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Abstract

A wide variety of distortion functions, such as squared Elazn distance, Mahalanobis distance,
Itakura-Saito distance and relative entropy, have beed fmeclustering. In this paper, we pro-
pose and analyze parametric hard and soft clustering #igwibased on a large class of distortion
functions known as Bregman divergences. The proposedidigm unify centroid-based paramet-
ric clustering approaches, such as classke@&lans, the Linde-Buzo-Gray (LBG) algorithm and
information-theoretic clustering, which arise by speciabices of the Bregman divergence. The
algorithms maintain the simplicity and scalability of thassicalkmeans algorithm, while gener-
alizing the method to a large class of clustering loss famsti This is achieved by first posing
the hard clustering problem in terms of minimizing the lasBregman information, a quantity
motivated by rate distortion theory, and then deriving araitive algorithm that monotonically de-
creases this loss. In addition, we show that there is a ljebetween regular exponential families
and a large class of Bregman divergences, that we call reBuégman divergences. This result
enables the development of an alternative interpretafian efficient EM scheme for learning mix-
tures of exponential family distributions, and leads torae soft clustering algorithm for regular
Bregman divergences. Finally, we discuss the connectibmeam rate distortion theory and Breg-
man clustering and present an information theoretic arsabfsBregman clustering algorithms in
terms of a trade-off between compression and loss in Bregnfiarmation.

Keywords: clustering, Bregman divergences, Bregman informatioppagntial families, expectation maxi-
mization, information theory
1. Introduction

Data clustering is a fundamental “unsupervised” learning proceduréalsebeen extensively stud-
ied across varied disciplines over several decades (Jain and Di88), Most of the existing
parametric clustering methods partition the data into a pre-specified numbartitiops with a
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cluster representativeorresponding to every cluster, such that a well-defined cost funictiolv-

ing the data and the representatives is minimized. Typically, these clusteringdaetbme in two
flavors: hard andsoft In hard clustering, one obtains a disjoint partitioning of the data such that
each data point belongs to exactly one of the partitions. In soft clustexag data point has a
certain probability of belonging to each of the partitions. One can think of blargtering as a
special case of soft clustering where these probabilities only take v@laed. The popularity of
parametric clustering algorithms stems from their simplicity and scalability.

Several algorithms for solving particular versions of parametric clustg@roglems have been
developed over the years. Among the hard clustering algorithms, the mibdtnoen is the it-
erative relocation scheme for the Eucliddamans algorithm (MacQueen, 1967; Jain and Dubes,
1988; Duda et al., 2001). Another widely used clustering algorithm with a gimdlaeme is the
Linde-Buzo-Gray (LBG) algorithm (Linde et al., 1980; Buzo et al., 138%sed on the Itakura-Saito
distance, which has been used in the signal-processing community foricigstpeech data. The
recently proposed information theoretic clustering algorithm (Dhillon et aD32®or clustering
probability distributions also has a similar flavor.

The observation that for certain distortion functions, e.g., squared Eaclidistance, KL-
divergence (Dhillon et al., 2003), Itakura-Saito distance (Buzo et @Bp) etc., the clustering
problem can be solved using approprikbeans type iterative relocation schemes leads to a natu-
ral question:what class of distortion functions admit such an iterative relocation schemeecva
global objective function based on the distortion with respect to cluster ddstiis progressively
decreasedn this paper, we provide an answer to this question: we shovstlwdit a scheme works
for arbitrary Bregman divergence#n fact, it can be shown (Banerjee et al., 2005) that such a sim-
ple scheme worksnlywhen the distortion is a Bregman divergence. The scope of this resuftis va
since Bregman divergences include a large number of useful lossdossuch as squared loss,
KL-divergence, logistic loss, Mahalanobis distance, Itakura-Saitoratistd-divergence, etc.

We pose the hard clustering problem as one of obtaining an optimal quantizatierms of
minimizing the loss iBregman informationa quantity motivated by rate distortion theory. A sim-
ple analysis then yields a version of the loss function that readily suggestiieal algorithm to
solve the clustering problem for arbitrary Bregman divergences. Paditiard clustering to min-
imize the loss irmutual information otherwise known as information theoretic clustering (Dhillon
et al., 2003), is seen to be a special case of our approach. Thusapleisynifies several parametric
partitional clustering approaches.

Several researchers have observed relationships between Bregraegences and exponen-
tial families (Azoury and Warmuth, 2001; Collins et al., 2001). In this paperformally prove
an observation made by Forster and Warmuth (2000) ttiexe exists a unique Bregman diver-
gence corresponding to every regular exponential famityfact, we show that there is a bijection
between regular exponential families and a class of Bregman divergghaéwe call regular Breg-
man divergences. We show that, with proper representation, the bijectuitgs an alternative
interpretation of a well known efficient EM scheme (Redner and Wallg&4 Lfor learning mixture
models of exponential family distributions. This scheme simplifies the computatidnteiysive
maximization step of the EM algorithm, resulting in a general soft-clusteringitgigofor all regu-
lar Bregman divergences. We also present an information theoreticseafyBregman clustering
algorithms in terms of a trade-off between compression and loss in Bregnoeimatfon.

1. We use the term “cluster centroid” to denote the expectation of the dats pothat cluster.
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1.1 Contributions

We briefly summarize the main contributions of this paper:

1. In the context of hard clustering, we introduce the conce@refman Informatior(Sec-
tion 3) that measures the minimum expected loss incurred by encoding a stagiaints
using a constant, where loss is measured in terms of a Bregman divergéarance and
mutual information are shown to be special cases of Bregman informatiotieFuve show
a close connection between Bregman information and Jensen'’s inequality.

2. Hard clustering with Bregman divergences is posed as a quantizatiblepr that involves
minimizing loss of Bregman information. We show (Theorem 1 in Section 3) thadrfyp
given clustering, the loss in Bregman information is equal to the expectegirare diver-
gence of data points to their respective cluster centroids. Hence, minimitiireg ef these
quantities yields the same optimal clustering.

3. Based on our analysis of the Bregman clustering problem, we presegthshard clustering
algorithm that is applicable tall Bregman divergences (Section 3). The meta clustering
algorithm retains the simplicity and scalabilitylafeans and is a direct generalization of all
previously known centroid-based parametric hard clustering algorithms.

4. To obtain a similar generalization for the soft clustering case, we shiogof€m 4, Section 4)
that there is a uniquely determined Bregman divergence correspondavgry regular ex-
ponential family. This result formally proves an observation made by Farstd Warmuth
(2000). In particular, in Section 4.3, we show that the log-likelihood of pamametric ex-
ponential family is equal to the negative of the corresponding Bregmaargdiiice to the
expectation parameter, up to a fixed additive non-parametric functiothe¥pin Section 4.4,
we define regular Bregman divergences using exponentially conwexidns and show that
there is a bijection between regular exponential families and regular Bredinexrgences.

5. Using the correspondence between exponential families and Bregmeagemhces, we show
that the mixture estimation problem based on regular exponential families is mletatia
Bregman soft clustering problem (Section 5). Further, we describeMasdbeme to effi-
ciently solve the mixture estimation problem. Although this particular scheme faritgar
mixtures of exponential families was previously known (Redner and Walk&4), the Breg-
man divergence viewpoint explaining the efficiency is new. In particwlagive a correctness
proof of the efficient M-step updates using properties of Bregmangbvees.

6. Finally, we study the relationship between Bregman clustering and ratetidistbeory (Sec-
tion 6). Based on the results in Banerjee et al. (2004a), we observad¢Hiategman hard and
soft clustering formulations correspond to the “scalar” and asymptotiadiatertion prob-
lems respectively, where distortion is measured using a regular Bregmegetce. Further,
we show how each of these problems can be interpreted as a traddvedebecompression
and loss in Bregman information. The information-bottleneck method (Tishihi/,et999)
can be readily derived as a special case of this trade-off.

A word about the notation: bold faced variables, exgu, are used to represent vectors. Sets
are represented by calligraphic upper-case alphabetsxe®., Random variables are represented
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by upper-case alphabets, eX,Y. The symbolR,N,Z andR? denote the set of reals, the set of
natural numbers, the set of integers anddidimensional real vector space respectively. Further,
R, andR, ., denote the set of non-negative and positive real numbersx,ar RY, ||x|| denotes
the L, norm, and(x,y) denotes the inner product. Unless otherwise mentioned, log will represent
the natural logarithm. Probability density functions (with respect to the lgeleesr the counting
measure) are denoted by lower case alphabets suplgadf a random variableX is distributed
according tov, expectation of functions ok are denoted b¥x|-|, or by E,[-] when the random
variable is clear from the context. The interior, relative interior, boupadosure and closed convex
hull of a setx are denoted by i), ri(X), bd(X), cl(X) and cdX) respectively. The effective
domain of a functiorf, i.e., set of all such thatf (x) < 4 is denoted by doiff) while the range

is denoted by randé). The inverse of a functiofi, when well-defined, is denoted Uyl.

2. Preliminaries

In this section, we define the Bregman divergence corresponding tizidystonvex function and
present some examples.

Definition 1 (Bregman, 1967; Censor and Zenios, 1998) qetS — R,.S = dom(@) be a strictly
convex function defined on a convex set RY such thatp is differentiable on 115), assumed to
be nonempty. Th8regman divergenceyd S x ri(S) — [0, ) is defined as

de(X,y) = @(x) — @y) — (x =y, 0e(y)) ,
wherel@(y) represents the gradient vectorgévaluated ay.

Example 1 Squared Euclidean distance is perhaps the simplest and most widely LegpddBr
divergence. The underlying functiapix) = (x,x) is strictly convex, differentiable oR“ and

dp(%,y) = (X%X) = (y,y) — (x—y,00(y))
= (XX) = (y,y) — (X—V,2y)
= (X—y.x-y)=|x-y|>

Example 2 Another widely used Bregman divergence is the KL-divergengeidfa discrete prob-
ability distribution so thatzj-’:l pj = 1, the negative entropg(p) = z‘j’:l pjlog, p; is a convex
function. The corresponding Bregman divergence is
d d
do(p,d) = 3 Pjlog, pj— ZQj log, g; — (p —a, O(a))
=1 i=
d

d d
= > pjlogpj— } gjlog,q; — 3 (pj —dj)(log,dj +log; €)
=1 =1 =1

d o d
= > pjlog (—)—Iog e (pj—aj)
JZlJ 2 g 2 gl i —q;
= KL(plla),
the KL-divergence between the two distributionsygs, g; = y°_; p; = 1.
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Table 1: Bregman divergences generated from some convex functions

Domain @(x) dp(X,y) Divergence

R X2 (x—y)? Squared loss

Ry xlogx xlog(y) — (x=y)

[0,1] xlogx+ (1—x)log(1—x) xlog(}) + (1 —x)log(3=) Logistic loss®

Ry —logx § — Iog(i—j) -1 Itakura-Saito distance

R e ef—&— (x—ye

RY 1x]12 [x—yl? Squared Euclidean distande
RY xT Ax x—y)TAx—y) Mahalanobis distanck
d-Simplex 39 1% 10g i PAIRES Iogz(;—;) KL-divergence

RY 51 xjlogx; 3§ _1%log(gh) — ¥§_1(x —yj) | Generalized I-divergence

Example 3 Itakura-Saito distance is another Bregman divergence that is widelyms'@‘]al pro-
cessing. IFF (€/®) is the power spectrufrof a signalf (t), then the functionap(F) = — 5 [ log(F (€!®))de
is convex inF and corresponds to the negative entropy rate of the signal assumlmggamarated

by a stationary Gaussian process (Palus, 1997; Cover and ThorBa$, The Bregman divergence
betweerF (e/®) andG(el®) (the power spectrum of another sigit)) is given by

lF.6) = 5 [ (~loalF () +loa(G(e") - (F(e®) - 6e) (- 5 5 ) ) oo
= (oo (e ) Sl

which is exactly the Itakura-Saito distance between the power sge@t®) andG(el®) and can
also be interpreted as the I-divergence (Cais1991) between the generating processes under the
assumption that they are equal mean, stationary Gaussian proceszaisodand Kazakos, 1980).

Table 1 contains a list of some common convex functions and their cormisgoBRregman diver-
gences. Bregman divergences have several interesting and usgfatties, such as non-negativity,
convexity in the first argument, etc. For details see Appendix A.

3. Bregman Hard Clustering

In this section, we introduce a new concept called the Bregman informatiarrafdom variable
based on ideas from Shannon’s rate distortion theory. Then, we madtiaBregman hard cluster-
ing problem as a quantization problem that involves minimizing the loss in Bregrf@miation
and show its equivalence to a more direct formulation, i.e., the problem dfidiradpartitioning and
a representative for each of the partitions such that the expected Bradjweagence of the data

2. Note thatF(-) is a function and it is possible to extend the notion of Bregman divergenci® space of func-
tions (Csisar, 1995; Gianwald and Dawid, 2004).

