Notes are taken from Tibshirani’s lecture notes: https://www.stat.cmu.edu/~ryantibs/convexopt-
F13/scribes/

Convex Function

Definition 4.28 A function f : R™ — R is convez if domf is a convezx set and if for all z,y € domf, and
0 with 0 < 6 <1, we have

f0z+(1—0)y) <0f(z)+(1-0)f(y)

Definition 4.29 A function f is strictly convex if whenever z # y, and 0 < 6 < 1, strict inequality holds,
that is, we have

[0z + (1 - 0)y) < 0f(z) + (1 -0)f(v)-

tf (x1) + (1= )f (x2)

f(tar+ (1= t)z2)

tzy + (1— )2y

f(y) >= f(x) + \grad f(x) T (y-x)

Strong Convexity

Definition 4.32 A differentiable function f is called m—strongly convez if m > 0 and
(V@)= V)" (@ —y) >m|z - y|3,Vz,y € domf
An equivalent condition is
T m 2
fy) 2 f@) + V(@) (y —2) + 5 lly — 2l , Y2,y € domf
It is not necessary for a function to be differentiable. We could have the definition without gradient.

Definition 4.33 A function f is called m—strongly convex if m > 0 and for 0 <t <1
1
fltz+ (1= 0)y) < £(2) + (1= () = 5mt(1 ~ 0|}z ~ yl3, o,y € dom

If the function is twice continuously differentiable, we could have the definition with Hessian matrix.

Definition 4.34 f is called m—stronly convez if m > 0 and

V2f(x) > mI,Vz,y € domf

A strongly convex function is also strictly convex, but not vice-versa.



Extended-Value Extension

Definition 4.37 f:R" — R J{oo} is extended-value extension of f:

) — f(=x) z € domf
/(@) { 00 z ¢ domf

The extension f is defined on all R, and takes values in R|J{oo}. This does not change its convexity

Theorem 4.38 f is convex
=4 f 18 conver

& floz+(1-0)y) <0f(z)+(1-0)f(y),0<0<1

Properties of Convex Functions
Let f be a differentiable function, dom f is open and convex, then we have
f is convex & f(y) > f(z) + Vf(2)"(y — 2)

The inequality states that for a convex function, the first-order Taylor
approximation is a global underestimator of the function. Conversely, if the first-order Taylor approximation
of a function is always a global underestimator of the function, then the function is convex.

Let f be twice differentiable, dom f is open, then we have
f is convex < V2f(z) > 0,V € domf
If V2f(z) > 0,V € domf, f is strictly convex. The converse is not true.

For example, the function f : R — R given by f(x) = z* is strictly convex but has zero second derivative at
z=0

Gradient Descent
Recall that we have f : R™ — R, convex and differentiable. We want to solve

min f(z)
i.e, to find z* such that f(z*)=min f(z) .
Gradient descent: choose initial z(®) € R" , repeat :

z®) = ;=1 ¢ . Vf(:[,'(k_l)),k' =1,2,3,..

Stop at some point(When to stop is quite dependent on what problems you are looking at).

Coordinate Descent
Similar but coordinate-by-coordinate by picking the coordinate with maximum gradient



Step Size
Fixed

Backtracking Line Search

Starting with a maximum candidate step size value g > 0, using search control parameters 7 € (0, 1) andc € (0, 1), the backtracking line search algorithm can be expressed as follows:
1. Sett = —cm and iteration counter j = 0.
2. Until the condition is satisfied that f(x) — f(x + a; P) > a; t, repeatedly increment j and set aj = T ;1 .
3. Return a; as the solution.

In other words, reduce o by a factor of 7 in each iteration until the Armijo—Goldstein condition is fulfilled.

Define the local slope of the function of a along the search direction p as m = Vf(x)T P . Itis assumed that p is a unit vector in a direction in which some local decrease is possible, i.e., it is assumed that m < 0.

Based on a selected control parameter ¢ € (0, 1), the Armijo—Goldstein condition tests whether a step-wise movement from a current position x to a modified position x + a p achieves an adequately corresponding decrease in the
objective function. The condition is fulfilled if f(x + ap) < f(x) + acm.

f(z +tAz)

\ f(@) +tVF@)TAz T f(z) + atVf(z)T Az

. t t

Exact Line Search

At each iteration, do the best we can along the direction of the gradient,

t= arg;x;inf(w —sVf(z)).

Usually, it is not possible to do this minimization exactly.

Approximations to exact line search are often not much more efficient than backtracking, and it’s not worth
it.



Proof (first inequality is Lagrange form of Taylor’s theorem)

Theorem 6.1 Suppose the function f : R® — R is conver and differentiable, and that its gradient is
Lipschitz continuous with constant L > 0, i.e. we have that |V f(z) — Vf(y)|2 < Lljz — yl|2 for any z,y.
Then if we run gradient descent for k iterations with a fived step size t < 1/L, it will yield a solution f*)
which satisfies

Il — z*|3

1) - ") < P

(6.1)

where f(z*) is the optimal value. Intuitively, this means that gradient descent is guaranteed to converge
and that it converges with rate O(1/k).

