT
i xj or Kij = κ(xi,xj) = h(xi)

T h(xj). Note that the matrix K is
positive semi-definite. The dual variables α1, ..., αN are said to be feasible if (1) and (2) are satisfied. We
will consider the following strategy for optimizing this problem: at each iteration, we start with a feasible
α and then update exactly 2 α’s at a time. The update must maintain feasibility. Assume without loss of
generality that the variables to be updated are α1 and α2. In the following, you will derive an update to α1

and α2 that maximizes the dual problem given above when only α1 and α2 are allowed to change.

(a) (1 points) α1 and α2 are to be updated to ᾱ1 and ᾱ2. Using the constraints on α from the dual problem,
show that if y1 = y2, then ᾱ2 ≤ α1 + α2, and if y1 6= y2, then ᾱ2 ≥ α2 − α1.
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(b) (2 points) Given that y1α1 + y2α2 = constant = y1ᾱ1 + y2ᾱ2, express this equivalently as α1 + sα2 = γ,
where s = y1y2. Furthermore, let

vi =
N

∑

j=3

yjαjKij , i = 1, 2.

Write the dual objective as a function of α1 and α2 (fixing the other α variables as constants), then use
the equation α1 + sα2 = γ to express the dual as a function of only α2, yielding

W (α2) = γ − sα2 + α2 −
1

2
K11(γ − sα2)

2 −
1

2
K22α

2
2

−sK12(γ − sα2)α2 − y1(γ − sα2)v1 − y2α2v2 + constant

(c) (3 points) Differentiate W (α2) with respect to α2 to calculate the maximizing ᾱ2. Let d12 = K11 −
2K12 + K22 for notational convenience. Justify why this solution is a maximum (not a minimum).

(d) (3 points) Let Ei = f(xi) − yi = (
∑N

j=1 αjyjKij + w0) − yi, i.e., the difference between the predicted
value and the true class label. Simplify your result in part (c) to obtain the following:

ᾱ2 = α2 +
y2(E1 − E2)

d12
,

and then, using part (a), obtain the final solution for ᾱ2 as:

ᾱ2 :=

{

max(0, min(ᾱ2, α1 + α2)) if y1 = y2,
max(ᾱ2, α2 − α1, 0) if y1 6= y2.

Furthermore, show that ᾱ1 = α1 + y1y2(α2 − ᾱ2). This update results in a non-decreasing dual, and
repeating over pairs of α eventually leads to global convergence of the SVM problem.