3. Forx € {0,1} (Bernoulli) andy € (0,1) (posterior probability forx = 1), we havexlog(
log(1+exp(—f(x)g(y))). i.e., the logistic loss witH (x) = 2x— 1 andg(y) = log( %, y)

4. The matrixA is assumed to be positive definifgc—y)TA(x —y) is called the Mahalanobis distance wheis the
inverse of the covariance matrix.

)+ (1-x)log(3) =

<Ix
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points from their representatives is minimized. We then present a clustdgogtiam that gen-
eralizes the iterative relocation schemekokans to monotonically decrease the loss in Bregman
information.

3.1 Bregman Information

The dual formulation of Shannon’s celebrated rate distortion probleme{Cand Thomas, 1991,
Grunwald and Vianyi, 2003) involves finding a coding scheme with a given rate, i.e., agerag
number of bits per symbol, such that the expected distortion between theegamdom variable
and the decoded random variable is minimized. The achieved distortion is tadielistortion
rate function i.e., the infimum distortion achievable for a given rate. Now consider aorand
variableX that takes values in a finite s&t= {x;}I; ¢ § C RY (S is convex) following a discrete
probability measure. Let the distortion be measured by a Bregman divergelceConsider a
simple encoding scheme that represents the random variable by a covestans, i.e., codebook
size is one, or rate is zero. The solution to the rate-distortion problem in thésisahe trivial
assignment. The corresponding distortion-rate function is giveh, (X, s)] that depends on the
choice of the representatigand can be optimized by picking the right representative. We call this
optimal distortion-rate function thBregman informatiomf the random variablX for the Bregman
divergenced, and denote it byy(X), i.e.,

n
lo(X) = min Ey[dy(X,s)] = min ZlVi dy(Xi, ) - 1)
seri(S) Seri(S) &
The optimal vectos that achieves the minimal distortion will be called Begman representative
or, simply therepresentativef X. The following theorem states that this representative always ex-
ists, is uniquely determined and, surprisinglges not depenah the choice of Bregman divergence.
In fact, the minimizer is just the expectation of the random variable

Proposition 1 Let X be a random variable that take valuesin= {x}I_; ¢ § C RY following
a positive probability measure such that B[X] € ri(s5).> Given a Bregman divergencg d.S x
r(S) — [0,), the problem

[min E, [do(X, 5)] ()

has a unique minimizer given s = pu = E,[X].
Proof The function we are trying to minimize i(s) = Ey[dy(X,S)] = L1 Vidg(Xi,s). Since
p = E,[X] €ri(S), the objective function is well-defined at Now, Vs € ri($),

n n

B9~ lre) =Y vick(x.9)— 3 vidlXi, 1)

= Q(p)-—qu)—-<;§&qu——s,DqKs)> +*<?§;\th—[L,DqX;L)>
= @p) —@s) — (p—s.09(s))
= d(P(uas) > 0,

5. The assumption th&, [X] € ri(S) is not restrictive since a violation can occur only whefxpcC bd(S), i.e., the
entire convex hull ofX is on the boundary d&.
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with equality only whers = p by the strict convexity ofp (Appendix A, Property 1). Hencey is
the unique minimizer od,. [

Note that the minimization in (2) is with respect to the second argumesiy. dfroposition 1 is
somewhat surprising since Bregman divergences are not necessasix in the second argument
as the following example demonstrates.

Example 4 Considerp(x) = 53_;x? defined oriR? so thatdy(x,s) = y°_; (6 — s} — 3(x; — 5j)s}).
For the random variabl¥ distributed uniformly over the sef = {(1,1,1),(2,2,2),(3,3,3),(4,4,4),
(5,5,5)},

3 3
E[dy(X,5)] =135+25 $—-90Y &,
[(P( S)] + gll ]le

which is clearly not convex is since the Hessiall?J,(s) = diag(12s— 18) is not positive definite.
However,Jy(s) is uniquely minimized bys = (3,3,3), i.e., the expectation of the random variable
X.

Interestingly, the converse of Proposition 1 is also true, i.e., for all randariablesX, if E[X]
minimizes the expected distortion Xfto a fixed point for a smooth distortion functiéi(x,y) (see
Appendix B for details), thefr (x,y) has to be a Bregman divergence (Banerjee et al., 2005). Thus,
Bregman divergences aeghaustivavith respect to the property proved in Proposition 1.

Using Proposition 1, we can now give a more direct definition of Bregmamrimdtion as fol-
lows:

Definition 2 Let X be a random variable that takes valuestin= {x;}{' ; C § following a proba-
bility measurev. Let u = Ey[X] = 31 vix €ri(S) and letdy : S x ri (5) [0,0) be a Bregman
divergence. Then thBregman Informatiomf X in terms ofd, is defined as

n

lo(X) = Ev[do(X, )] = ZVidcp(XbH) :

Example 5 (Variance) Let X = {x;}{'; be a set inRY, and consider the uniform measure, i.e.,
ES % over X. The Bregman information o with squared Euclidean distance as the Bregman

divergence is given by
n

lo(X) = i;V idg(Xi, ZHXI pl?,

which is just the sample variance.

Example 6 (Mutual Information ) By definition, the mutual informationU;V) between two dis-
crete random variabld$ andV with joint distribution{{p(ui,vj)}{‘:1}”‘:1 is given by

m

- le(ui)KL( p(Vui) [| p(V) ) -
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Consider arandom variabfg that takes values in the set of probability distributicdis= { p(V|u;) }{ ;
following the probability measurgv;}i! ; = {p(ui)}{_, over this set. The mean (distribution) Af

is given by
n

n=E[PVIU] = 3 PUIPIVIE) = 3 puV) = PIV).

Hence,

n

I(UV) = Elvidcp(D(VIUi),u) = lo(Zy) ,

i.e., mutual information is the Bregman informationfyfwhend,, is the KL-divergence. Similarly,

for a random variabl&, that takes values in the set of probability distributidiis= {p(U |vj) }].;
following the probability measurgv; }17; = {p(v;j)}]L, over this set, one can show tHat);V) =
lo(Zv). The Bregman information df, andZ, can also be interpreted as the Jensen-Shannon diver-
gence of the set&, and zZ, (Dhillon et al., 2003).

Example 7 The Bregman information corresponding to Itakura-Saito distance alsa bhasful
interpretation. Letf = {F}[; be a set of power spectra corresponding tiifferent signals, and
let v be a probability measure of. Then, the Bregman information of a random variabléhat
takes values ir¥¥ following v, with Itakura-Saito distance as the Bregman divergence, is given by

n

lo(F) _Zlvidcp(Fu,F_) = : ;[/T; (—Iog (Egzi) + EE:E; — 1) de

= _%_[ ];_ivilog <%§:§> de,

whereF is the marginal average power spectrum. Based on the connection betveeeaorre-
sponding convex functiop and the negative entropy of Gaussian processes (Cover and Thomas,
1991; Palus, 1997), it can be shown that the Bregman informagidn) is the Jensen-Shannon
divergence of the generating processes under the assumption tharéhegual mean, stationary
Gaussian processes. Further, considercéass signal classification problem where each class of
signals is assumed to be generated by a certain Gaussian process. Ritwjsfthe optimal Bayes

error for this classification problem averaged upto tinteéenP.(t) is bounded above and below by
functions of the Chernoff coefficie(t) (Kazakos and Kazakos, 1980) of the generating Gaussian
processes. The asymptotic value of this Chernoff coefficieittasds tow is a function of the
Bregman information oF, i.e.,

t—o

imB(t) = exp(—%l(p(F)).

and is directly proportional to the optimal Bayes error.

3.1.1 ENSEN SINEQUALITY AND BREGMAN INFORMATION

An alternative interpretation of Bregman information can also be made in terdemnsén’s inequal-
ity (Cover and Thomas, 1991). Given any convex functpifor any random variablX, Jensen’s
inequality states that
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A direct calculation using the definition of Bregman information shows that¢Bae et al., 2004b)

—

a

E[o(X)] —@E[X]) = E[aX)] - ®E[X]) - E[(X - E[X], DO(E[X]))]
= E[e(X) — 0(E[X]) — (X~ E[X], DO(E[X]))]
Elde(X,E[X])] = lg(X) = 0,

where (a) follows since the last term is 0, and (b) follows from the lineafigkpectation. Thus the
difference between the two sides of Jensen’s inequality is exactly ecqihal Bregman information.

—
= &

3.2 Clustering Formulation

Let X be a random variable that takes valuestir= {x;}] ; following the probability measure.
WhenX has a large Bregman information, it may not sufflce to encédising a single represen-
tative since a lower quantization error may be desired. In such a situatatyel goal is to split
the setX into k disjoint partitions{)@}ﬁzl, each with its own Bregman representative, such that
a random variabl® over the partition representatives serves as an appropriate quantizbXon
Let M = {pn}i_, denote the set of representatives, and {Th}{_; With T, = 3., Vi denote
the induced probability measure &vf. Then the induced random varialle takes values i/
following Tt

The quality of the quantizatioM can be measured by the expected Bregman divergence be-
tweenX andM, i.e., Ex m[dy(X,M)]. SinceM is a deterministic function oX, the expectation is
actually over the distribution of, so that

k
Ex[d(p(XvM>] = Z Z Vdcp Xi, 4h) ZT[h Z —dcp Xi, bh) = En[l (Xn)]
= h=1  xex, Th
whereXy is the random variable that takes values in the partifiqriollowing a probability dis-
trlbutlon L andly(Xn) is the Bregman information ofy. Thus, the quality of the quantization is
equal to the expected Bregman information of the partitions.

An alternative way of measuring the quality of the quantizafibrcan be formulated from
an information theoretic viewpoint. In information-theoretic clustering (Dhilloale 2003), the
quality of the partitioning is measured in terms of the loss in mutual information reg@tm the
guantization of the original random variab¥e Extending this formulation, we can measure the
quality of the quantizatiomM by the loss in Bregman information due to the quantization, i.e., by
lo(X) —1o(M). Fork = n, the best choice is of cours¢ = X with no loss in Bregman information.
Fork = 1, the best quantization is to pik [X] with probability 1, incurring a loss dfy(X). For
intermediate values df, the solution is less obvious.

Interestingly the two possible formulations outlined above turn out to be idé(giea Theo-
rem 1 below). We choose the information theoretic viewpoint to pose thégonoisince we will
study the connections of both the hard and soft clustering problems tostigtidn theory in Sec-
tion 6. Thus we define thBregman hard clustering probleis that of finding a partitioning of
X, or, equivalently, finding the random varialNg such thathe loss in Bregman informatiodue
to quantizationo¢(M) = lo(X) — I4(M), is minimized Typically, clustering algorithms assume a
uniform measure, i.ey; = %,Vi, over the data, which is clearly a special case of our formulation.

The following theorem shows that the loss in Bregman information and the&xpBregman
information of the partitions are equal.
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Theorem 1 Let X be a random variable that takes valuesiin= {x;}_; ¢ s C R? following
the positive probability measuke Let {Xh}ﬁzl be a partitioning ofX and letr, = ¥, .y, Vi be the
induced measuraon the partitions. Let Xbe the random variable that takes valuestipfollowing
o forxi € Xp, forh=1,... k. LetM = {pn}k_; with pp € ri(S) denote the set of representatives

of {Xn}K_,, and M be a random variable that takes valueglfifollowing Tt Then,

k
Lo(M) = 1(X) —lp(M) = Zl thﬁ do(Xi, t2n) -

Proof By definition,

n k
oX) = 3 vidhlxop) = 5 5 vidhlxi.p)

k

= 3 5 vifox) - o(u) - (xi — 1, 00(p))}

h=1x;€Xp
k

= 2 3 vid00) — 0pan) = 06— o D))+ (6 — pan, D0(pan))
=1Xi€EXh

+@(pn) — () — (Xi — pn+ pn— p, OQ(p)) }

k
= 3> > { dy(Xi, en) + dg(ph, ) + (Xi — pen, OQ(pen) — O(pe)) }

h=1x;€Xp
K v K
= Sy ad(p(xiaﬂh)‘i‘ > > Vide(pn, 1)
h=1 X€Xy h=1x;€Xp
K v
+yYm Y —(Xi — e, OQ(pen) — D))

h=1 Xi€Xy

K v
= > Thlg(Xn) + z Thg(pen, 1) + z YO —Xi — fh, 0@(pen) — O pe)
—1 h=1 Xi €Xh Th

= En['tp( )]+ (P(M)v

SINCeY xcx, 7 Xi = Hh. u
Note thatly(X) can be interpreted as the “total Bregman information”, kyghl) can be interpreted
as the “between-cluster Bregman information” since it is a measure ofyéinee between the clus-
ter representatives, while,(M) can be interpreted as the “within-cluster Bregman information”.
Thus Theorem 1 states that the total Bregman information equals the sum withiire-cluster
Bregman information and between-cluster Bregman information. This is aajzad¢ion of the
corresponding result for squared Euclidean distances (Duda eb@1.).2

Using Theorem 1, the Bregman clustering problem of minimizing the loss in Bregrfama-
tion can be written as

K
min (1o(X) —lg(M)) = min (Z > vid(p(xi,,uh)) : )

M H=x €56,

j
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Algorithm 1 Bregman Hard Clustering

Input: Setx = {x;}; € 5 C RY, probability measure over X, Bregman divergencey : § xri(S§) — R,
number of clusterk.
Output: M, local minimizer ofLy(M) = T§_; ¥ xiex, Vide(Xi, n) where M = {pn}f_,, hard partitioning
{Xn}iy of X.
Method:
Initialize {pn}{_, with pn € ri(S) (one possible initialization is to chooge, € ri(S) at random)
repeat
{The Assignment Stép
SetX, —0,1<h<k
fori=1ltondo
Xn — XnU{Xi}
whereh = h'(x) = argmindg(Xi, )
h/

end for
{The Re-estimation Stép
for h=1tokdo
T'h — ZX|€Xh Vi
Bh < Zx.eth Xi
end for
until convergence
retunM’ « {1k,

Thus, the loss in Bregman information is minimized if the set of representatfvessuch that the
expected Bregman divergence of points in the originalXs&t their corresponding representatives
is minimized. We shall investigate the relationship of this formulation to rate distorteoryhn
detail in Section 6.