Proof: Our assumption that V£ is Lipschitz continuous with constant L implies that V2f(z) < LI, or
equivalently that V2 f(z) — LI is a negative semidefinite matrix. Using this fact, we can perform a quadratic
expansion of f around f(z) and obtain the following inequality:

@) < f@) + V@) @y - o)+ 3V (@) ly — 3
< f@) + V(@) (y —2) + 5Ly — =3
Now let’s plug in the gradient descent update by letting y = z+ = z — tV f(z). We then get:
f@®) < f(@) + V@) (@ ~2) + 3 L|e* — 2}
= f(2) + V(@) (2 ~ tVf(z) - 2) + j Lllz — tVf(z) — z|}}
= f(2) = V(@)"tV f(2) + 3 LItV (@)II3
= f(2) = tIVi@)3 + 3LV F ()13
= f(z) = (1 3L) IV ()13 (6.2)

Using t < 1/L, we know that —(1 — $Lt) = §Lt —1 < L(1/L) —1 =} — 1 = —}. Plugging this in to [?7)5.2
we can conclude the following:

F@*) < f@) - 3tIVI@)I3 (6.3)

Since t[|V f(z)||3 will always be positive unless V f(z) = 0, this inequality implies that the objective function
value strictly decreases with each iteration of gradient descent until it reaches the optimal value f(z) = f(z*).
Note that this convergence result only holds when we choose ¢ to be small enough, i.e. ¢ < 1/L. This explains
why we observe in practice that gradient descent diverges when the step size is too large.

Next, we can bound f(z*), the objective value at the next iteration, in terms of f(z*), the optimal objective
value. Since f is convex, we can write

f(@*) 2 f(2) + Vf(2)" (2" )
f(@) < f&) + V(@) (@ - )

where the first inequality yields the second through simple rearrangement of terms. Plugging this in to [??5.3
we obtain:

t
F@) < f@) + V@) (@ - 2") = S IVF@)I
1
f@) = f@) < 5 (V@) (@ - =) - V(@)
1@ = 1@") < 5 (e =21 — Il — 195 (@) — =°[13) (6.4)
where the final inequality is obtained by observing that expanding the square of ||z — tV f(x) — z*||3 yields

lz — 243 =2tV £ (z)T (z — z*) + t*||V f(z)|3. Notice that by definition we have z* = z —tV f(z). Plugging
this in|to g? yi¢lds:

1@ - 1) < o (o =213~ Jo* ~2°[3) ©5)

This inequality holds for z* on every iteration of gradient descent. Summing over iterations, we get:
3 L
316 = £ < 3 5 (a6 = 27 - 2 - 2*|)
i=1 i=1
1 . .
= 5 (1= 13 = 1o - =*[3)

1
= ) _ *12
< 5 (1= - =*13) (6.6)

where the summation on the right-hand side disappears because it is a telescoping sum. Finally, using the
fact that f decreasing on every iteration, we can conclude that

k
f(z““)) —fa*) < %;f(z(i)) - f(@*)

=@ — a3
- 2tk

where in the final step, we plug|in g’ "g to| get the inequality fr¢m ?? thht we were trying to prove. | |

(6.7)




Theorem 6.2 Suppose the function f : R®™ — R is conver and differentiable, and that its gradient is
Lipschitz continuous with constant L > 0, i.e. we have that ||V f(z) — Vf(y)|l2 < L||z — y||2 for any z,y.
Then if we run gradient descent for k iterations with step size t; chosen using backtracking line search on
each iteration i, it will yield a solution f*) which satisfies

1z — 2|3

f@®) - fa") < Fg—, (6.8)

where tmi, = min{l, 5/L}

6.1

Convex f. From TheoreE ve know that the convergence rate of gradient descent with convex f is
O(1/k), where k is the number of iterations. This implies that in order to achieve a bound of f(z*))— f(z*) <
€, we must run O(1/e) iterations of gradient descent. This rate is referred to as “sub-linear convergence.”

Strongly convex f. In contrast, if we assume that f is strongly convex, we can show that gradient descent
converges with rate O(c¥) for 0 < ¢ < 1. This means that a bound of f(z(®)) — f(z*) < € can be achieved
using only O(log(1/€)) iterations. This rate is typically called “linear convergence.”

6.1.4 Pros and cons of gradient descent

The principal advantages and disadvantages of gradient descent are:

e Simple algorithm that is easy to implement and each iteration is cheap; just need to compute a gradient
e Can be very fast for smooth objective functions, i.e. well-conditioned and strongly convex
e However, it’s often slow because many interesting problems are not strongly convex

e Cannot handle non-differentiable functions (biggest downside)

Subgradients

Definition 6.3 A subgradient of a convex function f: R™ — R at some point z is any vector g € R™ that
achieves the same lower bound as the tangent line to f at x, i.e. we have

f) > f@)+g" (y—x) Vz,y



The subgradient g always exists for convex functions on the relative interior of their domain. Furthermore, if
f is differentiable at z, then there is a unique subgradient g = V f(z). Note that subgradients need not exist
for nonconvex functions (for example, cubic functions do not have subgradients at their inflection points).

