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1. (4 points) Note that dσ(wT
xn)

dw
= σ(wT

xn)(1 − σ(wT
xn))xn. Thus,

d log σ(wT
xn)

dw

=
1

σ(wT
xn)

dσ(wT
xn)

dw

= (1 − σ(wT
xn))xn, (1)

d log(1 − σ(wT
xn))

dw

=
−1

1 − σ(wT
xn)

dσ(wT
xn)

dw

= −σ(wT
xn)xn. (2)

Using (1) and (2),

▽wE(w) =
∑

n

(zn − yn)xn,

where zn = σ(wT
xn). Now, Hessian of E(w) w.r.t w is given by:

H = ▽2
wE(w) =

∑

n

zn(1 − zn)xnx
T
n

Note that 0 < zn < 1. Thus, for any u

u
T Hu =

∑

n

zn(1 − zn)(uT
xn)2 ≥ 0. (3)

Hence H º 0, which implies E(w) is a convex function. Note that the equality in (3) holds if and only if
u = 0 or u ∈ Null-Space(X), where X = [x1, x2, . . . , xN ]. Thus, if dim(Null-Space(X)) = 0, H is strictly
positive definite matrix. Hence E(w) is a strictly convex function and has a unique minimum.

2. (6 points)

(a) (2 points) Using the update for wt,

w
∗T

wt = w
∗T

wt−1 + yt−1(w
∗T

xt−1).

Since w
∗ is a separating hyperplane with margin γ, yt−1(w

∗T
xt−1) ≥ γ,∀t. Thus,

w
∗T

wt ≥ w
∗T

wt−1 + γ.

Hence, using induction it can be easily seen that w
∗T

wt ≥ tγ. Note that w0 = 0, hence base case is
satisfied trivially. In fact, assuming w0 = 0 is not necessary in completing the proof. Without loss of
generality, we can always find a w0 such that w

∗T
w0 ≥ 0: first randomly initialize w0; then change the

sign of w0 if the number of misclassified instances are more than half of the total number of training
instances by the initial separating hyperplane.
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(b) (2 points) Using the update for wt:

‖wt‖2 = ‖wt−1 + yt−1xt−1‖2,

= ‖wt−1‖2 + 2yt−1w
T
t−1xt−1 + y2

t−1‖xt−1‖2,

≤ ‖wt−1‖2 + ‖xt−1‖2,

≤ ‖wt−1‖2 + R2,

since yt−1w
T
t−1xt−1 ≤ 0 whenever an update is made, y2

t = 1, and ‖xt‖ ≤ R ∀t.
Hence, using induction it can be easily shown that ‖wt‖2 ≤ tR2. Again note that base case holds
trivially as w0 = 0.

(c) (2 points) Using (a) and (b):

1 ≥ w
∗T

wt

‖w∗‖‖wt‖
≥ tγ

‖w∗‖
√

tR

Thus, t ≤ R2‖w∗‖2

γ2 . This implies that the Perceptron algorithm converges to a separating hyperplane

w
∗ in at most R2‖w∗‖2

γ2 steps.

3. (6 points)

(a) (2 points) The sample code for least squares regression is given below.

function [W] = linreg(X,y)

% Solve a linear regression for classifcation

%

% Input:

% X: N by d matrix

% y: N by 1 vector

%

% Output:

% W: d+1 by K matrix (K: number of classes)

%

K = length(unique(y));

I = eye(K);

Y = I(y,:);

Xhat = [ones(size(y)) X];

W = Xhat’*Xhat\(Xhat’*Y);

end % linreg function

Figure 1 shows the plot of data points according to the predicted labels by least squares regression,
from which we observe that the region of input space assigned to the center class is very small and most
of the points from that class are misclassified.

(b) (4 points) The sample code for logistic regression is given below. Note that since the Hessian matrix
H is positive semi-definite and hence rank deficient we can use the technique introduced in homework
1 to compute the inverse. In the sample code, the pinv Matlab function is used.

function [W] = logreg(X,y)

% Solve a logistic regression for classification
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Figure 1: Prediction by least squares regression.

%

% Input:

% X: N by d matrix

% y: N by 1 vector

%

% Output:

% W: d+1 by K matrix (K: number of classes)

%

K = length(unique(y));

I = eye(K);

Y = I(y,:);

Xhat = [ones(size(y)) X];

M = size(Xhat,2);

W = zeros(M,K);

maxi = 100; eta = 1e-8;

for t = 1:maxi

Z = exp(Xhat*W);

Z = diag(sparse(1./sum(Z,2)))*Z;

obj = -sum(sum(Y.*log(Z)));

if t > 1

if abs(old_obj-obj) <= eta

break;

end

end

old_obj = obj;

fprintf(’iter %d: obj %f\n’,t,obj);

gW = Xhat’*(Z-Y);
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H = zeros(K*M);

for i = 1:K

for j = 1:K

Zb = Z(:,i).*(I(i,j)-Z(:,j));

H((i-1)*M+1:i*M,(j-1)*M+1:j*M) = Xhat’*diag(Zb)*Xhat;

end

end

W(:) = W(:)-pinv(H)*gW(:);

end

end % logreg function

Figure 2 shows the plot of data points according to the predicted labels by logistic regression, from
which we observe that logistic regression can get a much better classification results on the training
data.
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Figure 2: Prediction by logistic regression.

4. (10 points)

(a) (2 points) As only α1 and α2 are updated and y2
1 = 1,

∑

i

yiαi = 0 ⇒ y1α1 + y2α2 = y1α1 + y2α2 ⇒ α1 = α1 + y2y1α2 − y2y1α2 ≥ 0. (4)

If y1 = y2, α1 + α2 ≥ α2. If y1 6= y2, α1 − α2 + α2 ≥ 0 ⇒ α2 ≥ α2 − α1.

(b) (2 points) From (4) it is clear that α1 + y2y1α2 = γ. Now,

W (α1, α2) = α1 + α2 −
1

2

(

α2
1K11 + 2sα1α2K12 + α1y1v1 + α2

2K22 + α2y2v2

)

+ constant.

Substituting α1 = γ − sα2 and simplifying, we get:

W (α2) = γ − sα2 + α2 −
1

2
K11(γ − sα2)

2 − 1

2
K22α

2
2

−sK12(γ − sα2)α2 − y1(γ − sα2)v1 − y2α2v2 + constant
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(c) (3 points) Setting dW
dα2

= 0, we get:

α2 =
1

d12
(s(K11 − K12)γ + y2(v1 − v2) + 1 − s)

Check that d2W
dα2

2

= −d12 for the above given α2. Now K is positive definite, hence d12 > 0.

(d) (3 points) Note that γ = α1 + sα2. Substituting value of γ into the expression for α2 given above and
simplifying, we get:

ᾱ2 = α2 +
y2(E1 − E2)

d12
,

where Ei = f(xi) − yi = (
∑N

j=1 αjyjKij + w0) − yi.

Note that α2 given by above update need not satisfy the constraints. So, we clip α2 so as to obtain a
feasible dual solution.

After the update α2 should be greater than 0. Thus,

α2 = max(0, α2).

Let y1 = y2. Using part (a), α2 ≤ α1 + α2. Thus α2 = min(α1 + α2, α2) = max(0, min(α1 + α2, α2)).

Now, let y1 6= y2. Using part (a), α2 ≥ α2 − α1. Thus α2 = max(α2, α2 − α1) = max(0, α2, α2 − α1).

Using part (b), α1 + sα2 = α1 + sα2. This implies α1 = α1 + s(α2 − α2). Note that this update gives
feasible α1.