3.3 Clustering Algorithm

The objective function given in (3) suggests a natural iterative relataigorithm for solving
the Bregman hard clustering problem (see Algorithm 1). It is easy to séel#ssicalkmeans,
the LBG algorithm (Buzo et al., 1980) and the information theoretic clustetguarithm (Dhillon
et al., 2003) are special cases of Bregman hard clustering for sjHadidean distance, Itakura-
Saito distance and KL-divergence respectively. The following pritipas prove the convergence
of the Bregman hard clustering algorithm.

Proposition 2 The Bregman hard clustering algorithm (Algorithm 1) monotonically desgsahe
loss function in (3).

Proof Let {x"1k_ be the partitioning of( after thet'h iteration and let® = {u\V}k__ be the
corresponding set of cluster representatives. Then,

(a

k
z 3 wdalpn) =53 videliply)
x.e)cn :xe)qﬁ‘

=

—
o
Nerd

v
HPV4 ~

vdq,(xi,uff“)) = Lo(MUH)y,
(t+1)

x. €Xy
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where (a) follows from the assignment step, and (b) follows from thestenation step and Propo-
sition 1. Note that if equality holds, i.e., if the loss function value is equal aseantive iterations,
then the algorithm will terminate. |

Proposition 3 The Bregman hard clustering algorithm (Algorithm 1) terminates in a finitebarm
of steps at a partition that is locally optimal, i.e., the total loss cannot be dsegkhy either (a) the
assignment step or by (b) changing the means of any existing clusters.

Proof The result follows since the algorithm monotonically decreases the objéatiggon value,
and the number of distinct clusterings is finite. |

In addition to local optimality, the Bregman hard clustering algorithm has the fwltpnter-
esting properties.

Exhaustiveness: The Bregman hard clustering algorithm with cluster centroids as optimal-repre
sentatives works foall Bregman divergences armhly for Bregman divergences since the
arithmetic mean is the best predictamly for Bregman divergences (Banerjee et al., 2005).
However, it is possible to have a similar alternate minimization based clusteringttahgo
for distance functions that are not Bregman divergences, the priniideyetice being that
the optimal cluster representative, when it exists, will no longer be the atithmean or
the expectation. Theonvex- kneans clustering algorithm (Modha and Spangler, 2003) and
the generalizations of the LBG algorithm (Linde et al., 1980) are examplgsabf alternate
minimization schemes where a (unique) representative exists becauswexitp

Linear Separators: For all Bregman divergences, the partitions induced by the Bregman hard
clustering algorithm are separated by hyperplanes. In particular, the @oints that are
equidistant to two fixed pointg1, 2 in terms of a Bregman divergence is given Hy=
{x | do(x, 1) = dy(X, p2) }, i.€., the set of points,

{x ] (x,00(p2) — O@(pe1)) = (@(p1) — (o1, OQ(pe1))) — (@(p22) — (w2, O@(p22))) }

which corresponds to a hyperplane.

Scalability: The computational complexity of each iteration of the Bregman hard clustdgog a
rithm is linear in the number of data points and the number of desired clusteds Bvegman
divergences, which makes the algorithm scalable and appropriate der darstering prob-
lems.

Applicability to mixed data types: The Bregman hard clustering algorithm is applicable to mixed
data types that are commonly encountered in machine learning. One casediferent
convex functions that are appropriate and meaningful for differebsets of the features.
The Bregman divergence corresponding to a convex combination obthpanent convex
functions can then be used to cluster the data.

4. Relationship with Exponential Families

We now turn our attention tsoftclustering with Bregman divergences. To accomplish our goal, we
first establish that there is a uniqgue Bregman divergence corresjgaiodenery regular exponential
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family distribution. Later, we make this relation more precise by establishing dibijdeetween
regular exponential families amdgular Bregman divergence$he correspondence will be used to
develop the Bregman soft clustering algorithm in Section 5. To presemesults, we first review
some background information on exponential families and Legendre duayations 4.1 and 4.2
respectively.

4.1 Exponential Families

Consider a measurable spgée, B) whereB is ac-algebra on the se®. Lett be a measurable
mapping fromQ to a set7 C RY, whereZ may be discrete (e.g7 c N). Letpg: 7 — R,
be any function such that ifQ, B) is endowed with a measui@d?(w) = po(t(w))dt(w), then
Joco AP (w) < . The measurdy is absolutely continuous with respect to the Lebesgue mea-
suredt(w). When7 is a discrete setlt(w) is the counting measure aRgis absolutely continuous
with respect to the counting meastre.

Now, t(w) is a random variable frorfQ2, B, Ry) to (7,0(‘7)), whereo(7') denotes the-algebra
generated byl". Let © be defined as the set of all paramei@rs RY for which

/weQ exp((6,t(w))) dRp(w) < oo

Based on the definition @, it is possible to define a functiap: © — R such that

w(o)=tog ([ _exp(io.t(e))dR@ ) @

A family of probability distributions, parameterized by @-dimensional vectof € © C RY such
that the probability density functions with respect to the meadt(e) can be expressed in the form

f(w;6) = exp((0,t(w)) — W(0)) po(t(w)) (5)

is called arexponential familyvith natural statistict(w), natural paramete® andnatural param-
eter spaced. In particular, if the components ¢fw) are affinely independent, i.ef, non-zero
ac RY such that(a, t(w)) = ¢ (a constantyw € Q, then this representation is said torh@imal’
For a minimal representation, there exists a unique probability deh@ity0) for every choice of
0 € © (Wainwright and Jordan, 2003)f, is called afull exponential familyof order din such a
case. In addition, if the parameter sp&2és open, i.e.© = int(©), then 7y is called aregular
exponential family

It can be easily seen thabifc RY denotes the natural statisti@o), then the probability density
functiong(x; @) (with respect to the appropriate measdx@ given by

9(x;8) = exp((6,x) — W())po(x) (6)

is such thatf (w; 8)/9(x; @) does not depend of. Thus,x is a sufficient statistic (Amari and Na-
gaoka, 2001) for the family, and in fact, can be shown (Barndorffddig 1978) to be minimally

6. For conciseness, we abuse notation and continue to use the Lebdegua sign even for counting measures. The
integral in this case actually denotes a sum aveFurther, the use of absolute continuity in the context of counting
measure is non-standard. We say the meaRyig absolutely continuous with respect to the counting meggyife
Po(E) = 0 for every set withuc(E) = 0, whereE is a discrete set.

7. Strictly speaking non-zerca such thaPy({w: (t(w),a) =c}) = 1.
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sufficient. For instance, the natural statistic for the one-dimensionalsi@audistributions denoted

by f(w;o,p) = ;ﬂcexp(— (‘”2;‘2‘)2) is given byx = [w, w?] and the corresponding natural parameter

turns out to be& = [0—“2, —2%2], which can be easily verified to be minimally sufficient. For our anal-
ysis, it is convenient to work with the minimal natural sufficient statigstand hence, we redefine
regular exponential families in terms of the probability densitx af RY, noting that the original

probability space can actually be quite general.

Definition 3 A multivariate parametric familyfy, of distributions{ p(y,¢)|6 € © =int(©) = dom(y) C
RY} is called a regular exponential family if each probability density is of the form

Prp.6) (X) = exp((x,0) —W(0))po(x), VxR,
wherex is a minimal sufficient statistic for the family.

The functiony(8) is known as thdog partition functionor the cumulant functiorcorresponding

to the exponential family. Given a regular exponential fansily, the log-partition functionp is
uniquely determined up to a constant additive term. It can be shown (&df:Nelsen, 1978) that

© is a non-empty convex set iR% andy is a convex function. In fact, it is possible to prove a
stronger result that characteriagsn terms of a special class of convex functions called Legendre
functions, which are defined below.

Definition 4 (Rockafellar (1970)) Let s be a proper, closéatonvex function witf® = int(dom(y)).
The pair(©, ) is called a convex function of Legendre type or a Legendre function fiolleving
properties are satisfied:

(L1) ©is non-empty,

(L2) y is strictly convex and differentiable a®,

(L3) VO, € bd(O), elin; |OW(0)|| — o wheref € ©.
—Ub

Based on this definition, we now state a critical property of the cumulantibamof any regular
exponential family.

Lemma 1 Let be the cumulant function of a regular exponential family with natural patame
space® = dom(y). Theny is a proper, closed convex function witit(©) = © and (O,¢) is a
convex function of Legendre type.

The above result directly follows from Theorems 8.2, 9.1 and 9.3 of Raffallielsen (1978).

4.2 Expectation Parameters and Legendre Duality

Consider al-dimensional real random vectdrdistributed according to a regular exponential family
densitypy, ¢y specified by the natural parametee ©. The expectation ok with respect tqy g,
also called the@xpectation parameteis given by

= 1(0) = By (X = [ XPiy0) (00 (7)

8. A convex function is proper if donfy) is non-empty and'x € dom(W), P(x) > —oo. A convex function is closed
if it is lower semi-continuous.
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It can be shown (Barndorff-Nielsen, 1978; Amari, 1995) that thesetqtion and natural parameters
have a one-one correspondence with each other and span spaeshihiaa dual relationship. To
specify the duality more precisely, we first define conjugate functions.

Definition 5 (Rockafellar (1970)) Let  be a real-valued function dR9. Then itsconjugate func-
tion Y* is given by

Pi(t)= sup {{t,0)—w(0)}. (8)
Oedom(y)

Further, if p is a proper closed convex functiow;” is also a proper closed convex function and
g =y

Whenu is strictly convex and differentiable ové = int(dom({)), we can obtain the uniqug'
that corresponds to the supremum in (8) by setting the gradight@®f— y(0) to zero, i.e.,

O((t,6) ~W(8))lg—gr =0 = t=0y(8"). (9)
The strict convexity ofy implies thatOy is monotonic and it is possible to define the inverse
function (OY) 1 : ©* — O, where®* = int(dom(*)). If the pair @, ) is of Legendre type, then
it can be shown (Rockafellar, 1970) th&'( @*) is also of Legendre type, ari®, Y) and(O*, {*)
are called Legendre duals of each other. Further, the gradient mapp®mgontinuous and form a

bijection between the two open s&@sand®*. The relation betwee(®, ) and (©*,J*) result is
formally stated below.

Theorem 2 (Rockafellar (1970)) Let Y be a real-valued proper closed convex function with con-
jugate functionp*. Let® = int(dom(y)) and©* = int(dom(y*)). If (O, ) is a convex function of
Legendre type, then

(i) (©*,y*)is a convex function of Legendre type,
(i) (©,v) and(©*,p*) are Legendre duals of each other,

(iii) The gradient functiorldy : © — ©* is a one-to-one function from the open convex&ento
the open convex sé&r’,

(iv) The gradient function8y, Oy* are continuous, andly* = (OY) L.

Let us now look at the relationship between the natural pararieted the expectation parameger
defined in (7). Differentiating the identity py ¢)(X)dx = 1 with respect t@ gives usu = u(0) =
Oy(8), i.e., the expectation paramejeiis the image of the natural parameéeunder the gradient
mappingy. Let @ be defined as the conjugateyfi.e.,

(1) = sup{{11,8) — Y(6)}. (10)
6co

Since(O, ) is a convex function of Legendre type (Lemma 1), the p@xsp) and(int(dom(@)), ¢)
are Legendre duals of each other from Theorem 2,¢.e:,* and in{fdom(g)) = ©*. Thus, the
mappings between the dual spaceédotn(@)) and© are given by the Legendre transformation

p(0)=0p06)  and  O(p)=0¢(k). (11)
Further, the conjugate functiagpcan be expressed as
(1) = (B(11), 1) — W(B(1)), Ypu € int(dom(g)) . (12)
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4.3 Exponential Families and Bregman Divergences

We are now ready to explicitly state the formal connection between expohiamntigies of distri-
butions and Bregman divergences. It has been observed in the lieetattirexponential families
and Bregman divergences have a close relationship that can be expboisederal learning prob-
lems. In particular, Forster and Warmuth (2000)[Section 5.1] remarkedhedog-likelihood of
the density of an exponential family distributiqny ) can be written as the sum of the negative
of a uniquely determined Bregman divergerigex, ) and a function that does not depend on the
distribution parameters. In our notation, this can be written as

log(P(y,6) (X)) = —dy(X, (6)) +log(bg(x)) , (13)

where@ is the conjugate function af andp = p(0) = OY(0) is the expectation parameter cor-
responding ta@. The result was later used by Collins et al. (2001) to extend PCA to ertiahe
families. However, as we explain below, a formal proof is required to sheiv(13) holds for all
instancex of interest. We focus on the case wheg ) is aregular exponential family.