6.2.1 Examples of subgradients

absolute value. f(z) = |z|. Where f is differentiable, the subgradient is identical to the gradient, sign(z).
At the point z = 0, the subgradient is any point in the range [—1, 1] because any line passing through z =0
with a slope in this range will lower bound the function.

£ norm. f(z) = ||z||2. For z # 0, f is differentiable and the unique subgradient is given by g = z/||z||2.
For z = 0, the subgradient is any vector whose £5 norm is at most 1. This holds because, by definition, in
order for g to be a subgradient of f we must have that

FW)=lylla > f2) +9"(y—2) =gy V.
In order for ||y||2 > g7y to hold, g must have ||g||2 < 1.

£, norm. f(z) = |z|l;. Since |z|l1 = Y-, |@i|, we can consider each element g; of the subgradient
separately. The result is very analogous to the subgradient of the absolute value function. For z; # 0,
g; = sign(g;). For z; = 0, giisanypointin[—1,1].

maximum of two functions. f(z) = max{fi(z), f2(z)}, where f; and f, are convex and differentiable.
Here we must consider three cases. First, if fi(z) > fa(z), then f(z) = fi(z) and therefore there is a
unique subgradient g = Vfi(z). Likewise, if fo(z) > fi(z), then f(z) = fa(x) and g = Vfa(z). Finally,
if fi(z) = fa(z), then f may not be differentiable at z and the subgradient will be any point on the line
segment that joints V f1(z) and V fa(z).

6.2.2 Subdifferential

Definition 6.4 The subdifferential of a convex function f : R® — R at some point x is the set of all
subgradients of f at z, i.e. we say

Of(z) = {g € R": g is a subgradient of f at x}
An important property of the subdifferential df(z) is that it is a closed and convex set, which holds even

for nonconvex f. To verify this, suppose we have two subgradients g1,g> € 9f(z). We need to show that
go = ag1 + (1 — a)gs is also in 8f(z) for arbitrary . If we write the following inequalities,

() 2 f@) + g7y =) )

(1-a) (1) > f@) + 95 (y—2)) (1 - ),

which follow from the definition of subgradient applied to g; and g2, we can add them together to yield
@) 2 f(z) +agl(y—2)+(1-a) g3 (y—2) =g (y — 2).

7.2.1 Subgradient method

For convex f, not necessarily differentiable, subgradient method finds the lowest value of the criterion by:
z®) = gk=D) _ g o=k —193 ...

where g(*=1 is any subgradient of f at z(*~1). Note that it is not a decent method, that the next iterative
doesn’t always find the lower criterion. So we need to keep the best lowest criterion value at every iteration,

ie., f(zf)ilt) = min; f(z®).
7.2.2 Choosing the step size

i) Fixed step size: tr =t Vk.
However, for subgradient method, we do not typically chose fixed step size.

ii) Diminishing step size (Standard): choose ¢; that is square summable but not summable.

o0 o0
th < 00, Z = 00.
k=1 k=1

Note that step sizes are all pre-defined, not adaptively computed during the optimization iteration.



7.2.3 Convergence analysis

i) Fixed step size: Suboptimal Convergence.
For convex, not differentiable function f, if the function itself is Lipschitz with constant G such as,

[f(@) = f)| < Gllz —yll2 Vz,y

subgradient method using fixed step size t would give a point that is suboptimal such as,
: ®) \ < f(p 2t
kli'rgof(zbest) < f(z*)+ G 7
In other words, the smaller the step size, the smaller the difference would be between the optimal and sub-
optimal convergence.

ii) Diminishing step size that is square summable: Optimal Convergence.

. k) \ _ o=

Jim f@fl,) = f(a®).
Note that subgradient method is applicable to functions that may not look like Lipschitz, since the over the
bounded set the function can be Lipschitz.

Projection Method

Projected subgradient method can be used to minimize a convex function over a convex set C:

min f(z)

zeC

It is same as usual subgradient update except we project the solution back on to C every time so that at
every iteration we move in the direction of the subgradient but still lies in the set C.

k) — Pc(m(k_l) — tkg(k_l)), k=1,2,3,---
Alternative method:

min f(z) = min f(z) + Ic(z)

Examples for projection onto solution set C:
i)C={y: yi> Vi} = [Pc(z)]; = max{z;,0}.

7.2.7 Basic Pursuit Problem

We can use projected subgradient method to solve the basic pursuit problem:
i t. XB=uy.
min Al st XB=y

In this case, the solution set is C = {f: X = y}.

The projection on to solution set C is Po(8) = 8+ XT(XXT)~!(y — X) as shown in example 2 above.
Projected subgradient method performs step

BE) = Po(BE—Y) — ¢ gk 1)
— IB(k_l) _tkg(k_l) +X(XXT)_1(y—Xﬂ(k_l) +thg(k—1))
= BEY — (I - XT(XXT) " X)trg ™~V

Where, g+~ € 9][8*-D]|,.