To get an intuition of the main result, observe that the log-likelihood of angmsatial family,
considering only the parametric terms, can be written as

(X,0)—w(O) = ((1,0)—W(0))+ (x—p,0)
= @p)+ x—p,00(p)),

from (11) and (12), whergs € int(dom(g)). Therefore, for anyi € dom(@), 8 € ©, andu €
int(dom(¢g)), one can write

(X,0) —W(8) = —do(x,p) +@(x) .

Then considering the density of an exponential family with respect to theppate measurdx,
we have

log(p(y,e)(X)) = (x,0) —W(0) +logpo(x) = —dg(x, 1) +log(by(x)) ,

wherebg(x) = exp(@(X)) po(X).

Thus (13) follows directly from Legendre duality fieee dom(¢). However, for (13) to be useful,
one would like to ensure that it is true for all individual “instancgghat can be drawn following
the exponential distributiopy 6. Let Iy, denote the set of such instances. Establishing (13) can be
tricky for all x € Iy since the relationship betwegpand donf) is not apparent. Further, there are
distributions for which the instances spdgeand the expectation parameter spacgdiom(¢)) are
disjoint, as the following example shows.

Example 8 A Bernoulli random variableX takes values inf{0,1} such thatp(X = 1) = q and
p(X = 0) = 1—q, for someq € [0,1]. The instance space fof is justly = {0,1}. The cumulant
function forX is P(0) =log(1+exp(8)) with © = R (see Table 2). A simple calculation shows that
the conjugate functiop(y) = plogu+ (1 — p)log(1—p), Yue (0,1). Since@is a closed function,
we obtaing(p) = 0 for pe {0,1} by taking limits. Thus, the effective domain@fs [0, 1] andu = q,
whereas the expectation parameter space is given @oim{@)) = (0,1). Hence the instance space
Iy and the expectation parameter spacedom(@)) are disjoint; howeveky, C dom(¢).
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In this particular case, since the “instances” lie within d@in the relation (13) does hold for all
X € ly. However, it remains to be shown tHgtC dom(¢) for all regular exponential family distri-
butions.

In order to establish such a result for all regular exponential family digtdbs, we need to
formally define the set of instanckg If the measuré, is absolutely continuous with respect to the
counting measure, there ly if py,g)(x) > 0. On the other hand, R, is absolutely continuous with
respect to the Lebesgue measure, therly, if all sets with positive Lebesgue measure that contain
x have positive probability mass. A closer look reveals that the set of iretfjis independent of
the choice oB. In fact,ly is just the support Py and can be formally defined as follows.

Definition 6 Letl, denote the set of instances that can be drawn followigg)(x). Thenxo € Iy
if VI such thatxg € | and J, dx > 0, we havef, dRy(x) > 0, whereP, is as defined in Section 4.1;
also see footnote 6.

The following theorem establishes the crucial result that the set of irethnis always a subset of

dom(¢).

Theorem 3 Let |y be the set of instances as in Definition 6. Th@nCldom(@) whereg is the
conjugate function of.

The above result follows from Theorem 9.1 and related results in Befidielsen (1978). We
have included the proof in Appendix C.

We are now ready to formally show that there is a unique Bregman diveggemresponding to
every regular exponential family distribution. Note that, by Theorem 3, itificgent to establish
the relationship for atk € dom(¢).

Theorem 4 Let py ) be the probability density function of a regular exponential family distribu-
tion. Letgbe the conjugate function gfso that(int(dom(g)), @) is the Legendre dual ¢P, ). Let

0 € O be the natural parameter and € int(dom(@)) be the corresponding expectation parameter.
Let d, be the Bregman divergence derived frgmThen py, ) can be uniquely expressed as

Pw,6)(X) = exp(—dg(X, 1))by(x),  Vx € dom(g) (14)
where Iy : dom(@) — R is a uniquely determined function.

Proof For allx € dom(g), we have

P.e)(X) = exp({x,8) —W(8))po(X)
= exp(@(p) + (X —p, 0e(p))) po(X) (using (11) and (12))
= exp(—{Q(X) —@(p) — (x— p, 0P()) } + P(X)) po(x)
= exp(—dg(X, p))by(X) ,

wherebg(x) = exp(@(X)) po(X)).
We observe thapy ) uniquely determines the log-partition functignto a constant additive

term so that the gradient space of all the possible functipissthe same, i.e., the expectation pa-
rameterp = OY(0) corresponding t@ is uniquely determined and the corresponding conjugate
functionsediffer only by a constant additive term. Hence the Bregman divergeg(een) derived
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from any of these conjugate functions will be identical since constaritiaelterms do not change
the corresponding Bregman divergence (Appendix A, Property A& Llegendre duality between
@ andy also ensures that no two exponential families correspond to the same Brdymaence,
i.e., the mapping is one-to-one. Further, sipggg) (x) is well-defined on dorfyp), and the corre-
spondingdy(X, ) is unique, the functioby(x) = exp(dy(X, 1)) Py,e) (X) is uniquely determinedl

4.4 Bijection with Regular Bregman Divergences

From Theorem 4 we note that every regular exponential family corresptana unique and dis-
tinct Bregman divergence (one-to-one mapping). Now, we investigagthehthere is a regular
exponential family corresponding to every choice of Bregman divexgéonto mapping).

For regular exponential families, the cumulant functipas well as its conjugatg are convex
functions of Legendre type. Hence, for a Bregman divergencergttkfrom a convex functioq
to correspond to a regular exponential family, it is necessaryithet of Legendre type. Further,
it is necessary that the Legendre conjugatef ¢ to beC®, since cumulant functions of regular
exponential families ar€”. However, it is not clear if these conditions are sufficient. Instead, we
provide a sufficiency condition using exponentially convex functionshf2dr, 1965; Ehm et al.,
2003), which are defined below.

Definition 7 Afunctionf:@+— R, ,, © C RYis called exponentially convex if the kerr€j (o, B) =
f(a+B), with a+ B € O, satisfies

n n

_ZIZle(Hi,Hj)uiLTj >0
i=1j=

for any set{@1,---,0,} C ©with 6;+0; € ©, Vi, j, and{uy,--- ,uy} C C (uj denotes the complex
conjugate olyj), i.e, the kerneKs is positive semi-definite.

Although it is well known that the logarithm of an exponentially convex funtisa convex func-
tion (Akhizer, 1965), we are interested in the case where the logarithmatystonvex with an
open domain. Using this class of exponentially convex functions, we nbnedeclass of Bregman
divergences callegegular Bregman divergences

Definition 8 Let f : © — R, be a continuous exponentially convex function such @ open
andy(6) = log(f(0)) is strictly convex. Letpbe the conjugate function @f. Then we say that the
Bregman divergence, derived from@is aregular Bregman divergence

We will now prove that there is a bijection between regular exponential fanglesregular
Bregman divergences. The crux of the argument relies on resultsrimohar analysis connecting
positive definiteness to integral transforms (Berg et al., 1984). In péaticwe use a result due
to Devinatz (1955) that relates exponentially convex functions to Laplaosforms of bounded
non-negative measures.

Theorem 5 (Devinatz (1955))Let® C RY be an open convex set. A necessary and sufficient con-
dition that there exists a unique, bounded, non-negative meassueh that f: @ — R, can be
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represented as
£(0) = / exp((x, 0))dv(x) (15)
x€Rd
is that f is continuous and exponentially convex.

We also need the following result to establish the bijection.

Lemma 2 Let Y be the cumulant of an exponential family with base measgi@ng natural pa-
rameter spac® C RY. Then, if B is concentrated on an affine subspac@®8ftheny is not strictly
convex.

Proof Let Py(x) be concentrated on an affine subsp8ee {x € RY|(x,b) = c} for someb € R
andc e R. Letl = {0|0 =ab, a € R}. Then, for anyd = ab € |, we have(x,0) = ac Vx € Sand
the cumulant is given by

wo) — tog( [ exl(xe)dR( ) = log( [ ex((x.0)dRx )

= log </Xesexp(o(c)dl%(x)> = log(exp(ac)Py(S)) = ac+log(Pu(S))
(X0, 0) +log(Po(S)) ,

for anyxp € S, implying thaty is not strictly convex. [

There are two parts to the proof leading to the bijection result. Note that veeti@ady established
in Theorem 4 that there is a unique Bregman divergence correspaiodingry exponential family
distribution. In the first part of the proof, we show that these Bregmaarglences are regular (one-
to-one). Then we show that there exists a unique regular exponemtigy fdetermined by every
regular Bregman divergence (onto).

Theorem 6 There is a bijection between regular exponential families and regular Baegtiver-
gences.

Proof First we prove the ‘one-to-one’ part, i.e., there is a regular Bregmamgkwnce corresponding
to every regular exponential family, with cumulant functionp and natural parameter spa@e
Since 7y is a regular exponential family, there exists a non-negative boundediregasuch that
forall@ € ©,

1 = /XERdexp«x,O)—qJ(B))dv(x)
= expy(e) = /XeRdexp(<x,0>)dv(x).

Thus, from Theorem 5, ex(0)) is a continuous exponentially convex function with the open set
O as its domain. Further, being the cumulant of a regular exponential fanig/strictly convex.
Therefore, the Bregman divergendg derived from the conjugate functiop of  is a regular
Bregman divergence.

Next we prove the ‘onto’ part, i.e., every regular Bregman divergeoce2sponds to a unique
regular exponential family. Let the regular Bregman divergeacee generated by and lety be
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the conjugate ofp. Sinced, is a regular Bregman divergence, by Definition|Bis strictly convex
with dom(y) = © being an open set. Further, the function @)(@)) is a continuous, exponentially
convex function. From Theorem 5, there exists a unique non-nedativeded measure that
satisfies (15). Sinc® is non-empty, we can choose some fixed © so that

(b)) = [ expl(x,b))dv(x)

and sadRy(x) = exp((x,b) —W(b))dv(x) is a probability density function. The set of &likc RY for
which

/xeRd EXp(<x70>)d Fb(X) <

is same as the sd® € RY|exp(W(0 +b) — (b)) < o} = {# € RY|6 4+ b € O} which is just a
translated version d@® itself. For anyd such tha® + b € ©, we have

/ exp((x,0+b) — (O +b))dv(x) = 1.
x€Rd
Hence, the exponential familf, consisting of densities of the form

P(y.0)(X) = exp((x,6) — W(6))

with respect to the measuénaso as its natural parameter space gri@) as the cumulant function.

Sincey is strictly convex or®, it follows from Lemma 2 that the measuPgis not concentrated
in an affine subspace @, i.e.,x is a minimal statistic forfy. Therefore, the exponential family
generated by andx is full. Since® is also open, it follows thafy, is a regular exponential family.

Finally we show that the family is unique. Since odlyis given, the generating convex function
could be@(x) = @(x) + (x,a) +c for ac RY and a constant € R. The corresponding conjugate
function(0) = (0 — a) — c differs fromy only by a constant. Hence, the exponential family is
exactly Fy. That completes the proof. [

4.5 Examples

Table 2 shows the various functions of interest for some popular exfiahfamilies. We now look
at two of these distributions in detail and obtain the corresponding Bregivamgyences.

Example 9 The most well-known exponential family is that of Gaussian distributions, riticodar
uniform variance, spherical Gaussian distributions with densities of tihe fo

(x;a) = _ ex —in— al|?
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Table 2: Various functions of interest for some popular exponential fesnifier all the cases shown
in the table x is the sulfficient statistic. Note that for the Gaussian examples the variance
o is assumed to be constant. The number of tridlsfor the binomial and multinomial
examples is also assumed to be constant.

[ Distribution [ p(x; ) [ ] o(p) | do(X, 1) |
1-D Gaussian L gyp— 87 a L2 L (x—p)?
\/W 20° 20° 20°
1-D Poisson M%gA) A ulogp—p xmm§y4x—m
1-D Bernoulli q‘(1— g~ q plogu+ (1 —p)log(1— p) xmm )+ (21— mbm )
1-D Binomial qu(l— QN Ng plog(F) + (N — ) log(“t) xlog( ) (N—x)log(R= ﬁ)
1-D Exponential Aexp(—Ax) 1/A —logp—1 ﬁ —log (u) 1
d-D Sph. Gaussian L eyp(— Ix-al%) a M Lo [|x — paf|?
(2ng?)d 20 20 20
d-D Multinomial I‘I“’N o ne.q) (NgjJ{=f > 1log() PR Iog(%)
[ Distribution [ 0 | (o) | dom(y) | dom(g) [ 1y
1-D Gaussian 3 %292 R R R
1-D Poisson logA exp(0) R R4 N
1-D Bernoulli log(175) log(1+exp(0)) R [0,1] {0,1}
1-D Binomial Iog(lqu) Nlog(1+ exp(0)) R [O,N] {0,1,...,N}
1-D Exponential —A —log(—0) R__ Ryt Ryt
d-D Sph. Gaussian 5 "—22 16117 RY RY RY
d-D Multinomial log(g))S=1 | Nlog(1+355 fexp(6;) | RTT {peRT Ly <N} | {(xezd L |x <N}

wherex,ac RY ando € R is a constant. As shown below(x, a) can be expressed in the canonical
form for exponential families with natural paramefles 5 and cumulant functio(6) = %ZHOHZ,

pixia) = ;fieﬁﬁam<—§;nx—mﬁ)

- exp< H al|* - 12||X‘2> ﬁ
— exp( (x,0) — —|’9H2> exp< 2||X||2) ﬁ
= exp((x,0) —Y(8)) po(x) ,

wherepp(X) is independent of. By (11), the expectation parameter for this distribution is given by

0-2
n=00(0) =0 (5 1017) =% a.
By using (12), the Legendre duglof | is

o2

2
o(p) = (1, 0) —W(0) = <”7£> - 617 = !2;;\2 '

o2
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The corresponding Bregman divergence equals

MIE 2
de(X, ) = @X)—@(p) — (x—p,O0(p)) = % ||2L;||2 *<X7“’%>
X — pl?
202

The functionby(x) in Theorem 4 is given by

X2 [Ix]?

b(P(X) = eXFK(P(X))po(X) = exp< 557 _ = 1 . 1

) V(@m2)d \/(2ne2)d

and turns out to be a constant. Thpg, g)(X) = exp(—dy(X, it))be(X).

Example 10 Another exponential family that is widely used is the family of multinomial distribu-

tions:
NEo d

|_|] X!

wherex; € Z, are frequencies of eventgj:lxj = N andq; > O are probabilities of events,
Z‘j’:lqj =1. As shown belowp(x;q) can be expressed as the density of an exponential distri-
bution inx = {Xj 1 with natural paramete = {Iog( ) 91 and cumulant functionp(8) =

—Nloggq = Nlog(1+z —1ed).

p(X;q) = q;,

pa) = - q
’ n?:lxj! j=1 .

d d-1

N!
= exp| ) xjlogq; | —g——— = exp| ) Xjlogq;+X4l0gad | po(X)
(33000 ) s = ol Zvo oo
d-1 d-1
= exp(z xjloggj+(N—% Xj)loqu> Po(X)
p— ]:l

_ exp(Z |og< )—i—NIOQQd) Po(X)
= exp((x,0) +Nlogqgq)po(X) = exp( NIOg(% ))

d—
= exp<<x,9> —Nlog <1+ Zle9i>> Po(X) = exp((x,8) —W(8))po(X),

=1
wherepp(x) is independent of. The expectation parametgris given by

) o qd
p=0y0)=0 (Nlog <1+dzle91>> _ Nei ]
=1

N =gt
e,
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and the Legendre duglof y is

d-1
on) = (1,0)—w( Zqulog<g‘>+Nloqu

- Zquloqu = NZ <u‘)log<uj>

wherepg = Ngg so thatz{j:1 Hj = N. Note thatg(y) is a constant multiple of negative entropy
for the discrete probability distribution given bﬁ%}?:l- From Example 2, we know that the
corresponding Bregman divergence will be a similar multiple of KL-diveogei.e.,

do(X, 1) = @X) —@(p) — (X =, O(pe))

_ Niglog( ) - Z“‘Iog( D) - % w) (14100 (%))

=

The functionby(x) for this case is given by

B B ¢ N
b(p(x)—exp(cp(x))po(x)—exp(lzlxnog(ﬁ)> T e

andp(y,g) (X) = exp(—dy(X, 1)) b(X).

5. Bregman Soft Clustering

Using the correspondence between regular exponential families anldr&jegman divergences,
we now pose the Bregman soft clustering problem as a parameter estimatidenpifor mixture
models based on regular exponential family distributions. We revisit thectatjmn maximization
(EM) framework for estimating mixture densities and develop a Bregman Isstecing algorithm
(Algorithm 3) for regular Bregman divergences. We also present tegrBan soft clustering al-
gorithm for a set of data points with non-uniform non-negative weightsn@asure). Finally, we
show how the hard clustering algorithm can be interpreted as a spe@aifahe soft clustering al-
gorithm and also discuss an alternative formulation of hard clustering in td@rendual divergence
derived from the conjugate function.

5.1 Soft Clustering as Mixture Density Estimation

Given a setX = {x}]; C RY drawn independently from a stochastic source, consider the prob-
lem of modeling the source using a single parametric exponential family distribufibis is the
problem of maximum likelihood estimation, or, equivalently, minimum negative lagifikod esti-
mation of the parameter(s) of a given exponential family distribution. Froaoiidm 4, minimizing
the negative log-likelihood is the same as minimizing the corresponding exf@agchan diver-
gence. Using Proposition 1, we conclude that the optimal distribution is thevitimg: = E[X] as
the expectation parameter, whetds a random variable that takes valuesXirfollowing (by the
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independence assumption) the empirical distribution aveFurther, note that the minimum neg-
ative log-likelihood ofX under a particular exponential model with log-partition functiors the
Bregman information oX, i.e., lo(X), up to additive constants, whegds the Legendre conjugate
of .

Now, consider the problem of modeling the stochastic source with a mixtukedehsities
of the same exponential family. The model yields a soft clustering wheréecdusorrespond to
the components of the mixture model, and the soft membership of a data pointhrcleater
is proportional to the probability of the data point being generated by thesmonding density
function. For regular Bregman divergences, we defineBifsgman soft clustering probleas that
of learning the maximum likelihood parametérs- {E)h,m}ﬁzl = { ph, Trh}ﬁ:l of a mixture model

of the form
k

k
P(XIM) = 3 TPy, (X) = 3 Thexp(—dg(x, pn) bg(x). (16)
h=1 h=1
where the last equality follows from Theorem 4. Since the mixture compoaesil assumed to
be from the same family, the above problem is a special case of the gemedmhum likelihood
parameter estimation problem for mixture models and can be solved by applgiEéthlgorithm.

5.2 EM for Mixture Models Based on Bregman Divergences

Algorithm 2 describes the well known application of EM for mixture density egtoma This
algorithm has the property that the likelihood of the datg(") is non-decreasing at each iteration.
Further, if there exists at least one local maximum for the likelihood functian the algorithm
will converge to a local maximum of the likelihood. For more details, the readexfésred to
Collins (1997); McLachlan and Krishnan (1996) and Bilmes (1997).

The Bregman soft clustering problem is to estimate the maximum likelihood paranmténe
mixture model given in (16). Using the Bregman divergence viewpoint,et@ gimplified version
of the above EM algorithm that we call the Bregman soft clustering algori&igo(ithm 3). Using
Proposition 1, the computationally intensive M-step turns out to be straiglafdrto solve. In fact,
the Bregman divergence viewpoint gives an alternative interpretatiarwail known efficient EM
scheme applicable to learning a mixture of exponential distributions (Reddewalker, 1984).
The resulting update equations are similar to those for learning mixture modeksntity covari-
ance Gaussians. Note that these equations are applicable to mixturesrefyalay exponential
distributions, as long asis the (minimal) sufficient statistic vector.

It is important to note that the simplification of the M-step is applicable only whepahnam-
eterization is with respect to the expectation parameter space, i.e.,dghmmresponding to an
exponential family is known. Otherwise, if the parameterization is with redpettte natural pa-
rameter space, i.e., the functional form for a family is known in terms of its cuthyland natural
parameter®, the problem

@(x) = sup ((6,x) —W(0)) , (17)
OcRd
needs to be solved to obtai{x). Since the function to be maximized in (17) is precisely the
log-likelihood of the exponential family density (with respect to an appropniegasure), the trans-
formation is equivalent to solving a maximum likelihood estimation problem (with desgagnple),
which is computationally expensive for several exponential family distribatitn such a situation,
transforming the problem to the expectation space need not lead to anye¢aragitputational bene-
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Algorithm 2 Standard EM for Mixture Density Estimation

Input: Setx = {x;}{'; C RY, number of clusterk.
Output: '": local maximizer ofLy(I) = [41(SF_1 ThPy.e, (X)) wherel = {6n, Th1K_,, soft
partitioning {{ p(h|xi)}§_1 }. 1.
Method:
Initialize {6, Th}K_, with somefn € ©,and T, > 0, Sf_ Th=1
repeat
{The Expectation Step (E-stgp)
fori=1tondo
for h=1tokdo

p(h’X|) - ZE/:qu“/ p(qJ,Gh,) (Xi)
end for
end for

{The Maximization Step (M-step)
for h=1tokdo
Th < & 31y p(hixi)
Ghe—mg@wQLﬂompwﬂﬂmmevo
end for
until convergence
returnlt = {6n, i }§_;

Algorithm 3 Bregman Soft Clustering

Input: Setx = {x}I, ¢ S CRY, Bregman divergence,: S x ri(S) — R, number of clusterk.
Output: T, local maximizer off |1 (S K_; Thbg(Xi) exp(—dg(Xi, t2n))) wherel = {pn, T }K_,, soft
partitioning{{p(h|x;) _, H.
Method:
Initialize {en, Th}K_; with somepn € 1i(S), T > 0, andyK_; THh =1
repeat
{The Expectation Step (E-stgp)
fori=1tondo

_ T exp(—dg(Xi, it
Z(?!XI) 3 Thy exXpl— X1,y )
end for

end for
{The Maximization Step (M-step)
for h=1tokdo
Th «— %Zinzj(l.hf)(wxi)
iz1 p(h|xi)xi
i — BRI
end for

until convergence
returnt = {pn, T }K_,
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fits. However, if the Bregman divergendgcorresponding to an exponential family is either known
or easy to compute from the natural parameterization, then Algorithm 3 is ¢atignally much
more efficient. In fact, in some situations it may be easier to design regulgmBredivergences for
mixture modeling of data than to come up with an appropriate exponential famith Stwations
can take full advantage of the computationally efficient Bregman soft cingtalgorithm.

The following result shows how Proposition 1 and Theorem 4 can betosacplify the M-
step of Algorithm 2. Using this result, we then show that Algorithms 2 and 3xaetly equivalent
for regular Bregman divergences and exponential families. Note tlo@Bition 4 has appeared
in various forms in the literature (see, for example, Redner and Walk@4j191cLachlan and
Krishnan (1996)). We give an alternative proof using Bregman damees.

Proposition 4 For a mixture model with density given by (16), the maximization step for tietgle
parameters in the EM algorithm (Algorithm 2jh, 1 < h <k, reduces to:

_ SiLa p(hXi)Xi
Siap(hixi)

Proof The maximization step for the density parameters in the EM algorittni, < h <Kk, is
given by

Kh (18)

n
O = argmax log(p(y.e) (X)) P(h[i).
1=

For the given mixture density, the component densitibs] < h <k, are given by

Pw.6n) (X) = b(X) €xp(—dq(X, pen)).

Substituting the above into the maximization step, we obtain the update equatitresdgpectation
parametergs, 1 < h <Kk,

n

pn o = agmad log(by(xi) exp(—dgy(Xi, ) P(h[Xi)

- argmaxZ(Iog(bm(Xi)) — dg(Xi, ) p(h[Xi)

I I=
n

= argminzld(p(xi,u)p(h]xi) (asby(x) is independent oft)
Bo=

p(h[xi)
Si—1 p(h[xir)°

From Proposition 1, we know that the expected Bregman divergence is midibyzbe expectation
of x, i.e.,

n
= argminy dy(X;, 1)
AP

a phixi) iy p(hixi) X
arg”mmi;d(p(xnﬂ))zir;:lp(hyxi,) - Sitipthix) -

Therefore, the update equation for the parameters is just a weighted)agestep,

n . .
_ 2 PO

B = s p(hixi)
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|
The update equations for the posterior probabilities (E-stg@ X, vh,1 < h <k, are given by

Thexp(—dy(X, ph))

hix) =
p(h|x) ZE/:lT[h' eXp(—d(p(XaP'h’))

as theby(x) factor cancels out. The prior update equations are independent cdrth@tric form
of the densities and remain unaltered. Hence, for a mixture model with densty loy (16), the
EM algorithm (Algorithm 2) reduces to the Bregman soft clustering algorithlgafithm 3).

So far we have considered the Bregman soft clustering problem fdra adere all the ele-
ments are equally important and assumed to have been independently saorpledrhe particular
exponential distribution. In practice, it might be desirable to associate weighith the individual
samples such thgt; v; = 1 and optimize a weighted log-likelihood function. A slight modification
to the M-step of the Bregman soft clustering algorithm is sufficient to addnésnew optimization
problem. The E-step remains identical and the new update equations forghepldh, 1 < h <Kk,
are given by

n

T = _;Vi p(hixi),
s 3i-gvip(hixi)xi
Yimavip(hixi)

Finally, we note that the Bregman hard clustering algorithm is a limiting case obtheaoft
clustering algorithm. For every convex functiprand positive constarft, fois also a convex func-
tion with the corresponding Bregman divergedgg= [3d,. In the limit, when(3 — o, the posterior
probabilities in the E-step take values{id, 1} and hence, the E and M steps of the soft clustering
algorithm reduce to the assignment and re-estimation steps of the hardictyatgorithm.

5.3 An Alternative Formulation for Bregman Clustering

In earlier sections, the Bregman divergence was measured with the datsagsothe first argument
and the cluster representative as the second argument. Since Bregergeiies are not symmet-
ric (with the exception of squared Euclidean distance), we now considalternative formulation
of Bregman clustering where cluster representatives are the firgnargwf the Bregman diver-
gence. Using Legendre duality, we show that this alternate formulation igaéeni to our original
Bregman clustering problem in a dual space using a different, but ugigeéermined Bregman
divergence.

We focus on the hard clustering case. Xebe a random variable that takes valuesXin=
{xi }iL, following a positive probability measuse Then the alternative Bregman hard clustering
problem is to find clusterx, }K_; and corresponding representaties, }f_, that solve

k
min Vi dg(Lth, Xi ). (29)
{l‘lh}ﬁzl thXith
As mentioned earlier, Bregman divergences are convex in the firshargwand hence, the resulting
optimization problem for each cluster is convex so there is a unique optinrakeiative for each
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cluster. However, unlike in the original formulation, the optimal cluster regmeative is not always
the expectation and depends on the Bregman divergiyce
It is interesting to note that this alternative formulation, though seemingly differeduces to
the original formulation with an appropriate representation.qet the generating convex function
of dy such that(int(dom(g)),®) is a convex function of Legendre type and (@tt(dom(y)), y)
be the corresponding Legendre dual. Then for anye int(dom(g)), the Bregman divergence
de(X,y) = dy(6y,0x) wheredy is the Bregman divergence derived fraprand 8y = O@(x), 0y =
Og(y) (Appendix A, Property 6). Using the above property, we can restataltemative Breg-
man clustering problem in the dual space. More specifically Xt= {6y}, where 8y, =
Oe(xi), Vxi, 1 <i<n,and letd, = 0@(pn), Yn, 1 < h <k. Then the hard clustering problem (19)
can be expressed as
k
min vidy (6x,0h). 20
{Bh}ﬁzl h=1 gxigxne I w( . h) ( )

wherexh9 correspond to clustdrin the dual space. It is now straightforward to see that this is our
original Bregman hard clustering problem for the $&tconsisting of the dual data points with the
same measure and the dual Bregman divergendg. The optimal cluster representative in this
dual space is given by the expectation, which is easy to compute. Thermdfiof this approach is
based on the same premise as the efficient EM scheme for exponential faineilitee M-step can

be simplified if there is an easy transition to the dual space.

6. Lossy Compression and Generalized Loss Functions

In this section, we study the connection between Bregman clustering algostidigessy compres-
sion schemes. In particular, we focus on the relationship of our work vidim&on’s rate distortion
theory, showing connections between learning mixtures of exponentigbdifons, the Bregman
soft clustering problem and the rate distortion problem where distortion isuneg using a reg-
ular Bregman divergence (Banerjee et al., 2004a). Then we showlthbese problems involve
a trade-off between compression and loss in Bregman information. Theniafion bottleneck
method (Tishby et al., 1999) emerges as a special case of this viewpoimestiiet our attention
to regular exponential families and regular Bregman divergences in ttisrse

6.1 Rate Distortion Theory for Bregman Divergences

Rate distortion theory (Berger, 1971; Berger and Gibson, 1998) dethithe fundamental limits
of quantizing a stochastic sour¥e~ p(x), x € X, using a random variablé over a reproduction
alphabetX typically assumed to embed the source alphaheite., X C X. In the rate distortion
setting, the performance of a quantization scheme is determined in terms d&thiestathe average
number of bits for encoding a symbol, and the expected distortion betweesotinee and the
reproduction random variables based on an appropriate distortiotidumk: X x X R.. The
central problem in rate distortion theory (Cover and Thomas, 1991) iswpute the rate distortion
function R(D), which is defined as the minimum achievable rate for a specified level ot&pe
distortionD, and can be mathematically expressed as

R(D) = min _ 1(X;X), (21)
P(XX):Ex ¢ [d(X X)]<D
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wherel (X; X) is the mutual information oX andX.

The rate distortion problem is a convex problem that involves optimizing oegpribbabilistic
assignment®(X|x) and can be theoretically solved using the Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972; Csisz, 1974; Cover and Thomas, 1991). However, numerical computation
of the rate distortion function through the Blahut-Arimoto algorithm is often sifda in practice,
primarily due to lack of knowledge of the optimal support of the reproductismom variable.

An efficient solution for addressing this problem is the mapping apprddahefjee et al., 2004a;
Rose, 1994), where one solves a related problem that assumes ligrdiar the support of the
reproduction random variable. In this setting, the optimization is over therassigs as well as
the support set, i.e.,

~min  1(X;X) +BpEy g[d(X,X)] (22)

Xs, P(X|X) ’

‘Xs‘:k

wherefp is the optimal Lagrange multiplier that depends on the chosen toleranceDiefethe
expected distortion antls is the optimal support of the reproduction random variable with cardinal-
ity k. We shall refer to the above problem (22) as the rate distortion problem wsitpjzort set of
finite cardinality (RDFC). It can be shown (Berger, 1971) that the RPFiblem and the original
rate distortion problem have identical solutions when the cardinality of the dpsnp@ort set is
less than or equal tk, which is known to be true for cases without an analytical solution (Bamerje
et al., 2004a).

Our analysis connects the Bregman soft clustering problem to the RDHileprdollowing
results from Banerjee et al. (2004a), which extend previous work€R094; Gray and Neuhoff,
1998) that relatedtmeans clustering to vector quantization and rate-distortion based on squared
Euclidean distortion. LeZ,Z denote suitable sufficient statistic representation%,of so that the
distortion can be measured by a Bregman divergelgde the sufficient statistic space. The RDFC
problem can now be stated directly in termsZodndZ as

_min 1(Z;Z) +BoE; 3[d(Z,2)] (23)
Z, p(z2) ’
|2/ =k

whereZ is the optimal support of the reproduction random variable with cardinfality

Unlike the basic rate distortion problem (21), the RDFC problem (23) is ngeloa convex
problem since it involves optimization over bafk and p(z|z). However, when either of the argu-
ments is fixed, the resulting sub-problem can be solved exactly. In partiwhanZs is known,
then the RDFC problem reduces to that of optimizing gu&iz), which is a feasible convex prob-
lem and can be exactly solved by the Blahut-Arimoto algorithm (@sjsi974). Similarly, when
the assignmentp(2|z) are known, the RDFC problem only involves minimizing the expected dis-
tortion measured in terms of a Bregman divergence and can be exactly ssimg Proposition 1.
Thus the objective function in (23) can be greedily minimized by alternately optighiaver the
individual arguments, yielding a solution that is locally optimal. The details of thédyais and
resulting algorithm can be found in Banerjee et al. (2004a).

Interestingly, it can be shown (Banerjee et al., 2004a) that the RDH@egpnobased on a reg-
ular Bregman divergence is exactly equivalent to the the maximum likelihood raig&timation
problem based on a uniquely determined exponential family when the stigtigbution in the rate
distortion setting equals the empirical distribution over the sampled data points.
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Theorem 7 (Banerjee et al. (2004a))Consider a source Z p(z), where f§z) is the empirical dis-
tribution over the samples. Then the RDFC problem (23) for the source Zregthar Bregman
divergence g, variational parametefp, and reproduction random variablé with|Z| = k is equiv-
alent to the maximum likelihood mixture estimation problem based on the regygdanential family
Feow With number of mixture components set tajkig the conjugate of).

From Section 5, we know that the maximum likelihood mixture estimation problenmfporegu-
lar exponential family is equivalent to the Bregman soft clustering probtenthe corresponding
regular Bregman divergence. Using this in conjunction with Theorem 7oht&n the following
equivalence relation between the RDFC problem and the Bregman saéraigsproblem.

Theorem 8 Consider a source £ p(z), where (§z) is the empirical distribution over the samples.
Then the RDFC problem (23) for the source Z with regular Bregman déverg ¢, variational
parameterfp, and reproduction random variabl@ with ]2] = k is equivalent to the Bregman soft
clustering problem (16) based on the Bregman divergegggwlith number of clusters set to k.

From the above theorem, it follows that Algorithm 3 can be used to solve th&Ridoblem. Note
that the update steps f@(h|x) andT, in Algorithm 3 exactly correspond to the updatespZ|z)
andp(2) in the Blahut-Arimoto step in Algorithm 1 of Banerjee et al. (2004a) for solvirgRDFC
problem. The update @iy in Algorithm 3 is equivalent to the update bin the support estimation
step in Algorithm 1 of Banerjee et al. (2004a). From the viewpoint of atternminimization,
the order of the three updategz|z), p(z) andZ is interchangeable and does not affect the local
optimality guarantees, although different orderings may lead to diffecéutiens.

The Bregman soft clustering problem corresponds to the RDFC prolvidmad to the basic rate
distortion problem (21). However, as mentioned earlier, both the problextstiie same solution
for the rate distortion function when the optimal support\égt is finite andk is sufficiently large.
The solution is the rate distortion function and refers to the asymptotic ratee(@me Thomas,
1991) that can be achieved for a given distortion, when we are alloweati®the source symbols
in blocks of sizem with m — co.

It is also possible to consider a related rate distortion problem where theessymbols are
coded using blocks of size 1. The resultant rate distortion function isreeféo as the “scalar”
or “order 1" rate distortion functioi;(D) (Gray and Neuhoff, 1998). The problem is solved by
performing hard assignments of the source symbols to the closest cédetsmobers, which is
similar to the assignment step in the Bregman hard clustering problem. In facgrter 1” or
“1-shot” rate distortion problem, assuming a known finite cardinality of the optie@oduction
support set, turns out to be exactly equivalent to the Bregman hardrahgspeoblem.

6.2 Compression vs. Bregman Information Trade-off

We now provide yet another view of the RDFC problem (and hence,rBaagsoft clustering) as a
lossy compression problem where the objective is to balance the trabetaffen compression and
preservation of Bregman information. Intuitively, the reproduction ramaariableZ is a coarser
representation of the source random variabiith less “information” tharZ. In rate distortion
theory, the loss in “information” is quantified by the expected Bregman distobtweernZ and
Z. The following theorem, which is along the same lines as Theorem 1, proaidesct way of
guantifying the intuitive loss in “information” in terms of Bregman information.
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Theorem 9 (Banerjee et al. (2004a))The expected Bregman distortion between the source and the
reproduction random variables is exactly equal to the loss in Bregmannrgton due to compres-
sion, i.e.,

E;5[0o(Z,2)] = 1(Z) — 1¢(2) ,
whereZ = Ey3(Z].

The RDFC problem (23) can, therefore, be viewed as an optimization pnabl@lving a trade-off
between the mutual informatidan;Z) that measures the compression, and the loss in Bregman
informationly(Z) — 14(Z). Since the source random varia@és known, the Bregman information
lo(2) is fixed and minimizing the expected distortion is equivalent to maximizing the Bregman
information of the compressed random varialle Hence, this constrained form of the RDFC
problem (23) can be written as:

min{1(Z;2) — Blg(2)}, (24)

p(2lz)
where is the variational parameter corresponding to the desired point in the ratetidis curve
andZ = Ez[Z]. The variational parametg determines the trade-off between the achieved com-
pression and the preserved Bregman information.

6.2.1 INFORMATION BOTTLENECK REVISITED

We now demonstrate how the information bottleneck (IB) method of Tishby €12$9) can be
derived from the RDFC problem (24) for a suitable choice of Bregmeerdéence.

LetY ~ p(y), y € 9 be a random variable. Let the sufficient statistic random vectoor-
responding to a sourc¥ be the conditional distribution of given X, i.e., Z = p(Y|X). Zis
just a concrete representation of the possibly abstract sourc8imilarly, the random variable
7= p(Y\)?) represents the reproduction random variabléhis choice of sufficient statistic map-
ping is appropriate when the joint distribution of the random variaifleendY contains all the
relevant information abouX. For the above choice of sufficient statistic mapping, an additional
constraint tha is the conditional expectation @ leads to the lossy compression problem (24)
where we need to find the optimal assignments that balance the trade-ofiélpetampression and
the loss in Bregman information. Now, from Example 6 in Section 3.1, the Bregmiamation
l4(Z) of the random variabl& that takes values over the set of conditional distributipp@ |%) }
with probability p(X) is the same as the mutual informatikiX;Y) of X andY (when the Bregman
divergence is the KL-divergence). Hence, the problem (24) esite

rpi‘rg{ux:i) —BI(X;Y)}, (25)
p(R|X

sincep(X|x) = p(2|z) andl (X;X) = 1(Z;Z), where is the variational parameter. This is identical
to the IB formulation (Tishby et al., 1999). Our framework reveals that Bhadsumption that the
mutual information with respect to another random variablelds all the relevant information for
comparing the different source entities is equivalent to assuming thptY&X) is the appropriate
sufficient statistic representation, and (b) the KL-divergence betthesronditional distributions of
Y is the appropriate distortion measure. Further, the assumption about thitawal independence
of Y andX givenX, i.e., the Markov chain conditiodf < X < X, is equivalent to the constraint
thatZ is the conditional expectation & i.e.,Z = p(Y|X) = Ex;z[P(Y|X)] = E3(Z].
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Thus the information bottleneck problem is seen to be a special case of the pidoblem (23),
and hence also of the Bregman soft clustering problem and mixture estimatiolem for expo-
nential families. In particular, IB is exactly equivalent to the mixture estimatiablpm based
on the exponential family corresponding to KL-divergence, i.e., the multiridiamaily (Collins
et al., 2001). Further, the iterative IB algorithm is the same as the EM algof@ghmultinomial
distributions (Slonim and Weiss, 2002), and also the Bregman soft clugt@gorithm using KL-
divergence.

7. Experiments

There are a number of experimental results in existing literature (MacQa8éi; Linde et al.,
1980; Buzo et al., 1980; Dhillon et al., 2003; Nigam et al., 2000) that illtestitze usefulness of
specific Bregman divergences and the corresponding Bregman tigstdgorithms in important
application domains. The classidaieans algorithm, which is a special case of the Bregman hard
clustering algorithm for the squared Euclidean distance has been sfudigeapplied to a large
number of domains where a Gaussian distribution assumption is valid. Besislethéne are at
least two other domains where special cases of Bregman clustering metha@lbden shown to
provide good results.

The firstis the text-clustering domain where the information-theoretic clugtalgorithm (Dhillon
et al., 2003) and the EM algorithm on a mixture of multinomials based on the naiyesBas-
sumption (Nigam et al., 2000) have been applied. These algorithms gvectigsly, special cases
of the Bregman hard and soft clustering algorithms for KL-divergenoe, have been shown to
provide high quality results on large real datasets such as the 20-NewsgiReuters and Dmoz
text datasets. This success is not unexpected as text documents dtectdeely modeled using
multinomial distributions where the corresponding Bregman divergencetithgi&KL-divergence
between word distributions.

Speech coding is another domain where a special case of the Bregmtarictuslgorithm
based on the Itakura-Saito distance, namely the Linde-Buzo-Gray (BR@jithm (Linde et al.,
1980; Buzo et al., 1980), has been successfully applied. Speedr ppectra tend to follow expo-
nential family densities of the form(x) = Ae ™ whose corresponding Bregman divergence is the
Itakura-Saito distance (see Table 2).

Since special cases of Bregman clustering algorithms have alreadyHmemt® be effective in
various domains, we do not experimentally re-evaluate the Bregman clgsédgiorithms against
other methods. Instead, we only focus on showing that the quality of theedhg depends on
the appropriateness of the Bregman divergence. In particular we Bregynan clustering of data
generated from mixture of exponential family distributions using the cooredipg Bregman diver-
gence as well as non-matching divergences. The results indicate tichigter quality is best when
the Bregman divergence corresponding to the generative model is esdploy

We performed two experiments using datasets of increasing level of tiffickor our first
experiment, we created three 1-dimensional datasets of 100 samplebassethpn mixture models
of Gaussian, Poisson and Binomial distributions respectively. All the mixhodels had three
components with equal priors centered at 10, 20 and 40 respectivedystandard deviatioo of
the Gaussian densities was set to 5 and the number of ltiafghe Binomial distribution was set
to 100 so as to make the three models somewhat similar to each other, in the agtisevhriance
is approximately the same for all the models. Figure 1 shows the density funofitime generative

1736



models.

Table 3:

CLUSTERING WITH BREGMAN DIVERGENCES

The datasets were then each clustered using three versionBghean hard clustering
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Figure 1: Generative models for data sets used in experiment 1

Clustering results for the first data set. Columns 2-4 corregpotiet normalized mu-
tual information between original and predicted clusters obtained by applya8reg-

man clustering algorithm corresponding to the Bregman divergetgssian dpoissonand

dinomial respectively

Generative Model dcaussian dpoisson dginomial

Gaussian 0.701+0.033 | 0.633+0.043 | 0.641+0.035
Poisson 0.6894-0.063 | 0.7344-0.057 | 0.694-+0.059
Binomial 0.76940.061 | 0.7464+-0.048 | 0.825+0.046

algorithm corresponding to the Bregman divergences obtained fromethesiankneans), Poisson

and Binomial distributions respectively. The quality of the clustering was unedsn terms of

the normalized mutual informatidh (Strehl and Ghosh, 2002) between the predicted clusters and
original clusters (based on the actual generating mixture componenthangsults were averaged
over 10 trials. Table 3 shows the normalized mutual information values foiffeestht divergences
and datasets. From Table 3, we can see that clustering quality is signifitettty when the
Bregman divergence used in the clustering algorithm matches that of theatjee model.

The second experiment involved a similar kind of comparison of clusterimgitighs for multi-
dimensional datasets drawn from multivariate Gaussian, Binomial and Ralistabutions respec-
tively. The datasets were sampled from mixture models with 15 overlappingamnis and had
2000 10-dimensional samples each. The results of the Bregman clustiyanghans shown in
Table 4 lead to the same conclusion as before, i.e., the choice of the Bregreegedce used for
clustering is important for obtaining good quality clusters.

In practice, an important issue that needs to be addressed is: what jsptioprate Bregman
divergence for a given application? In certain situations, it may be gedsilrealistically char-
acterize the data generative process using a mixture of exponential fastiipputions. In such a
scenario, especially in the absence of a better methodology, using tihgetice corresponding to

11. Itis meaningless to compare the clustering objective function vafutbew are different for the three versions of the
Bregman clustering algorithm.
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Table 4: Clustering results for the second set of data sets

Generative Model dGaussian dpoisson dBinomial

Gaussian 0.728+0.005 | 0.6614+0.007 | 0.669+0.005
Poisson 0.7924-0.013 | 0.8154-0.014 | 0.802+0.013
Binomial 0.8234-0.006 | 0.8334-0.011 | 0.849+0.012

the exponential family seems appropriate. In general, however, theydivee used for clustering
need not necessarily have to be the one corresponding to the gemenaiikel. The final choice
should depend on the relevant application, i.e., the divergence shqutlaredhe similarity prop-
erties desirable in the application, and need not necessarily dependvaihddata was actually
generated.

8. Related Work

This work is largely inspired by three broad and overlapping ideas. Rinstnformation theo-
retic viewpoint of the clustering problem is invaluable. Such consideratioagr in several tech-
niques, from classical vector quantization (Gersho and Gray, 1992ptonation theoretic cluster-
ing (Dhillon et al., 2003) and the information bottleneck method (Tishby et 2@d9Y19n particular,

the information theoretic hard clustering (Dhillon et al., 2003) approacteddtwe problem of dis-
tributional clustering with a formulation involving loss in Shannon’s mutual imi@tion. In this

paper, we have significantly generalized that work by proposing tegbsifpr obtaining optimal
quantizations by minimizing loss in Bregman information corresponding to agpiagman di-

vergences.

Second, our soft clustering approach is based on the relationshipdreBregman divergences
and exponential family distributions and the suitability of Bregman divergeaselistortion or loss
functions for data drawn from exponential distributions. It has beewigusly shown (Amari and
Nagaoka, 2001; Azoury and Warmuth, 2001) that the KL-divergemtdch is the most natural
distance measure for comparing two memhgjsg) and Py.6) of an exponential family, is always
a Bregman divergence. In particular, it is the Bregman divergelpce, 5) corresponding to the
cumulant functiony of the exponential family. In our work, we extend this concept to say that
the Bregman divergence of the Legendre conjugate of the cumularttdrig a natural distance
function for the data drawn according to a mixture model based on thaherpal family.

The third broad idea is that many learning algorithms can be viewed as soltdramgimiz-
ing loss functions based on Bregman divergences (Censor and Z&888). Elegant techniques
for the design of algorithms and the analysis of relative loss bounds in the dearning setting
extensively use this framework (Azoury and Warmuth, 2001). In thepsrvised learning setting,
use of this framework typically involves development of alternate minimizatioogahares (Csisa
and Tus@ady, 1984). For example, Pietra et al. (2001); Wang and Schuurr@@@8)(analyze and
develop iterative alternate projection procedures for solving unsigeelwptimization problems
that involve objective functions based on Bregman divergences wadeus kinds of constraints.
Further, Collins et al. (2001) develop a generalization of PCA for ezptial families using loss
functions based on the corresponding Bregman divergences apdspralternate minimization
schemes for solving the problem.
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On a larger context, there has been research in various fields thaicusséd on generalized
notions of distances and on extending known methodologies to the geptnaf)jgRao, 1982).
Grinwald and Dawid (2004) recently extended the ‘redundancy-captdmtrem’ of informa-
tion theory to arbitrary discrepancy measures. As an extension of Stiarerdropy (Cover and
Thomas, 1991), they introduced generalized entropy measures th@toamneecessarily differen-
tiable) concave functions of probability distributions. Just as Shanmarit®py is the minimum
number of bits (on an average) required to encode a stochastic sthergeneralized entropy mea-
sures correspond to the infimum of a general class of loss functions ama theoretic setting.
Restricting their results to our setting, the generalized entropy is equivaléen¢ concave func-
tion —@, where determines the Bregman divergerdye However, our framework is applicable
to arbitrary vectors (or functions), whereasi@wald and Dawid (2004) focus only on probability
distributions.

As we discussed in Section 6, our treatment of clustering is very closely tiede@istortion
theory (Berger, 1971; Berger and Gibson, 1998; Gray and N&Uut®88). The results presented in
the paper extend vector quantization methods (Gersho and Gray, 139yt class of distortion
measures. Further, building on the work of Rose (1994), our resudtsder practical ways of
computing the rate-distortion function when distortion is measured by a Bredivargence. In
addition, the results also establish a connection between the rate distortmenpreith Bregman
divergences and the mixture model estimation problem for exponential farfilawerjee et al.,
2004a).

In the literature, there are clustering algorithms that involve minimizing loss furebased on
distortion measures that are somewhat different from Bregman divezge For example, Modha
and Spangler (2003) present the@nvex- kmeans clustering algorithm for distortion measures that
are always non-negative and convex in the second argument, usingttbe of a generalized cen-
troid. Bregman divergences, on the other hand, are not necessarigxin the second argument.
Linde et al. (1980) consider distortion measures of the fdtmy) = (x —y)TA(x)(x — y) where
x,y € R% andA(x) is ad x d positive definite matrix, as loss functions for vector quantization.
Although such distortions are Bregman divergences in some cases, leelAX) is a constant
matrix, in general one has to solve a convex optimization problem to computptiebrepresen-
tative when using the abowkx,y).

9. Concluding Remarks

In this paper, we have presented hard and soft clustering algorithms to nerimsi functions in-
volving Bregman divergences. Our analysis presents a unified view ehtre class of centroid
based parametric clustering algorithms. First, in the hard-clustering frarkewe show that a
knmeans type iterative relocation scheme solves the Bregman hard-clustering prédnall Breg-
man divergences. Further, using a related result, we see that Bregweagedces are the only
distortion functions for which such a centroid-based clustering schemeskiljpe. Second, we
formally show that there is a one-to-one correspondence betwedaregponential families and
regular Bregman divergences. This result is useful in developingtemative interpretation of the
EM algorithm for learning mixtures of exponential distributions, eventuakyliteng in a class of
Bregman soft-clustering algorithms. Our formulation also turns out to belgltisd to the rate
distortion theory for Bregman divergences.
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As discussed in the paper, special cases of our analysis have beevedixi and widely used
by researchers in applications ranging from speech coding to textrohgst&here are three salient
features of this framework that make these results particularly usefiddibtife applications. First,
the computational complexity of each iteration of the entire class of Bregmaeichgsalgorithms
is linear in the number of data-points. Hence the algorithms are scalable prap&ate for large-
scale machine learning tasks. Second, the modularity of the proposedicidgsrithms is evident
from the fact that only one component in the proposed schemes, i.e.,égmBn divergence used
in the assignment step, needs to be changed to obtain an algorithm for agsefuriotion. This
simplifies the implementation and application of this class of algorithms to various gata tfhird,
the algorithms discussed are also applicable to mixed data types that are corammuytered in
real applications. Since a convex combination of convex functions isyala@nvex, one can have
different convex functions appropriately chosen for differentseth of features. The Bregman
divergence corresponding to a convex combination of the componectidaus can now be used to
cluster the data, thus vastly increasing the scope of the proposed tezhniqu
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Appendix A. Properties of Bregman Divergences

In this section, we list some well-known useful properties of Bregmarngiarees.

Properties of Bregman Divergences

Let @: S — R be a strictly convex, differentiable function defined on a convexssetdom(g) C
RY and letdy : S x ri(S) +— [0,0) be its Bregman divergence, i.€y(X,y) = @(X) — @(y) — (X —
y,0@(y)). Then, the following properties are true.

1. Non-negativity. dy(X,y) > 0, VX € 5,y € ri(5), and equality holds if and only ¥ =y.

2. Convexity. dy is always convex in the first argument, but not necessarily convex settend
argument. Squared Euclidean distance and KL-divergence are exaoifeegman diver-
gences that are convex in both their arguments, but the Bregman digergerresponding to
the strictly convex functio(x) = x3, defined orR ;, given bydy(X,y) = x3 — y* — 3(x— y)y?
an example divergence that is not convey.in

3. Linearity. Bregman divergence is a linear operator &£ S,y € ri(5),

d(Pl-HPz(va) - d(Pl(X7y)+d(Pz(Xay)7
doglx,y) = cdglxy) (forc>0).
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. Equivalence classesThe Bregman divergences of functions that differ only in affine terms
are identical i.e., ifg(x) = @(x) + (b,x) + ¢ whereb € RY and ¢ € R, thendy(x,y) =

de, (X,Y), VX € 8,y €r1i(S). Hence, the set of all strictly convex, differentiable functions on a
convex sef$ can be partitioned into equivalence classes of the form

[@o] = {@[dy(X,y) = dg(X,y) VX E S, y €1i(5)}.

. Linear separation. The locus of all the points € § that are equidistant from two fixed points
n1, 2 € 1i(S) in terms of a Bregman divergence is a hyperplane, i.e., the partitions induced
by Bregman divergences have linear separators given by

d(P(Xnu’l) = d(P(le*l’Z)
= QX)) — @(p1) — (X — pa, 0@(p1)) = @(X) — @(p2) — (X — p2, O@(p22))
= (X% 00(p2) — O@(p1)) = (@(p1) — @(p2)) — (11, O(p1)) — (2, Dp(p2)))

. Dual Divergences Bregman divergences obtained from a Legendre funggiand its conju-
gatey satisfy the duality property:

do(pe1, 2) = @(pe1) + W(02) — (p1,02) = dy(62,01),
wherep, pp € 1i(S) are related t@q, - € ri(©) by the Legendre transformation.

. Relation to KL-divergence. Let ¥y be an exponential family witkp as the cumulant func-
tion. Then the KL divergence between two membgyge,) and py g,) in Fy corresponding

to natural parametei®; and@, can be expressed as a Bregman divergence in two possible
ways. In particular,

KL(P(w,0.) || Pw.6,)) = A1, 2) = dy(02,61)

where uy and u, are the expectation parameters correspondin@;tand 8,. Further, if
P(0) = 0, thenpy g)(X) = po(X) is itself a valid probability density andL (py e) | Py.0) =
(1), wheregs = OY(6).

. Generalized Pythagoras theorem.For anyx; € § andxz,xs € ri(5), the following three-
point property holds:

dp(X1,X3) = dp(X1,X2) + dg(X2,X3) — (X1 — X2, OQ(X3) — O@P(X2)). (26)
Whenxy, X, andxs are such thax; € §’ whereS’ is a convex subset of andx; is given by

X2 = argmindy(X, X3),
xes’

then the inner product term in (26) becomes negative and we have,
dy(X1,X2) + dp(X2,X3) < dg(X1,X3).
When the convex subsgt is an affine set, then the inner product term is zero giving rise to

an equality.
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Necessary and Sufficient Conditions for a Bregman Divergence

A divergence measuré: S x ri(5) — [0,) is a Bregman divergence if and only if there exists
ac ri(S) such that the functiops(x) = d(x, a) satisfies the following conditions:

1. @4 is strictly convex ons and differentiable on (is).

2. d(x,y) =dg,(X,y), VX € 8,y € 1i(S) whered,, is the Bregman divergence associated with
@a.

It is easy to see the sufficiency property from the second condition.ré@eghat the conditions
are necessary as well, we note that for any strictly convex, differdatfabctionq, the Bregman
divergence evaluated with a fixed value for the second argumentddffi@m it only by a linear
term, i.e.,

Pa(X) =dg(x,@) = @x)—@a)— (x—a0p@)
= o)+ (b,x) +c,

whereb = —[g(a) andc = (a,@(a)) — @(a). Hencep, is also strictly convex and differentiable
and the Bregman divergences associated gidhdg, are identical.

Appendix B. Proof of Exhaustiveness Result

This appendix is based on results reported in Banerjee et al. (20033 araduded in this paper
for the sake of completeness. The results discussed here show thest@sdreess of Bregman
divergences with respect to the property proved in Proposition 1.

Theorem 10 ( Banerjee et al. (2005)Let F: R x R— R, be a continuous and differentiable func-
tion F(x,y) with continuous partial derivative%gF and %—5 such that Kx,x) = 0,Vx € R. For all sets
X C R and all probability measureg over X, if the random variable X takes valuesihfollowing

v such that § = E, [X] is the unique minimizer of i (X,y)] over allye R, i.e., if

argminE, [F(X,y)] = Ey[X] (27)
yeR

then F(x,y) is a Bregman divergence, i.e.(¥Y) = dy(X,y) for some strictly convex, differentiable
functiong: R — R.

Proof Since the optimality property in (27) is true for &llandv, we give a constructive argument
with a particular choice o andv. Let X = {a,b} C R wherea # b, and letv be {p,q}, with
p,q € (0,1) andp+ g =1 so that,[X] = pa+ gb. Then from (27),

pF(a,y) +aF(b,y) = By[F(X,y)] > By[F (X, Ev[X])] = pF(a, pa+qgb) +qF (b, pa+qgb)

vy € R. If we consider the left-hand-side as a functioryot equals the right-hand-side at y* =
Ev[X] = pa+ gb. Therefore, we must have

OF@y)  OFby) _ g (28)

ay ay
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Substitutingp = (y* — b) /(a— b) and rearranging terms yields

1 oF(ay") 1  oF(by*)

(y'—a) oy (y-—b) 0s

Sincea, b andp are arbitrary, the above equality implies that the function

1 O0F(xy)
(y—x) oy

is independent af. Thus we can write, for some functid,

oF (x,y)
dy

= (y—=x)H(y), (29)

for some continuous functiod.
Now define functionp by

o = [ [ Hivatay.

Thenagis differentiable withp(0) = ¢(0) = 0, ¢’(y) = H(y). Integration by parts for (29) leads to

Fxy) —F 00 = [ =0H() Y = 00~ @) ~Fy)(x-)

SinceF (x,x) = 0, the non-negativity of implies thatgis a convex function.

It remains to show thapis strictly convex. Supposeis not strictly convex. Then there exists
an intervall = [¢1, ¢5] such thaty < ¢ and@/ (y) = (@(¢1) — @(¢2))/(¢1—¢2) for all y € |. Consider
the setX = {¢1,4,} withv = {3, 3}. Itis easy to check that anye | is a minimizer ofg, [F (X, y)].
This is a contradiction, and gpmust be strictly convex. ]

It is possible to get rid of the condition thgt has to be continuous by proper mollification argu-
ments (Banerjee et al., 2005). Further, it is possible to generalize thié teefunctions in more
than one dimension, i.eF, : R4 x R4 — R

Theorem 11 ( Banerjee et al. (2005))Let F: R4 x RY — R, 2be a continuous function such that
F(x,x) =0,¥x € RY, and the second order partial derivativ%a%, 1<i,j,<d,are all continuous.

For all setsx C RY and alll probability measures over X, if the random variable X takes values in
X followingv such thaty = E,[X] is the unique minimizer of B (X,y)] over ally € RY, i.e., if

argminE, [F(X,y)] = Ey[X],
yeRd

then F(x,y) is a Bregman divergence, i.e.(¥Y) = dy(X,y) for some strictly convex, differentiable
function@: RY — R.

The proof of Theorem 11 builds on the intuition of the proof of Theorembl®is more involved
and hence skipped; the interested reader is referred to Banerje¢2€0H).
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Appendix C. Proof of Theorem 3

This appendix provides a proof of Theorem 3 in Section 4.3 and relasedtse Most of the ideas
used in our analysis are from Section 9.1 of Barndorff-Nielsen (1&@)the sake of completeness,
we give detailed proofs of the results. We begin with definitions. Pgebe any non-negative
bounded measure drR? and Fy = {P,6), 0 €O C RY} be a regular exponential family with
cumulant functionp and base measuRg, as discussed in Section 4.1. Without loss of generality,
let Py be a probability measuré. Let Iy be the support oPy (Definition 6) and hence, of all the
probability distributions infy. Let @ be the conjugate ap so that(int(dom(¢g)), ) and(©, ) are
Legendre duals of each other.

Lemma 3 For any@ € © andx € RY,

(6,x) —W(0) < —Iog< inf  Po[(u,X) > <u,><>]> (30)

ueRd fJul2=1
where X~ Py. Hence

inf  Po[(u,X) > (u,x)] >0 impliesthat x € dom(¢) .

uckY ||ujj2=1

Proof Let ug be the unit vector in the direction & Given anyx € RY, it is possible to divideRd
into two half spacesj; = {X' € RY| (ug,X') < (Ug,x)} and Gz = {x' € RY| (ug,x’) > (Ug,X)}. For
any#@, we have

L= [ exR(0.X) —w(e)dR(x)
X' eR
- o (0) = [ exp((8.X))dR(X).
Partitioning the integral oveRY into G1 and G2, we obtain
pWO) = [ exn0x)dRr(x)+ [ exn(0.X))dR(x)
> / exp((0,x))dRy(X)
X'€Ga

> exp((6,X)) / dR(X)  (since(ug,x') > (Ug,X) for X' € G»)

X' €Go
= exp((8,x))Po[(ug, X) > (Ug,X)]
> exp((6,%)) inf Ro[{u, X) > (u,x)] .

On taking logarithms and re-arranging terms, we obtain (30).
From (30), iuano[<u,X> > (u,x)] > 0 implies thatv@, (8,x) — Y (0) < », so that

@(x) = sup((0,x) —W(0)) < o,

0

12. Since any non-negative bounded measure can be simply cahteeegrobability measure by a multiplicative con-
stant, our analysis remains practically unchanged in the general zaept ér an additive constant to the cumulant
function.
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i.e.,x € dom(q). ]
We now prove the claim of Theorem 3 tHgtC dom(¢).

Proof of Theorem 3 Let xo € Iy and letu be any unit vector. LeH(u,xo) be the hyperplane
throughxo with unit normalu. Let H (u,Xo) be the closed half-space determined by the hyperplane
H(u,Xo), i.e.,H (u,Xo) = {x € RY|(u,x) > (u,xo) }. Using this notation, we give separate proofs for
the cases wheh is absolutely continuous with respect to the counting measure and with téspec
the Lebesgue measure.

Let Py be absolutely continuous with respect to the counting measure. By definkgan,
H(u,Xo). Sincexo € ly, applying Definition 6 to the sdt= {xo} we havepy g)(Xo) > 0. Hence
po(Xo) > 0 as the exponential family distribution is absolutely continuous with resp&t fthere-
fore, the closed half-spack (u,xo) has a positive measure of at le@gtxo) for any unit vectowu,
ie.,

Po [{u, X)
so that Lano [(u, X)

po(Xo) >0 WVu
po(Xo) > 0.

v v

From Lemma 3, it follows thatg € dom(¢). Therefore)y C dom(g).
Now we consider the case whépis absolutely continuous with respect to the Lebesgue mea-
sure. Ifxp € ly, thenvl C RY with xg € | and f, dx > 0, we have

/IdPo(x)>O.

Note that sincexg € # (u,Xp) andf}[(wo) dx > 0, we must have

/ dRy(x) >0 u.
H(u,Xo)

HencePy((u, X) > (u,Xo)) > 0,Vu. Since the set of unit vectors is a compact set, B (u, X) >
(u,Xo)) is achieved at some unit vectot, so that

iﬂf Po({u, X) > (u,Xo)) = Po((u*, X) > (u*,xo)) > 0.

Again, Lemma 3 implies thatg € dom(¢) so thatl, € dom(@). [

Finally, we present a related result from Barndorff-Nielsen (19A&)linng the closed convex hull
of Iy and donf@). The result is not essential to the paper, but is relevant, and interesiisgiun
right.

Theorem 12 (Barndorff-Nielsen (1978))Let Iy be as in Definition 6. Let gbe the closure of the
convex hull of J;, i.e., Gy = co(ly). Then,

int(Cy) C dom() C Gy
whereg@is the conjugate of.

Note that Theorem 12 does not imply Theorem 3.
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